唐古特白刺NtP5CS和NtCIPK2基因的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强旱生盐生植物唐古特白刺(MNitrariaria tangutorum Bobr.)为中国特有的多年生落叶灌木,具有极强的抗逆能力,沙埋后可通过克隆生长形成白刺包,是土壤荒漠化和盐碱化防治的先锋植物。然而,由于遗传信息的缺乏,该植物抗逆分子机制的研究进展十分缓慢。本研究从唐古特白刺中克隆脯氨酸合成途径的关键基因二氢吡咯-5-羧酸合成酶NtP5CS和钙信号转导通路重要组分钙调磷酸酶B类似蛋白互作激酶NtCIPK2,分析两基因的序列信息、系统进化、细胞定位、启动子结构及表达特性,探讨其在大肠杆菌和拟南芥中抵抗非生物胁迫过程中发挥的作用,并进行紫花苜蓿的遗传转化和初步验证。本研究的开展对于深入了解唐古特白刺的抗逆分子机制,开发利用唐古特白刺抗逆资源及培育抗逆牧草新品种具有重要的意义。主要研究结果如下:
     1.从唐古特白刺中分离获得NtP5CS和NtCIPK2基因,生物信息学分析发现,NtP5CS和NtCIPK2基因编码蛋白具有与拟南芥、水稻等其他物种同源蛋白一致的典型特征、关键结构域和活性调控位点,据此推测这两个基因编码蛋白与同源蛋白具有相似的功能,即在唐古特白刺Pro的合成及钙信号传导机制中发挥着重要的作用。亚细胞定位结果显示,NtP5CS主要分布于细胞膜和细胞核中,而NtCIPK2在整个细胞中广泛存在。
     2.利用SiteFinding-PCR技术获得NtP5CS和NtCIPK2基因的启动子序列,长度分别为2566bp和1612bp。通过启动子预测软件分析,发现两个基因的启动子中含有大量逆境胁迫响应元件,如W-box、MYB、MYC、HSE和LTRE元件等,这些逆境响应元件的存在,表明NtP5CS和NtCIPK2基因的表达可能受到干旱、高盐、高温和低温等非生物胁迫因素的诱导;半定量RT-PCR结果证实,在干旱、高盐、高温及低温4种胁迫条件下,两个基因表达量明显升高,在唐古特白刺生境适应过程中发挥积极作用。
     3.构建NtP5CS和NtCIPK2基因的原核表达载体,并进行大肠杆菌转化实验,模拟盐、碱、干旱、渗透、高温和低温6种胁迫条件,发现重组菌株的生长状况明显优于对照菌株,两个基因的表达均可显著提高大肠杆菌的多重抗逆能力;以唐古特白刺和拟南芥作为抗逆和非抗逆植物的代表,比较分析NtP5CS与AtP5CS基因的表达对大肠杆菌的影响。结果表明,NtP5CS相较AtP5CS而言,可以更有效的提高大肠杆菌对于6种胁迫的抗性,证明基因来源的不同可能导致植物抗逆能力的差异。
     4.将NtP5CS和NtCIPK2基因在拟南芥中过量表达,在模拟盐和干旱胁迫条件下,转基因拟南芥的萌发率、根长和生长状况等表型特征均优于野生型植株,转基因拟南芥可溶性糖和脯氨酸的含量显著高于野生型植株,丙二醛MDA上升幅度和叶绿素下降幅度显著低于野生型植株,说明NtP5CS和NtCIPK2基因的表达从积累渗透调节物质,减缓膜脂过氧化反应,增强光合作用等方面提高了拟南芥的抗旱性和耐盐性。
     5.以下胚轴作为外植体材料,通过农杆菌介导法,将NtP5CS和NtCIPK2基因转化紫花苜蓿“中苜一号”,PCR和RT-PCR检测证实外源基因已整合到苜蓿基因组中并实现过量表达,最终获得转NtP5CS或NtCIPK2基因紫花苜蓿再生植株各3株,为培育苜蓿抗逆品种奠定基础。
Nitraria tangutorum is a typical and native desert halophyte in northwest China with superior ability to resist salinity, alkalinity and drought. In addition, it can efficiently fix moving sands and decrease wind speed by clonal growth, which makes it an ideal plant for preventing soil desertification and alleviating the degree of soil salinity-alkalinity. However, the molecular mechanism underlying stress tolerance of this halophyte is still far from clear owing to the absence of genetic data. At the present study, NtP5CS and NtCIPK2genes were isolated from N. tangutorum to elucidate their characteristics of phylogenetic analysis, subcellular localization, promoter prediction and expression pattern, and to investigate their function in stress tolerance of Escherichia coli and Arabidopsis. Finally, NtPSCS-and NtCIPK2-overexpression Medicago sativa were obtained and preliminary validated. This study would be of great help in understanding the molecular mechanism of N. tangutorum in stress tolerance, exploring and utilizing this plant and breeding the stess-tolerant herbage. The main results are as follow:
     1. Two novel genes NtP5CS and NtCIPK2were isolated from N. tangutorum by rapid amplification of cDNA ends (RACE) cloning. Bioinformatics analysis demonstrated that NtP5CS and NtCIPK2shared similar function with their orthologs from other species due to the same typical characteristics, conserved domains and regulatory sites, they play the important role in Pro synthesis and Ca2+signal transduction of N. tangutorum. NtP5CS protein was limited to nuclei and at the plasmalemma, whereas NtCIPK2protein was distributed throughout the whole cells.
     2. To identify putative cis regulatory elements,2566bp and1600bp of the upstream sequences from the start codon of NtP5CS and NtCIPK2were isolated and analyzed. Many stress-related cis regulatory elements, such as W-box, MYB, MYC, HSE and LTR lay in the promoters. In accordance with promoter analysis, expression patterns by semi-quantative PCR were proved that the two genes showed upregulation of transcript by drought, salinity, cold and heat stress. The results suggested that NtP5CS and NtCIPK2mediated stress tolerance with regard to the adaptability of N. tangutorum to hostile environment.
     3. The two genes were inserted into the prokaryotic expression vector pGEX4T-1and transformed into E. coli, meanwhile; using the homologous gene AtP5CS of Arabidopsis as the representative of glycophyte, the difference in effect of NtP5CS and AtP5CS on E. coli was also assessed. The recombinant strains showed better growth than the control strains against salinity, drought, alkali, heat, cold, and high osmolyte stress, and also the NtP5CS-transformed strains grew better than the AtP5CS-transformed strains. The results indicated overexpression of NtP5CS and NtCIPK2improved the sress tolerance of E. coli and NtP5CS functioned more efficiently than AtP5CS.
     4. Under stressed conditions, higher seed germination rate, longer root and better growth was observed and proline synthesis, chlorophyll content, soluble sugar accumulation and MDA was significantly improved in transgenic lines compared to the control, so overexpression of NtPSCS and NtCIPK2in Arabidopsis improved the transgenic plants tolerance to drought and salt stress by osmotic adjustment, membrane oxidation alleviation and photosynthesis enhancement.
     5. Used the cotyledon as explants for induction, we obtained3NtP5CS-transfromed M. sativa lines and3NtCIPK2-transfromed lines, respectively. The two genes were integrated into the genome and expressed normally in the regenerated plants.
引文
[1]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004.
    [2]Kramer PJ, Boyer JS. Water relations of plants and soils [M]. San Diego, CA, USA:Academic Press Incorporation,1995.
    [3]Boyer JS. Plant productivity and environment [J]. Science,1982,218:443-448.
    [4]赵可夫,冯立田.中国盐生植物资源[M].北京:科学出版社,1998.
    [5]张木清,陈如凯.作物抗旱分子生理与遗传改良[M].北京:科学出版社,2005.
    [6]Tuteja N. Mechanism of high salinity tolerance in plants [J]. Methods in Enzymology,2007,428: 419.
    [7]Flowers T, Troke P, Yeo A. The mechanism of salt tolerance in halophytes [J]. Annual Review of Plant Physiology,1977,28(1):89-121.
    [8]Greeway H, Murms R.. Mechanisms of salt tolerance in nonhalophytes [J]. Annual Review of Plant Physiology,1980,31(1):149-190.
    [9]Boyer JS. Advances in drought tolerance in plants [J]. Advances in Agronomy,1996,56: 187-218.
    [10]Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:377-403.
    [11]Bray EA. Plant response to water deficit [J]. Trends in Plant Science,1997,2(2):48-54.
    [12]曲涛,南志标.作物和牧草对干旱胁迫的响应及机理研究进展[J].草业学报,2008,17(2):126-135.
    [13]Zhu JK. Regulation of ion homeostasis under salt stress [J]. Current Opinion in Plant Biology, 2003,6(5):441-445.
    [14]Abogadallah GM. Antioxidative defense under salt stress [J]. Plant Signal Behavior,2010,5(4): 369-374.
    [15]Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants [J]. Current Science,2004,86(3):407-421.
    [16]Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance [J]. Environmental of Experimental Botany,2007,59:206-216.
    [17]Yang X, Liang Z, Wen X et al. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants [J]. Plant Molecular Biology,2008,66:73-86.
    [18]He CM, Zhang WW, Gao Q et al. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings [J]. Euphytica,2011,177:151-167.
    [19]Zhu BC, Su J, Chang MC et al. Overexpression of a △1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice [J]. Plant Science,1998, 139(1):41-48.
    [20]Karthikeyan A, Pandian SK, Ramesh M. Transgenic indica rice cv. ADT43 expressing a Al-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance [J]. Plant Cell, Tissue and Organ Culture,2011,107(3):383-395.
    [21]Rus A, Yokoi S, Sharkhuu A et al. AtHKTl is a salt tolerance determinant that controls Na+ entry into plant roots [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(24):14150-14155.
    [22]Laurie S, Freeney KA, Maathuis FJ et al. A role for HKT1 in sodium uptake by wheat roots [J]. The Plant Journal,2002,32(2):139-149.
    [23]Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annual Review of Plant Biology, 2008,59:651-681.
    [24]Xue ZY, Zhi DY, Xue GP et al. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum) expressing a vaculor Na+/H+ antiporter gene with improved grain yields in saline solis in the field and a reduced level of leaf Na+[J]. Plant Science,2004,167:849-859.
    [25]Wu LQ, Fan ZM, Qu LJ et al. Overexpression of the bacterial nhaA gene in rice enhances salt and drought tolerance [J]. Plant Science,2005,168(2):297-302.
    [26]Gaxiola RA, Li J, Undurraga S et al. Drought-and salt-tolerant plants results from overexpression of the AVP1 FT-pump [J]. Proceeding of the National Academy of Sciences of the United States of America,2001,98(20):11444-11449.
    [27]Li Z, Baldwin CM, Hu Q et al. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bent grass (Agrostis stolonifera L.) [J]. Plant, Cell & Environment,2009,33(2):272-289.
    [28]Pasapula V, Shen G, Kuppu S et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought and salt tolerance and increases fiber yield in the field conditions [J]. Plant Biotechnology Journal,2011,9(1):88-99.
    [29]Bowler C, Slooten L, Vandenbranden S et al. Manganses superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants [J]. The EMBO Journal,1991, 10(7):1723.
    [30]Van Camp W, Capiau K, Van Montagu M et al. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide diamutase in chloroplasts [J]. Plant Physiology,1996,112(4):1703-1714.
    [31]Guan QJ, Xia DX,, Liu SK. OsAPX4 gene response to several environmental stresses in rice (Oryzasativa L.) [J]. African Journal of Biotechnology,2010,9(36):5908-5913.
    [32]向旭,付家瑞.脱落酸应答基因的表达调控及其与逆境胁迫的关系[J].植物学通报,1998,15(3):11-16.
    [33]Cui YY, Pandey DM, Hahn EJ et al. Effect of drought on physiological aspects of crassulacean axid metabolism in Doritaenopsis [J]. Plant Science,2004,167(6):1219-1226.
    [34]周小梅,赵运林,周朴华等.匐匍翦股颖L293抗旱变异体的离体筛选与鉴定[J].草业学报,2007,16(5):121-126.
    [35]Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and Imitations [J]. Current Opinion in Biotechnology,2005,16(2):123-132.
    [36]Kemble AR, Macpherson HT. Liberation of amino acids in perennial rye grass during wilting [J]. Biochemical Journal,1954,58(1):46-49.
    [37]Jampeetong A, Brix H. Effect of NaCl salinity on growth, morphology, photosynthesis and proline accumulation ofSalvinia natans [J]. Aquatic Botany,2009,91:181-186.
    [38]Yamada M, Moristhita H, Urano K et al. Effects of free proline accumulation in petunias under drought stress [J]. Journal of Experimental Botany,2005,56:1975-1981.
    [39]Walker DJ, Romero P, Correal E. Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa [J]. Biologia Plantarum,2010,54:293-298.
    [40]Tripathi BN, Gaur JP. Relationship between copper-and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. [J]. Planta,2004,219:397-404.
    [41]Singh V, Bhatt I, Aggarwal A et al. Proline improves copper tolerance in chickpea (Cicer arietinum) [J]. Protoplasma,2010,245:173-181.
    [42]Somal TLC, Yapa PAJ. Accumulation of pro line in cowpea under nutrient, drought, and saline stress [J]. Journal of Plant Nutrition,1998,21:2465-2473.
    [43]Saradhi PP, Aliaarora S, Prasad KVSK. Proline accumulation in plants exposed to UV radiation and protects them against UV-induced peroxidation [J]. Biochemical and Biophysical Research Communications,1995,209(1):1-5.
    [44]Verbruggen N, Hermans C. Proline accumulation in plants:a review [J]. Amino Acids,2008, 35:753-759.
    [45]Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants [J]. Crop Science,2005,45:437-448.
    [46]Verslues PE, Agarwal M, Katiyar-Agarwal S et al. Methods and concepts in quantifying resistance to drought, salt and freezing abiotic stresses that affect plant water status [J]. Plant Journal,2006,45:523-539.
    [47]Szabados L, Savoure A. Proline:a multifunctional amino acid [J]. Trends in Plant Science, 2010,15:89-97.
    [48]Khedr AHA, Abbas MA, Wahid AAA et al. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress [J]. Journal of Experimental Botany,2003,54:2553-2562.
    [49]Baich A. Proline synthesis in Escherichia coli a proline-inhibitable glutamic acid kinase [J]. Biochimica Et BiophysicaActa-General Subjects,1969,192(3):462-467.
    [50]Delauney AJ, Verma DPS. Proline biosynthesis and osmoregulation in plants [J]. Plant Journal, 1993,4:215-223.
    [51]Strizhov N, Abraham E, Okresz L et al. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABIl and AXR 2 in Arabidopsis [J]. Plant Journal,1997,12:557-569.
    [52]Igarashi Y, Yoshiba Y, Sanada Y et al. Characterization of the gene for △1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Molecular Biology,1997,33(5):857-865.
    [53]Ginzberg I, Stein H, Kapulnik Y et al. Isolation and characterization of two different cDNAs of △1-pyrroline-5-carboxylate synthetase in alfalfa, transcriptionally induced upon salt stress [J]. Plant Molecular Biology,1998,38:755-764.
    [54]Armengaud P, Thiery L, Buhot N et al. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features [J]. Physiologia Plantarum,2004,120:442-450.
    [55]Zhu XY, Li XP, Zou Y et al (2012) Cloning, characterization and expression analysis of △1-pyrroline-5-carboxylate synthetase (P5CS) gene in harvested papaya (Carica papaya) fruit under temperature stress. Food Res Int 49:272-279
    [56]Hu CAA, Delauney AJ, Verma DPS. A bifunctional enzyme (△1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants [J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89:9354-9358.
    [57]Hong Z, Lakkineni K, Zhang Z et al. Removal of feedback inhibition of △1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress [J]. Plant Physiology,2000,122:1129-1136.
    [58]曹丽,孙振元,义鸣放.多年生黑麦草P5CS基因的cDNA克隆、表达及亚细胞定位[J].园艺学报,2010,37(9):1477-1484.
    [59]Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Aguero JA et al. Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear [J]. Plant Physiology and Biochemistry,2008,46(1):82-92.
    [60]Abu-Romman SM, Ammari TG, Irshaid LA et al. Cloning and expression patterns of the HvP5CS gene from barley (Hordeum vulgare) [J]. Journal of Food, Agriculture & Environment, 2011,9:279-284.
    [61]徐博,任伟,徐安凯等.朝鲜碱茅△1-吡咯啉-5-羧酸合成酶(P5CS)基因的克隆及表达分析[J].华北农学报,2011,26(6):20-26.
    [62]冯远航,王罡,季静等.枸杞LmP5CS基因的克隆与表达分析[J].中国生物工程杂志,2013,33(1):33-40.
    [63]Szekely G, Abraham E, Cseplo A et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis [J]. Plant Journal,2008, 53:11-28.
    [64]Hur J, Jung KH, Lee CH et al. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice [J]. Plant Science,2004,167(3):417-426.
    [65]Verdoy D, De la Pena TC, Redondo FJ et al. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress [J]. Plant, Cell & Environ,2006,29:1913-1923.
    [66]Kim GB, Nam YW. A novel △1-pyrroline-5-carboxylate synthetase gene of Medicago truncatula plays a predominant role in stress-induced proline accumulation during symbiotic nitrogen fixation [J]. Journal of Plant Physiology,2013,170(3):291-302.
    [67]Su M, Li XF, Ma XY et al. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment [J]. Plant Science,2011,181: 652-659.
    [68]Chen JB, Wang SM, Jing RL et al. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses [J]. Journal of Plant Physiology,2009, 166:12-19.
    [69]Chen JB, Zhang XY, Jing RL et al. Cloning and genetic diversity analysis of a new P5CS gene from common bean(Phaseolus vulgaris L.) [J]. Theoretical and Applied Genetics,2010,120: 1393-1404.
    [70]Turchetto-Zolet AC, Margis-Pinheiro M, Margis R. The evolution of pyrroline-5-carboxylate synthase in plants:a key enzyme in proline synthesis [J]. Molecular Genetics and Genomics,2009, 281(1):87-97.
    [71]Kishor PBK, Sangam S, Amrutha RN et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:Its implications in plant growth and abiotic stress tolerance [J]. Current Science,2005,88:424-438.
    [72]Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis [J]. Plant Science,2004,166:941-948.
    [73]Sawahel WA, Hassan AH. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline [J]. Biotechnology Letters,2002,24(9):721-725.
    [74]Molinari HBC, Marur CJ, Bespalhok JC et al. Osmotic adjustment in transgenic citrus rootstock Carrizo citrange(Citrus sinensis Osb.x Poncirus trifoliate L. Raf.) overproducing proline [J]. Plant Science,2004,167:1375-1381.
    [75]Bhatmagar-Mathur P, Vincent V, Devi MJ et al. Genetic engineering of chickpea(Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance [J]. Molecular Breeding,2009,23:591-606.
    [76]Molinari HBC, Marur CJ, Daros E et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (saccharum spp.):Osmotic adjustment, chlorophyll fluorescence and oxidative stress [J]. Physiology Plantarum,2007,130:218-229.
    [77]Han KH, Hwang CH. Salt tolerance enhanced by transformation of a P5CS gene in carrot [J]. Journal of plant biotechnology,2003,5(3):157-161.
    [78]Siripornadulsil S, Traina S, Verma DP et al. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae [J]. Plant Cell,2002,14(11):2837-2847.
    [79]Hmida-Sayari A, Gargouri-Bouzid R, Bidani A et al. Overexpression of △1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants [J]. Plant Science,2005,169:746-752.
    [80]Yamchi A, Jazil FR, Mousav A et al. Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis pyrolline-5-carboxylate synthetase (P5CS) during osmotic stress [J]. Journal of Plant Biochemistry and Biotechnology,2007,16:9-15.
    [81]陈吉宝,赵丽英,毛新国等.转PvP5CSl基因拟南芥植株对干旱和盐胁迫的反应[J].作物学报,2010,36(1):147-153.
    [82]王肖红,曾爱松,高兵等.StP5CS基因转化结球甘蓝的研究[J].西北植物学报,2013,33(5):0885-0891.
    [83]张桦,张富春,曾光等.新牧一号苜蓿MvP5CS基因的克隆和功能分析[J].草业科学,2012,29(1):51-58.
    [84]Knight H. Calcium signaling during abiotic stress in plants [J]. International Review of Cytology,2000,195:269-324.
    [85]Sanders D, Pelloux J, Brownlee C et al. Calicum at the crossroads of signaling [J]. Plant Cell, 2002,14:401-417.
    [86]Li RF, Zhang JW, Wei JH et al. Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress [J]. Progress in Natural Science,2009,19:667-676.
    [87]Harper JF, Harmon A. Plants, symbiosis and parasites:a calcium signalling connection [J]. Nature Reviews Molecular Cell Biology,2005,6:555-566.
    [88]Luan S, Kudla J, Rodriguez-Concepcion M et al. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants [J]. Plant Cell,2002,14:S389-400.
    [89]Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network [J]. Planta,2004,219:915-924.
    [90]Albrecht V, Ritz O, Linder S et al. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+ -regulated kinases [J]. EMBO Journal,2001,20:1051-1063.
    [91]Shi JR, Kim KN, Ritz O et al. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis [J]. Plant Cell,1999,11:2393-2405.
    [92]Hrabak EM, Chan CWM, Gribskov M et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases [J]. Plant Physiology,2003,132:666-680.
    [93]Weinl S, Kudla J. The CBL-CIPK Ca2+ -decoding signaling network: function and perspectives [J]. New Phytologist,2009,184:517-528.
    [94]Guo Y, Halfter U, Ishitani M et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance [J]. Plant Cell,2001,13:1383-1399.
    [95]Ohta M, Guo Y, Halfter U et al. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2 [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100:11771-11776.
    [96]Kolukisaoglu U, Weinl S, Blazevic D et al. Calcium sensors and their interacting protein kinases:genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiology, 2004,134:43-58.
    [97]Yu YH, Xia XL, Yin WL et al. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus [J]. Plant Growth Regulation,2007,52:101-110.
    [98]Li LB, Zhang YR, Liu KC et al. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in sorghum [J]. Agricultural Science in China,2010,9:19-31.
    [99]Chen XF, Gu ZM, Xin DD et al. Identification and characterization of pupative CIPK genes in maize [J]. Journal of Genetics and Genomics,2011,38:77-87.
    [100]张俊文,魏建华,王宏芝.CBL-CIPK信号系统在植物应答逆境胁迫中的作用与机制[J].自然科学进展,2008,18(8):847-855.
    [101]Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis:Evidence for a critical role of potassium nutrition [J]. Plant Cell,1998,10:1181-1191.
    [102]Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance [J]. Science,1998, 280:1943-1945.
    [103]Liu J, Ishitani M, Halfer U et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(7):3730-3734.
    [104]Qiu QS, Guo Y, Dietrich M et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99:8436-8441.
    [105]Qiu QS, Guo Y, Quintero FJ et al. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway [J]. Journal of Biological Chemistry,2004,279: 207-215.
    [106]Cheng NH, Pittman JK, Zhu JK et al. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance [J]. Journal of Biological Chemistry,2004,279:2922-2926.
    [107]Quan RD, Lin HX, Mendoz I et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress [J]. Plant Cell,2007,19: 1415-1431.
    [108]Fuglsang AT, Guo Y, Cuin TA et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein [J]. Plant Cell,2007,19: 1617-1634.
    [109]Li L, Kim BG, Cheong YH et al. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(33):12625-12630.
    [110]Xu J, Li HD, Chen LQ et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis [J]. Cell,2006,125:1347-1360.
    [111]Hedrich R, Kudla J. Calcium signaling networks channel plant K+ uptake [J]. Cell,2006,125: 1221-1223.
    [112]Pandey GK, Cheong YH, Kim BG et al. CIPK9:a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis [J]. Cell Research,2007,17:411-421.
    [113]Liu LL, Ren HM, Chen LQ et al. A protein kinase CEPK9 interacts with calcium sensor CBL3 and regulates K+ homeostasis under low-K+ stress in Arabidopsis [J]. Plant Physiology,2013, 161(1):266-277.
    [114]Cheong YH, Kim KN, Pandey GK et al. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responsed in Arabidopsis [J]. Plant Cell,2003,15(8):1833-1845.
    [115]D'Angelo C, Weinl S, Batistic O et al. Alternative complex formation of the Ca2+-regulated protein kinase CDPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis [J]. Plant Journal,2006,48(6):857-872.
    [116]Kim KN, Cheong YH, Grant JJ et al. CIPK3, a calcium sensor associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis [J]. Plant Cell,2003,15:411-423.
    [117]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:Differences and cross-talk between two stress signaling pathways [J]. Current Opinion in Plant Biology,2000,3:217-223.
    [118]Hu HC, Wang YY, Tsay YE AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response [J]. Plant Journal,2009,57:264-278.
    [119]Lee EJ, Iai H, Sano H et al. Sugar responsible and tissue specific expression of a gene encoding AtCJPK14, an Arabidopsis CBL-interacting protein kinase [J]. Bioscience, Biotechnology, and Biochemistry,2005,69(1):242-245.
    [120]秦玉芝,李旭,郭明等.钙传感蛋白互作激酶CIPK14参与拟南芥盐和ABA胁迫应答调节[J].中国科学C辑:生命科学,2008,38(5):446-457.
    [121]Mahajan S, Sopory SK, Tuteja N. Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum satium) [J]. FEBS Journal,2006,273(5):907-925.
    [122]李莉,李毅,王长春等.番茄LeCIPK3的克隆及非生物胁迫诱导的表达分析[J].植物生理学通讯,2010,7:659-663.
    [123]边鸣镝,吴忠义,赵久然等.非生物胁迫诱导的玉米蛋白激酶基因ZmCIPK1的cDNA克隆和表达分析[J].农业生物技术学报,2008,16(6):965-970.
    [124]赵晋锋,余爱丽,王寒玉等.非生物逆境胁迫下ZmCIPK1 0基因表达分析[J].生物技术进展,2011,1(2):130-134.
    [125]Chen XF, Gu ZM, Liu F et al. Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses [J]. Rice Science,2011,18(1):1-9.
    [126]Yang Q, Chen ZZ, Zhou XF et al. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis [J]. Molecular Plant,2(1):22-31.
    [127]Wang RK, Li LL, Cao ZH et al. Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants [J]. Plant Molecular Biology,2012,79:123-135.
    [128]王荣凯.苹果MdCIPK6的基因克隆及其在逆境胁迫响应中的作用[D].山东农业大学硕士论文,2011.
    [129]He LR, Yang XY, Wang LC et al. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants [J]. Biochemical and Biophysical Research Communications,2013,435:209-215.
    [130]Zhao JF, Sun ZF, Zheng J et al. Cloning and characterization of a novel CBL-interacting protein kinase from maize [J]. Plant Molecular Biology,2009,69(6):661-674.
    [131]Li RF, Zhang JW, Wu GY et al. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance [J]. Plant, Cell & Environment,2012,35(9):1582-1600.
    [132]Hu DG, Li M, Luo H et al. Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis [J]. Plant Cell Reports, 2012,31(4):713-722.
    [133]Deng XM, Zhou SY, Hu W et al. Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco [J].Physiologia Plantarum,2013,149(3):367-377.
    [134]Deng XM, Hu W, Wei SY et al. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco [J]. PLoS ONE,2013,8(7):e69881. doi:10.1371/journal.pone.0069881.
    [135]冯娟,范昕琦,徐鹏等.棉属野生种旱地棉蛋白激酶基因GarCIPK8的克隆与功能分析[J].作物学报,2013,39(1):34-42.
    [136]Xiang Y, Huang YM, Xiong LZ. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvements [J]. Plant Physiology,2007,144(3):1416-1428.
    [137]章俊丽,杨鵾,张玉满等.水稻OsCIPK10基因的克隆与功能分析[J].生物工程学报,2009,25(9):1394-1401.
    [138]Huertas R, Olias R, Eljakaoui Z et al. Overexpression of SISOS2 (SICIPK24) confers salt tolerance to transgenic tomato [J]. Plant, Cell & Environment,2012,35(8):1467-1482. [139] Suo YR, Wang LY. Extraction of Nitraria tangutorum seed lipid using different extraction methods and analysis of its fatty acids by HPLC fluorescence detection and on-line MS identification [J]. European Journal of Lipid Science and Technology,2010,112:390-399.
    [140]李博.内蒙古鄂尔多斯高原自然资源与环境研究[M].北京:科学出版社,1990.
    [141]Wang HL, Suo YR, Wang XY et al. Extraction of Nitraria tangutorum seed oil by supercritical carbon dioxide and determination of free fatty acids by HPLC/APCI/MS with fluorescence detection [J]. Seperation and Purification Technology,2007,56:371-377.
    [142]郝媛媛,岳利军,康建军等.“沙漠人参”肉苁蓉和锁阳研究进展[J].草业学报,2012,21(2):286-293.
    [143]陈玉福,董鸣.毛乌素沙地根茎灌木羊柴的基株特征和不同生境中的分株种群特征[J].植物生态学报,2000,24(1):40-45.
    [144]李双福,张启昌.白刺属植物研究进展[J].北华大学学报,2005,6(1):78-81.
    [145]程晓莉,安树青,李远等.鄂尔多斯草地退化过程中个体分布格局与土壤元素异质性[J].植物生态学报,2003,27(4):503-509.
    [146]张宏,史培军,郑秋红.半干旱地区天然草地灌丛化与土壤异质性关系研究进展[J].植物生态学报,2001,25(3):366-370.
    [147]王赛宵.唐古特白刺的克隆生长及种群结构研究[D].中国林业科学研究院,2012.
    [148]王尚德,康向阳.唐古特白刺研究现状与建议[J].植物遗传资源学报,2005,6:231-235.
    [149]和彦苓,张丽萍,刘永华等.内蒙地产白刺果中微量元素含量分析[J].微量元素与健康研究,2007,24(2):28-36.
    [150]王洪伦,丁晨旭,李玉林等.白刺与枸杞中微量元素含量的对比研究[J].广东微量元素科学,2007,14(4):36-38.
    [151]贾忠建,朱广军,王继和.唐古特白刺黄酮类化合物的研究[J].植物学报,1989,31(3):241.
    [152]王恒,朱瑞罡,谭勇等.HPLC测定唐古特白刺中槲皮素、山柰素和异鼠李素的含量[J].中成药,2008,30(12):1860-1861.
    [153]段金廒,周荣汉,赵守训等.唐古特白刺叶黄酮类及酚酸类成分的分离鉴定[J].植物资源与环境,1999,8(1):6-9.
    [154]Duan JA, Williams LD, Che CT et al. Tangutorine:A novel β-carboline alkaloid from Nitraria tangutorum [J]. Tetrahedron Letters,1999,40(13):2593-2596.
    [155]王洪伦,李玉林,王小艳等.柴达木盆地唐古特白刺种子的化学成分研究[J].天然产 物研究与开发,2007,19:614-616.
    [156]Zheng J, Li H, Ding CX et al. Anthocyanins composition and antioxidant activity of two major wild Nitraria tangutorun Bobr. Variations from Qinghai-Tibet Plateau [J]. Food Research International,2011,44(7):2041-2046.
    [157]种培芳,苏世平,高暝等.4个地理种群唐古特白刺的抗寒性系统评价[J].水土保持学报,2011,31(3):213-218.
    [158]杨颖丽,史如霞,魏学玲等.NaCl胁迫对唐古特白刺愈伤组织的生理效应[J].西北植物学报,2008,28(11):2238-2243.
    [159]闫永庆,刘兴亮,王崑等.白刺对不同浓度混合盐碱胁迫的生理响应[J].植物生态学报,2010,34(10):1213-1219.
    [160]倪建伟,武香,张华新等.3种白刺耐盐性的对比分析[J].林业科学研究,2012,25(1):48-53.
    [161]武香,倪建伟,张华新等.盐胁迫对3种白刺渗透调节物质的影响[J].东北林业大学学
    报,2012,40(1):40-47.[162]王文,蒋文兰,谢忠奎等.NaCl胁迫对唐古特白刺幼苗生理指标的影响[J].草地学报,2012,20(5):907-913.
    [163]Yang YL, Shi RX, Wei XL et al. Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr. [J]. Plant cell tissue and organ culture,2010,102:387-395.
    [164]Yang YL, Zhang YY, Lu J et al. Exogenous H2O2 increased catalase and peroxidase activities and proline content in Nitraria tangutorum callus. Biologia Plantarum,2012,56:330-336.
    [165]程宏波.唐古特白刺种子化感作用及其幼苗抗盐机理研究[D].甘肃农业大学,2009.
    [166]张建秋,陆海,王智等.白刺盐碱胁迫相关基因片段的克隆与分析[J].吉林农业大学学报,2004,26(3):275-279.
    [167]郑琳琳,张慧荣,贺龙梅等.唐古特白刺Na+/H+逆向转运蛋白基因的克隆与表达分析[J].草业学报,2013,22(4):179-186.
    [168]Kim HJ, Kim YK, Park JY et al. Light signaling mediated by phytochrome plays an important role in cold induced gene expression through the C repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana [J]. The Plant Journal,2002,29(6):693-670.
    [169]Hartmann U, Valentine WJ, Christie JM et al. Identification of UV/blue light response elements in the Arabidopsis thaliana chalcone sythase promoter using a homologous protoplast transient expression system [J]. Plant Molecular Biology,1998,36:741-754.
    [170]郭晋艳,郑晓瑜,邹翠霞等.植物非生物胁迫诱导启动子顺式元件及转录因子研究进展[J].生物技术通报,2011,4:16-21.
    [171]Tan GH, Gao Y, Shi M et al. SiteFinding-PCR:a simple and efficient PCR methos for chromosome walking [J]. Nucleic Acids Research,2005,33(13):e122.
    [172]Bates LS. Rapid determination of free proline for water-stress studies [J]. Plant and Soil,1973, 39:205-207.
    [173]de Pater S, Greco V, Pham K et al. Characterization of a zinc-dependent transcriptional activator from Arabidopsis [J]. Nucleic Acids Research,1996,24(23):4624-4631.
    [174]Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis [J]. Molecular and General Genetics,1995,247(4):391-398.
    [175]张毅,尹辉,李丹等.植物环境相应启动子的诱导元件及转录因子[J].中国生物工程杂志,2007,27(7):122-128.
    [176]Murakeozy EP, Nagy Z, Duhaze C et al. Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary [J]. Journal of Plant Physiology,2003,160:395-401.
    [177]Taji T, Seki M, Satou M et al. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray [J]. Plant Physiology, 2004,135:1697-1709.
    [178]Sairam RK, Srivastsva GC, Agarwal S et al. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes [J]. Biologia Plantatum,2005,49:85-91.
    [179]Kumar SG, Reddy AM, Sudhakar C. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance [J], Plant Science,2003,165: 1245-1251.
    [180]Kumar V, Shriram V, Nikam TD et al. Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance [J]. Journal of Plant Nutrition,2008,31:1999-2017.
    [181]Misra N, Gupta AK. Effect of salt stress on proline metabolism in two high yielding genotypes of green gram [J]. Plant Science,2005,169:331-339.
    [182]Xiong LM. Zhu JK. Salt tolerance. In:Somerville CR, Meyerowitz EM (Eds.), The Arabidopsis book. American society of plant biologists, Rockville,2002, pp 1-22.
    [183]Li XD, Xia B, Wang R et al. Molecular cloning and characterization of S-adenosylmethionine synthetase gene from Lycoris radiata [J]. Molecular Biology Reports,2013,40:1255-1263.
    [184]Yadav NS, Rashmi D, Singh D et al. A novel salt-inducible gene SbSI-1 from Salicornia brachiata confers salt and desiccation tolerance in E. coli [J]. Molecular Biology Reports,2012,39: 1943-1948.
    [185]Reddy PS, Reddy GM, Pandey P et al. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum:protection against abiotic stresses [J]. Molecular Biology Reports,2012,39:7163-7174.
    [186]Hu TZ, Zeng H, He S et al. Molecular analysis of OsLEA4 and its contributions to improve E. coli viability [J]. Applied Biochemistry and Biotechnology,2012,166:222-233.
    [187]He S, Tan LL, Hu ZL et al. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oraza sativa L. [J]. Molecular Genetics and Genomics,2012,287: 39-54.
    [188]Gupta K, Agarwal PK, Reddy MK et al. SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli [J]. Plant Cell Reports,2010,29:1131-1137.
    [189]Reddy PS, Thirulogachandar V, Vaishnavi CS et al. Molecular characterization and expression of a gene encoding cytosolic Hsp90 from Pennisetum glaucum and its role in abiotic stress adaptation [J]. Gene,2011,474:29-38.
    [190]Guo XH, Jiang J, Wang BC et al. ThPOD3, a truncated polypeptide from Tamarix hispida, conferred drought tolerance in Escherichia coli [J]. Molecular Biology Reports,2010,37: 1183-1190.
    [191]Yang HL, Zhang DY, Wang JC et al. Molecular cloning of a stress-responsive aldehyde dehydrogenase gene ScALDH21 from the desiccation-tolerant moss Syntrichia caninervis and its responses to different stresses [J]. Molecular Biology Reports,2012,39:2645-2652.
    [192]Li JY, He XW, Xu L et al. Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species [J]. Journal of Zhejiang University- Science B,2008,9:132-140.
    [193]Zhang CQ, Nishiuchi S, Liu SK et al. Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice [J]. BMB Reports,2008,41:448-454.
    [194]Takahashi R, Liu SK, Takano T et al. Isolation and characterization of plasma membrane Na+/H+ antiporter genes from salt-sensitive and salt-tolerant reed plants [J]. Journal of Plant Physiology,2009,166:301-309.
    [195]Khedr AHA, Serag MS, Nemat-Alla MM et al. A DREB gene from the xero-halophyte Atriplex halimus is induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues [J]. Plant Cell, Tissue and Organ Culture,2011,106:191-206.
    [196]张立全,张凤英,哈斯阿古拉.紫花苜蓿耐盐性研究进展[J].草业学报,2012,21(6):296-305.
    [197]杨青川,耿华珠,孙彦.耐盐苜蓿新品种中苜一号[J].作物品种资源,1999,2:26.
    [198]贾春林,杨秋玲,吴波等.鲁苜1号紫花苜蓿选育及栽培技术[J].山东农业科学,2008,5:100-103.
    [199]李红.高产、高蛋白、高抗性龙牧806号苜蓿[J].牧草与饲料,2007,1(3):64.
    [200]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [201]Deak M, Kiss G B, Korkz C et al. Transformation of Medicago by agrobacterium mediated gene transfer [J]. Plant Cell Reports,1986,5:97-100.
    [202]徐春波,王勇,赵海霞等.冷诱导转录因子AtCBFl转化紫花苜蓿的研究[J].草业学报,2012,21(4):168-174.
    [203]刘晓静,郝凤,张德罡等.抗冻基因CBF2表达载体构建及转化紫花苜蓿的研究[J].草业学报,2011,20(2):193-200.
    [204]Liu L, Fan XD, Wang FW et al. Coexpression of ScNHXl and ScVP in transgenic hybrids improves salt and saline-alkali tolerance in Alfalfa(Medicago sativa L.) [J]. Journal of Plant Growth Regulation,2013,32:1-8.
    [205]Li WF, Wang DL, Jin TC et al. The vacuolar Na+/H+ antiporter gene SsNHXl from the halophyte Salsola soda confers salt tolerance in transgenic Alfalfa(Medicago sativa L.) [J]. Plant Molecular Biology Reporter,2011,29:278-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700