中国名酒的光谱鉴别方法初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国名酒作为世界知名品牌,多年来一直受假名酒的侵害。如何区分和鉴别中国名酒,人们越来越关注。检验中国名酒的方法主要有两类:一类是采用感官品尝的方法,二是采用色谱分析的方法。但前者费时、费力、费物,限制其在工业生产及在流通领域的广泛应用。因此建立简单、快速的白酒品质鉴定方法,对于杜绝市场上出现的假冒劣质名优白酒具有重要意义。
     经过大量的研究发现:各香型的名优白酒中所含的香味成分种类几乎是相同的,但其量高低及它们之间的量比关系则不同。显然,对白酒中的数百种化学成分进行定量是不现实的也是没有必要的。只有对那些决定名白酒风味特征的化学性质稳定的成分进行定量才具有积极的意义。我们把这些组分及它们之间的量比关系综合称之为名白酒的“色谱骨架成分”。目前我国科研人员通过采用色谱-质谱、色谱-红外光谱联用,及其他先进的分析手段,分析了中国名优白酒30多种主要香味化学物质,根据这些香味成分的量比关系提出了名优白酒的“色谱骨架成分”是决定名优白酒的香型及质量特征的观点。这为白酒的香型确立与划分,寻求白酒之共性、鉴别各类白酒之差异,为白酒计算机勾调和作为白酒品评的一种补偿,利用计算机鉴别白酒优劣等等,提供了较为充分的依据。
     光谱分析法具有宏观整体鉴定复杂体系的优点以及无损快速的特点,目前已广泛应用于材料、化学、生物、矿物宝石、公安法学等研究领域。本文用紫外吸收光谱、红外光谱以及拉曼光谱对茅台酒进行了实验研究,目的在于找到它的色谱特征,以期对茅台酒的真假鉴定提供参考。我们通过对中国名酒的光谱分析研究发现,茅台酒中的糠醛含量是其它名酒的10倍左右。因此我们选择了糠醛作为研究对象,糠醛是茅台酒里最重要的香味成分之一。
     拉曼光谱和红外光谱都是研究分子振动的光谱方法,它们的原理和机制不同,但它们提供的结构信息却是类似的,都是关于分子内部各种简正振动频率及有关振动能级的情况,从而可以用来鉴定分子中存在的官能团。在分子结构分析中,拉曼光谱与红外光谱是相互补充的。因此,一些在红外光谱仪无法检测的信息在拉曼光谱能很好地表现出来。拉曼光谱和红外光谱相配合使用可以更加全面地研究分子的振动状态,提供更多的分子结构方面的信息。表面增强拉曼光谱对于痕量检测,具有很高的灵敏度,通常用来研究被检测样品吸附在金属表面时的构型变化,以及分子与金属表面的相互作用。
     密度泛函理论(Density Functional Theory)计算化学方法是近些年来发展起来的第三类电子结构方法(还包括半经验法和从头算方法),在计算时考虑到了电子交换能量和电子相关能量对结果的影响,使得计算结果比半经验方法和从头算方法更精确,而且其计算量小的多。目前它在化学、物理、生命科学、材料科学等领域的有广泛的作用。
     本论文对茅台酒的光谱进行了分析研究。主要内容有以下四部分组成:
     一:中国名酒的概述。即介绍了中国名酒的评定方法、成分、微量香味成分的研究历史、香型分类及主体香成分、中国名酒及糠醛的检测方法及取得的成果。并简单介绍了拉曼散射技术在无损检测技术新进展及表面增强拉曼散射的应用。
     二:茅台酒的光谱方法鉴别初探研究。我们分别用紫外吸收光谱法,红外光谱法,拉曼光谱法及表面增强拉曼光谱法对真假茅台酒进行了光谱研究。研究结果表明:用光谱法来鉴别茅台酒的真假是切实可行的。
     三:我们用密度泛函数理论计算出了糠醛分子的拉曼光谱和红外光谱,并将其与实验测得的糠醛分子的正常拉曼光谱和红外光谱进行比对,从而对糠醛分子的光谱振动模式进行了指认和归属。
     四:研究了糠醛分子吸附在银胶、银镜表面上的表面增强拉曼散射光谱。通过实验数据和密度泛函理论计算结果的比较分析,得出糠醛分子是以杂五环垂直于或稍微倾斜吸附表面的方向通过杂五环非键合的电子吸附到银颗粒表面的。同时,研究了糠醛在不同电压下,吸附在铜电极表面的SERS光谱,得出糠醛在铜电极表面的吸附方式随电极电压的改变而变化。
The Chinese famous liquor, as the world-famous brand, has been receiving the infringement of the false famous brand all the time. Nowadays, people pay more and more attention to how to distinguish the Chinese famous brands of wine. There are mainly two kinds of methods to distinguish famous liquor: One method is to distinguish the liquor by the sense organ, and the other method is to adopt chromatograms analysis. But the former is time-consuming, arduous and costly, which limits its application in industrial production and circulation. Searching for simple and rapid appraisal method will be valuable in distinguishing high-quality Chinese liquor from fake or inferior brands.
     A large number of reports find: all kinds of Chinese famous liquor contain almost the same perfume components, but there are obvious differences between quantity and proportion of perfume. Obviously, it is unrealistic and unnecessary for quantitative analysis of several hundred kinds of chemical components in Chinese liquor. It is just significative for quantitative analysis of those perfume-decising compositions, which is chemically steady and determine the liquor flavor of the Chinese famous liquor. Chinese scientific researchers have analyzed the 30 kinds of main chemical components by GC/MS, GC/IR and other advanced analyzing methods. From the flavoring components of famous Chinese liquor, Chinese researchers put forward“chromatograph skeleton components”, which determine the aroma and quality of liquor. It provides potential evidence for the determination of aroma, commonness and differences of Chinese famous liquor. Also, it makes it feasible to blend and appreciate liquor by computer.
     Spectrum analytic approach has already applied to research fields such as material, chemistry, living beings, mineral gem, law sciences of public security for its fast and unharmful properties at present. This text has studied on the Moutai liquor by UV-Vis-NIR absorption, infrared and Raman spectra in order to obtain its chromatogram property and appreciate the true and false Moutai liquor. We find that the furfural content in Moutai is 10 times more than that of other famous brands of liquor by the spectral analysis, so we have chosen furfural, one of the most important perfume compositions in the Moutai, as the research object.
     Raman scattering is one method to investigate molecular vibrations. The principle and mechanism of Raman scattering is different from infrared spectrum, but the information they offer is complemental. They both offer information about various normal vibration frequencies and correlated vibrational energy level in the molecule. They can both be used to identify the functional group that exist in the molecule. In the analysis of molecular structure, Raman and infrared spectra supplement each other. As a result, some information that can't be measured in infrared spectrum can well show in Raman spectrum. Raman spectrum is used along with infrared spectrum offer more comprehensive information of molecular structure. Surface enhanced Raman scattering, which has extremely high sensitivity and can offer molecular structure information, especially the information of mutual interaction between the molecules and metal surface, has been widely applied in trace detection. Density functional theory (DFT) is the third method (except ab initio method and semiempirical method ) of the computation of molecular structure and vibrational frequencies. DFT methods have led to the prediction of very accurate molecular structures and vibrational frequencies as compared to the conventional ab initio and semiempirical methods. The DFT method provides a costeffective approach for calculating the vibrational spectra of molecules. The DFT method has been extensively used in fields such as chemistry, physics, life sciences and material science at present.
     This paper has studied the spectrum of the Moutai liquor. The paper is made up of four parts as follows:
     One: summary of the Chinese famous brand of liquor. This part introduces appraisal method of famous liquor, component, micro-perfume composition, fragrant type, detection method and achievement of the Chinese famous brand and furfural made in the past. Also, we briefly introduce the application of Raman scattering and surface enhanced Raman technique in unharmful detection.
     Two: the elementary study on Moutai spectrum method is presented in this part. We investigated the true and false Moutai by UV-Vis-NIR, Raman and Surface enhanced Raman spectra method. The results show it is feasible for distinguishing the true and false Moutai by spectrum method.
     Three: We calculated the Raman and IR spectra of furfural molecule by DFT method and compare them with the normal Raman and infrared spectra obtained in our experiment. Also, the vibrational modes of spectra were assigned and ascribed. Four: this part investigated the furfural molecule absorded on the surface of silver colloid and silver mirror by surface enhanced Raman spectrum method. By the comparision analysis of the calculated and experimental results, it is concluded that furfural molecules are perpendicularity or acclivitously adsorded on the silver surface via the nonbonding electrons of the carbonyl oxygen. Meanwhile, we have studied SERS spectra of furfural molecule absorded on the surface of copper electrode under different voltages. The experimental results showed that the absorded manners of furfural molecule varied with change of the electrode voltage.
引文
[1] 庄名扬, 国酒茅台演译东方神韵, 酿酒, 2005, 32(1): 101
    [2] 王福庆, 杨柏森, 王霞等, 再论对白酒微量香味成分含量评估的修正, 酿酒, 2006, 33(1): 36
    [3] 辛磊, 白酒微量成分与酒体风格特征关系的探讨, 食品与机械, 2004, 20(2): 49
    [4] 王忠彦, 尹昌树, 白酒色谱骨架成分的含量及比例关系对香型和质量的影响, 酿酒科技, 2000, 6: 93
    [5] 邵长军, 李刚, 李亮,张坤, 白酒香型与香味成分探究, 酿酒科技, 2005, (8): 92
    [6] 李大和, 建国五十年来白酒生产技术的伟大成就, 酿酒, 1999, 26(6): 13
    [7] 曹健君等, 中国白酒工业技术进步与发展, 酿酒科技, 2005, (5): 52
    [8] 熊子书, 白酒中主要香味成分风味的研究, 山西食品发酵, 1982, 1: 1
    [9] 熊子书, 白酒香味成份的分析成就, 酿酒, 1984, 11(3): 43
    [10] 邓少平, 徐占成, 微观非均相分布现象的意义与研究方法, 酿酒, 1999, 26(4): 52
    [11] 周围, 周小平, 名优白酒质量指纹专家鉴别系统, 分析化学研究报告, 2004, 32(6): 735
    [12] 李春萍, 气相色谱法测定茅台酒中甲醇及杂醇油含量的测量不确定度评估,食品科学, 2005, 26(7): 177
    [13] 刘剑平, 孙慧, 马继勇, 气相色谱法测定白酒中微量醛, 中国卫生检验杂志, 2005, 15(3): 324
    [14] 曾祖训, 白酒香味成分分析, 酿酒, 2006, 33(2): 3
    [15] 许汉英, 赵晓君, 紫外光度法直接测量白酒中的糠醛及其对配制酒的鉴别, 现代商检科技, 1996, 6(3): 43
    [16] 许汉英, 赵晓君, 分光光度法测定白酒中的糠醛, 应用化学, 1997, 3: 84
    [17] 邓月娥, 孙素琴, FTIR 法用于白酒的区分及真伪鉴定, 研究报告, 2005, 5: 29
    [18] C.D.Patz, A.Blieke, R.Ristow, H.Dietrich, Application of FT-MIR spectrometry in wine analysis, Analytica Chimica Acta, 513 : 81
    [19] 刘炯光, 白酒质量鉴别, 酿酒科技, 1999, (1): 98
    [20] 马宝歧主编, 农副产物加工指南, 化工出版社, 1988, 173
    [21] 张运明等, 化工进展, 1988, (5): 33
    [22] 孙继辉, 化工设计, 1995, (4): 52
    [23] 谢 萍,刘亚平,韩大川, 工业糠醛定性与定量分析, 检验检疫科学, 2000, (10): 7
    [24] 熊子书, 试论白酒中香味成份与风味的特征, 酿酒科技, 1998, (3): 82
    [25] 胡国栋, 程劲松, 酱香型白酒呋喃酮和比喃酮类化合物的分析研究, 酿酒科技, 1997, (4): 31
    [26] 沈尧坤, 关于直接进样气相色谱分析白酒香味组份几种方法的探, 酿酒, 1996, 23(5):3
    [27] 杜海波, 赵 杰, 熊俊丽,废水中糠醛测定方法的探讨,干旱环境监测,2003,(17): 137
    [28] Keller S, Schrader B, Hoffmann A, SchraderW, Metz K, Rehlaender A, Pahnke J, Ruwe M, Budach W, Application of Near-Infrared-Fourier Transform Raman Spectroscopy in Medical Research, J. Ram an Spectrosc. , 1994, 25: 663
    [29] Schrader B, Dippel B, Fendel S, Keller S, Lochte T, Ried l M, Schulte R, Tatsch E, NIR FT Raman spectroscopy-a new tool in medical diagnostics, J. Mol. S truct., 1997, 408: 23
    [30] Schrader B, Dippel B, Erb I, Keller S, Lochte T, Schulz H, Tatsch E, Wessel S, NIR Raman spectroscopy in medicine and biology: results and aspects, J. Mol. Struct., 1999, 480: 21
    [31] Fendel S, Schrader B, Fresenius, Investigation of skin and skin lesions by NIR-FT-Raman spectroscopy, J. Anal. Chem., 1998, 360: 609
    [32] Gniadecka M, Faurskov N O, Christensen D H, Wulf H C, Structure of water, proteins, and lipids in intact human skin, hair, and nail, J. Invest. Derm atol, 1998, 110: 393
    [33] Wessel S, Gniadecke M, Jemec G B E, Wulf H C, Hydration of human nails investigated by NIR-FT-Raman spectroscopy, Biochim. Biophys. Acta, 1999, 1433: 210
    [34] LiWeihong, Xu Zhi, FT Raman and FT IR Studies on the Normal and Malignant Tissues, Chinese Journal of Light Scattering, 1998, 10(3): 114
    [35] Freis R, NIR-FT-Ram an Spek troskopische Untersuchungen zur Analyse von B lut, Dissertation, Universit?t Essen, 1997
    [36] Edwards ( Ed. )H G M, Dragon's Blood I - Characterization of an Ancient Resin Using Fourier Transform Raman Spectroscopy, J. Raman Spectrosc., 1997, 28(4): 243
    [37] Vandenabeele P, Wehling B, Moens L, Edwards H, De ReuM, Van Hooydonk G, Analysis With Micro-Raman Spectroscopy Of Natural Organic Binding Media And Varnishes Used In Art, Analytica Chimica Acta, 2000, 407: 261
    [38] Cariati Francesco, Casadio Francesca, Bruni Silvia, V. Guglielmi, Micro-Raman identification of the palette of a precious XVI century illuminated Persian codex, Journal of Cultural. Heritage, 2001, 4: 291
    [39] Zuo Jian, Xu Cunyi, The Study of Ancient Coating Pottery and Wall Painting by Raman Spectra, Chinese Journal of Light Scattering, 1999, 11(3) : 215
    [40] Clark R J H, Raman microscopy: application to the identification of pigments on medieval manuscripts., Chem. Soc. Rev. , 1995, 24(3) : 187
    [41] Edwards H G M, Monika G, Susanne P, NIR-FT Raman spectroscopy as a diagnostic probe for mummified skin and nails, Vibrational Spectroscopy, 2002, 28: 3
    [42] Edwards H G M, Ellis E, Farwell D W, Janaway R C, Preliminary Study of the Application of Fourier Transform Raman Spectroscopy to the Analysis of Degraded Archaeological Linen Textiles, J. Raman Spectrosc., 1996, 27(9): 663
    [43] Edwards H G M, Farwell D W, Fourier transform-Raman spectroscopy of amber, Spectrochim. Acta Part A, 1996, 52(9): 1119
    [44] Edwards H G M, Falk M J, Fourier Transform Raman Spectroscopic Study of Ancient Resins: a Feasibility Study of Application to Archaeological Artefacts , J. Raman Spectrosc., 1997, 28(4): 211
    [45] Yang Qun, Wang Yilin, Zhang Pengxiang, Raman Micro-Spectroscopy as a Non-destructive Technique for Stone Axes of New Stone Age, Spectroscopy and Spectra Analysis, 2001, 21(4): 503
    [46] YangQun, Wang Yilin, Zhang Pengxiang, L i Chaozhen, A Study on Corrosion of Ancient Bronze Lance by Raman Microscopy, Chinese Journal of Light Scattering, 2001, 13(1): 49
    [47] Lewis L R, Daniel N W, Chaffin N C, Griffiths P R, tungol M W, Raman spectroscopic studies of explosive materials: towards a fieldable explosives detector , Spectrochim Acta Part A, 1995, 51(12): 1985
    [48] Stich S, Delphine B, Lea G, Raman microscopic identification of gunshot residues, J. Ram an Spectrosc., 1998, 29(9): 787
    [49] Zhang Pengxiang, Zhao Jintao, Raman Micro Spectroscopic Applications in Forensic Fields, Chinese Journal of Light Scattering, 1998, 10(3-4): 200
    [50] Zhao Jintao, Zhang Pengxiang, Chen Dapeng, Studies of Narcotics by Micro Raman Spectroscopy, Spectroscopy and Spectra Analysis, 1999, 19(6): 837
    [51] Zhao Jintao, Xu Cunying, Duan Yunbiao, Zhang Pengxiang, Raman Investigating of Trace Contraband Heroin by Micro Raman, Spectroscopy and Spectra Analysis, 2002, 22(4): 588
    [52] Liu Guozhi, Zhao Jintao, Xu Cunying, Duan Yunbiao, Zhang Pengxiang. Raman Investigating of Ephedrinum and Levamisole by Micro Raman, Spectroscopy and Spectra Analysis, 2002, 22(2): 248
    [53] Edwards H G M, Farwell D W, Ivory and simulated ivory artefacts: Fourier transform Raman diagnostic study, Spectrochimica. Acta Part A., 1995, 51(12): 2073
    [54] Brody R H, Edwards H G M, Pollard A M, Chemometric methods applied to the differentiation of Fourier-transform Raman spectra of ivories, Analy tica Chim ica Acta, 2001, 427: 223
    [55] Zhang Yan, Zhang Pengxiang, Zu Endong et al, the Application of the confocal Micro Raman in the Gemstone Characterization, Chinese Journal of Light Scattering, 1999, 11(1): 7
    [56] He Mouchun, Zhu Xuanmin, Hong Bin, Raman Spectrum Feature of Ruby from Yuanjiang Yunnan Province, Journal of Gems and Gemmology, 2001, 3(4): 25
    [57] Schrader B, Schulz H, Andreev G N, Klump H H, Sawatzki J, Non destructive NIR-FT-Raman spectroscopy of plant and animal tissues of food and works of art Talanta, 2000, 53: 35
    [58] Shortly C V, The Diamond, The Indian Academy of Science, Bangalore, 1970
    [59] Liu Shewen, GuoMaotian, Liang Erjun, Shen Shubo, The Application of Raman Spectroscopy to the Identification of Jades, Chinese Journal of Light Scattering, 1999, 11(3): 194
    [60] Aponick A, Marchozzi E, Johnston C, Wigal C T, Determining the Authenticity of Gemstones Using Raman Spectroscopy, J. Chem. Educ., 1998, 75: 465
    [61] Gao Yan, Zhang Beili, Application of laser Raman Spectrometer on non-destructive analysis, Journal of Gems and Gemmology, 2001, 3(3): 17
    [62] Nie Shuming, Emory S R, Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science, 1997, 275: 1102
    [63] Kneipp K, Wang Y, Kneipp H et al, Single Molecule Detection Using Surface-Enhanced Raman Scattering. Phys. Rev. Lett. 1997, 78: 1667
    [64] Kneipp K, Kneipp H, Manoharan R, et al, Surface-enhanced Raman scattering (SERS)-a new tool for single molecule detection and identification. Bioimaging, 1998, 6: 104
    [1] 郭坤亮, 茅台酒酿造微生物的生物多样性成因及研究价值的探讨, 酿酒, 2002, 29(2): 36
    [2] 胡国栋, 程劲松, 酱香型白酒呋喃酮和比喃酮类化合物的分析研究, 酿酒科技, 1997, (4): 31
    [3] 庄名扬, 国酒茅台演译东方神韵, 酿酒, 2005, 32(1): 101
    [4] 伍林, 欧阳兆辉等, 拉曼光谱技术的应用及研究进展, 光散射学报, 2005, 17(2) : 180
    [5] 钱晓凡, 施英等, 青霉素类药物拉曼散射的研究, 光谱学与光谱分析, 2002, 22(1) : 51
    [6] 许良, 苏日塔拉图等, 蒙药材珍珠杆及其伪品的紫外/荧光/红外光谱法鉴别 研究, 光谱学与光谱分析, 2006, 26(3): 448
    [7] 许汉英, 赵晓君, 紫外光度法直接测量白酒中的糠醛及其对配制酒的鉴别, 现代商检科技, 1996, 6(3): 43
    [8] 许汉英, 赵晓君, 分光光度法测定白酒中的糠醛, 应用化学, 1997: 84
    [9] 许汉英, 白酒中糠醛含量与香型之间关系的研究, 酿酒, 2002, 29(5): 37
    [10] 宋远志, 罗启华, 万家亮, 导数光谱法分析白酒中糠醛, 中国公共卫生, 1996, 12(6): 466
    [11] 邓月娥, 孙素琴, FTIR 法用于白酒的区分及真伪鉴定, 研究报告2005, 5: 29
    [12] 王文科, 乙醇和甲醇混和液激光拉曼光谱研究, 北京化工大学学报, 1995, 22(4): 81
    [13] P. C. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols,J. Phys. Chem., 1982, 86: 3391
    [1]C.Janzowski, V.Glaab, E.Samimi, J.Schlatter and G.Eisenbrand, 5-Hydroxymethyl furfural:assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione, Food Chem.Toxicol., 2000, 38: 801
    [2] Z.Szengyel and G.Zacchi, Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUTC30, Appl. Biochem. Biotechnol., 2000, 89: 31
    [3] M. J. Taherzadeh, L. Gustafsson, C. Niklasson and G. Lidén, Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae, Biosci. Bioeng., 1999, 87: 169
    [4] J. Zaldivar, A. Martinez and L. Ingmar, Effect of selected aldehydes on the owth and fermentation of ethanologenic Escherichia coli, Biotechnol.Bioeng., 1999, 65: 24
    [5] 靳争京,贵州省白酒中糠醛含量初探, 广东微量元素科学, 2001, 18(2): 68
    [6] X. L. Yan, R. X. Dong, Q. G. Wang et al. Raman Spectra of Cell from Breast Cancer Patients, Spectroscopy and Spectral Analysis, 2005, 25(1): 58
    [7] Y. J. Mo, D. L. Jiang, M. Uyemura, T. Aida and T. Kitagawa, Energy Funneling of IR Photons Captured by Dendritic Antennae and Acceptor Mode Specificity:Anti-stokes Resonance Raman Stidies on Iron(111) Porphyin Complexes with a Poly(aryl ether) Dendrimer Framework, J.AM.CHEM.SOC., 2005, 127: 10020
    [8] B. Giese and D. M. Thton, Surface-Enhanced Raman Spectroscopic Study of Vrcil, The influence of the Surface Substrate, Surface potential,and PH, J. Phys. Chem. B, 2002, 106: 1461
    [9] 许汉英, 白酒中糠醛含量与香型之间关系的研究, 酿酒, 2002, 29(5): 37
    [10] 辛磊, 白酒微量成分与酒体风格特征关系的探讨, 食品与机械, 2004, 20(2): 49
    [11] Y. Yamaguchi, M. J. Frisch, J. Gaw, et al., Analytic Computation and Basis Set Dependence of Intensities of Infrared Spectra, J. Chem. Phys., 1986, 84: 2262
    [12] J. Frisch, Y. Yamaguchi, H. F. Schaefer, et al., Analytic Calculation of Raman Intensities for Closed-sehll Wavefunctions, J. Chem. Phys., 1986, 84: 531
    [13] Philip S. H., Wong N., Srinivasan N., Kasthurikrishnan, R. G. Cooks, J. Org. Chem., 1996, 61: 6627
    [14] Y. J. Mo, X. Y. Li, P. X. Zhang, SERS of the Molecules Adsorbed on Cu Surface at 4880? Excitation, Chin. Phys. Lett., 1985, 2: 413
    [15] S. Schlücker, R. K. Singh, B. P. Asthana, J. Popp, W. Kiefer, Hydrogen-Bonded Pyridine-Water Complexes Studied by Density Functional Theory and Raman Spectroscopy, J.Phys.Chem.A, 2001, 105: 9983
    [16]G.Schultz, I.Fellegvari, M.Kolonitz, A.I.Kiss, B.Pete, J.Banki, J.Mol.Str., Electron diffraction and infrared spectroscopic study of the molecular structure of furan-2-aldehyde and 2-furanmethanethiol, 1978, 50: 325
    [17] L.Schafer, S.Samdal, K.Hedberg, J.Mol.Struct, An electron-diffraction study of the molecular structure of 2-chlorobenzaldehyde , 1976, 31: 29
    [18] Luis A. Montero,Raul GonzPlez-Jonte, fg Lourdes A. Diaz, J. R. Alvarez Idaboyt Theoretical Model of Furan and 2-Furancarboxaldehyde. The Molecular Structure andVibrational Spectra, Including Isotopic Effects, J. Phys.Chem. 1994, 98: 5607
    [19] M. Rogojerov, G. Keresztury, B. J. Vibraov. Vibrational spectra of partially oriented molecules having two conformers in nematic and isotropic solutions:furfural and 2-chlorobenzaldehyde, Spectrochinica Acta, A 2005, 61: 1661
    [1] N. Shuming, R. E. Steven, Probing Single Molecules and Single Nanoparticles by SERS, Science, 1997, 275: 1102
    [2] K. Kartin, W. Yang, Harald Kneipp, et al., Single Molecule Detection Using Surface Enhanced Raman Scattering, Phys. Rev. Lett., 1997, 78: 1667
    [3] J. Marek, H. Dariusz, S. Wieslaw, H. Krzyztof, Raman Spectra of Molecules Adsorbed on Ag Centers in Sol-Gel Matrices, Journal of Sol-Gel Science and Technology, 2003, 26: 83
    [4] N. Babak, A. Mostafa, Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods, J. Phys. Chem. A, 2003, 107: 3372
    [5] A. G. Brolo, Z. Jiang, D. E. Irish, the Orientation of 2, 2·-Bipyridine Adsorbed at a SERS-Active Au (III) Electrodes Surface, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 2003, 547: 163
    [6] Li Hong, Mo Yujun, Pei Ning, Xu Xiaoxuan, Huang Xuejie, Chen Liquan, “Surface Enhanced Raman Scattering Study on Passivating Films of Ag Electrodes in Lithium Batteries”, J. Phys. Chem. B, 2000, 104: 8477
    [7] B. Nandita, U. Siva. Structures, Vibrational Frequencies and Normal Modes of Azo Dyes: Infrared, Raman and Functional Calculations, J. Phys. Chem. A, 2000, 104: 2734
    [8] C. P. Collier, R. J. Saykally, J. J. Shiang, et al., Reversible tuning of silver quantum dot monolayers through the metal-insulator transition, Science, 1997, 277: 1978
    [9] E. Braun, Y. Eichen, U. Sivan, et al., DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 1998, 391: 775
    [10] Luis A. Montero, Raul Gonzalez-Jonte,et al. Theoretical Model of Furan and2-Furancarboxaldehyde. The Molecular Structure and Vibrational Spectra, Including Isotopic Effects, J.Phys.Chem., 1994, 98: 5607
    [11] M. Rogojerov, G. Keresztury, B, Vibrational spectra of partially oriented molecules having two conformers in nematic and isotropic solutions: furfural and 2-chlorobenzaldehyde, J. Vibraov, Spectrochinic a Acta. A, 2005, 61: 1661
    [12] K. Kneipp, H. Kneipp, I. Itzkan et al., Inter RotationⅧ.The Infared and Raman Spectra of Furfural, J. Chem. Rev., 1999, 99: 2957
    [13] P. C. Lee, D. Meisel, Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols, J. Phys. Chem., 1982, 86(17): 3391
    [14] 郭立俊,于娟娟,李蕴才,顾玉宗,黄亚彬,莫育俊,PNBA 分子在银纳米粒子表面的吸附取向, 科学通报, 2000, 45: 571
    [15] Dollish F R, Fateley W. G., Bentley F F, Characteristic Raman Frequencies of Organic Compounds,朱自莹译, 北京:中国化学会,1980
    [16] 朱自英,顾仁熬,陆天红编著,拉曼光谱在化学中的应用,沈阳:东北大学出版社,1998
    [17] S. Schlucker, K. R. Singh, B. P. Asthana, J. Popp and W. Kiefer, Hydrogen-bonded pyridine-water complexes studied by density functional theory and Raman spectroscopy, J. Phys. Chem. A, 2001, 105: 9983.
    [18] T.Vo-Dinh, Surface-enhanced Raman spectroscopy using metallicnanostructures Trends Anal. Chem., 1998, 17: 557.
    [19] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev., 1998, 27: 241.
    [20] T. Iliescu, F. D. Irimie, M. Bolboaca, Cs. Paisz, W. Kiefer, Surface enhanced Raman spectroscopy of 5-(4-fluor-phenyl)-furan-2-carbaldehide adsorbed on silver colloid, Vibrat. Spectrosc., 2002, 29: 251
    [21] K. A. Bundling, M. L. Bell, Surf. Sci., 1996,118: 413.
    [22] Y. X. Ghen, O. Andreas, Electronic effects in SERS by liquid water, J. Raman Spectrosc., 2005, 36: 736.
    [23] X. Gao, J. P. Davis, M. J. Weaver, Test of surface selection rules for surface enhanced Raman scattering: the orientation of adsorbed benzene and monosubstituted benzenes on gold, J. Phys. Chem., 1990, 94: 6858.
    [24] Y. J. Mo, I. M?rke, P. Wachter, Surface Enhanced Raman Scattering of Pyridine on Silver Surfaces of Different Roughness, Surface Science, 1983, 133(9): L452
    [25] Y. J. Mo, I. M?rke, P. Wachter, The Influence of Surface Roughness on the Raman Scattering of Pyridine Adsorbed on Copper and Silver Surfaces, Solid State Comm., 1984, 50: 829
    [26] 李佳伟,白莹,莫育俊, 光谱学与光谱分析,天线共振子理论对吡啶分子在铁钴镍衬底上 SERS 增强因子的计算,2006,26: 463
    [27] R. K. Chang, T. E. Furtak, Surface Enhanced Raman Scattering, NewYork: Plemum Press, 1982
    [28] Z. Q. Tian, B. Ren, in Encyclopedia of Electrochemistry(Eds Bard A J, Stratmann M), Wiley & VCH, 2003, 3: 572
    [29] A. Kudelski, J. Bukowska, M. Janik-Czachor, et al., Characterization of the copper surface optimized for use as a substrate for surface-enhanced Raman scattering Vibrational Spectroscopy, 1998, 16: 21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700