液态反应性聚合物复合材料的旋转模塑成型工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转模塑是一种以塑料粉末为原料成型中空塑料制品的工艺。由于它具有一些其它成型工艺无法比拟的优点,如成本低、制品无内应力、适合成型大型制品等,一直受到人们的关注。该工艺也存在一些缺点,如制品强度低、工人劳动强度大、成型时间长、原材料种类少及原材料成本高等,限制了旋转模塑工艺的发展。长期以来人们一直都在努力研究适合旋转模塑工艺的新材料并对旋转模塑工艺进行改进,取得了一定的成果。
     很早就有人提出使用液体聚合物进行旋转模塑生产。液体聚合物与粉末聚合物原料相比具有诸多优点,如液体聚合物增强方式灵活,能够使用长纤维进行增强以提高制品强度等。但是,液体聚合物作为旋转模塑原料在操作过程中会遇到一些困难,主要问题是原料在模具壁上分布不均匀和制品表面产生气泡。这些问题制约了旋转模塑工业中液体聚合物的应用。基于此,本文工作的目标是使用通用型不饱和聚酯树脂为原料研究适用它的旋转模塑成型工艺及长纤维增强技术。同时,本文还对液态发泡树脂体系旋转发泡工艺进行了试验研究,并得到了一些有意义的结论。
     为进行上述不饱和聚酯树脂旋转模塑试验研究,本文自行设计并制造了双轴可调速旋转模塑机。该设备具有内传动和外传动两条传动路线,分别使模具绕两互相垂直轴旋转。该设备每轴调速范围为0~35r/min,能够满足液体原料在各种转速下的成型试验研究,也可用于企业中小型液体旋转模塑制品的生产。
     通过不饱和聚酯树脂旋转成型试验研究发现:不饱和聚酯树脂旋转模塑制品存在最大质量问题是壁厚不均匀及表面存在较多气泡,问题的产生与不饱和聚酯树脂的初始黏度和凝胶速度有关。与热固性树脂凝胶曲线相对应可把旋转模塑制品的形成过程分为成型前、成型期、缺陷形成期三个阶段。本文还研究了正交试验研究树脂初始黏度,凝胶速度与制品质量的关系。研究结果表明:树脂的初始黏度影响制品的厚度,树脂的固化速度影响制品壁厚的均匀性,而通过正交试验的方法可为生产一定形状和大小的制品确定合适的工艺参数。
     本文进行了长纤维增强不饱和聚酯树脂旋转模塑试验研究,试验结果表明:对于长纤维增强旋转模塑制品,制品壁厚均匀性控制不再是主要问题,而制品表面气泡控制是最为主要的工艺难题。针对这一问题,本文设计了试验观察和研究气泡形成过程的装置并进一步研究了气泡的形成机理。研究发现制品表面气泡主要是由于树脂浸润纤维速度不均匀性及树脂浸润纤维的驱动力过小产生的。本文通过增加树脂在模具内的流动通道,改善树脂浸润纤维速度不均匀性,制造出了表面没有气泡的制品。
     针对长纤维增强时,树脂浸润纤维驱动力过小的问题,本文提出了高速旋转成型技术,并进行了成型工艺试验。试验结果表明,模具高速旋转能够有效减少制品外表面气泡数量,但却在制品内表面产生较多气泡。通过对成型工艺进行仿真模拟,可知这是由于模具旋转速度过高引起的。可通过有限元仿真确定最佳模具旋转速度。
     论文最后还初步研究了液体原料旋转发泡工艺,进行了成型试验,并研究了工艺参数对发泡泡孔均匀性和大小的影响。试验表明:随着主轴转速的增大,制品外壳气泡数量增多;异氰酸脂和聚醚的质量比接近1∶1,稳定剂质量比一般在0.5-5%之间时能够得到泡孔密度均匀致密的泡沫夹芯。
     结合本文所做工作及得到的结论,本文有以下几点创新:
     1)首次使用旋转模塑成型工艺制成了连续纤维增强不饱和聚酯树脂复合材料制品。
     2)首次研究了连续纤维增强旋转模塑工艺中树脂交联固化的化学变化与旋转运动物理变化的耦合问题,获得有价值的研究结论。
     3)首次采用提高模具双轴旋转速度的方法,减少长纤维增强时制品表面气泡缺陷。
     4)首次使用拉格朗日-格拉平流重构算法基于有限单元法对旋转模塑工艺进行仿真模拟,仿真的结果可为制定工艺参数提供理论依据。
Rotational moulding is a process for manufacturing hollow plastic product. The number of advantages which includes low level of residual stresses, low product cost, being suitable to produce large hollow plastic production offered by this process over other plastic processing methods makes rotational moulding lots of engineering sense. But rotational moulding also has some disadvantages. Except for low strength of its product, high intensity of labour and long molding time, the rare species of raw material and hight cost to process them is the major one. All those disadvantages limit the development of rotational moulding. So, the development of new materials with desirable properties is of great significance in rotational moulding. Researchers have done lots of study in this field and obtained some satisfying results.
     Some researchers tried to use liquid plastics in this process very early. Compared with powdered polymer, liquid polymer can offer flexible reinforcing methods. This makes it possible for using continuous fibre to reinforce plastic, thus to improve mechanical property of final production. But operating liquid plastic in rotational moulding is difficult. The major problem is surface defects(bubbles) and poor material distribution. The purpose of this thesis is to study rotational moulding of molding continuous fibre reinforced thermosetting resin composites. In the end of this thesis, rotational foaming moulding of liquid reactive resin was studied and some significative results were obtained.
     In this thesis, a rotational molding machine was designed and made in order to match the requirement of rotational moulding experiment. The rotational speed can be adjusted separately in two directions. The mould can rotate along two orthogonal axes. The speed-regulating scope of its two axes is 0~35r/min. This machine could be used for making composite production by multi-kinds of liquid reactive resin.
     The process of rotational forming products can be divided into three stages-before forming, forming and defect creating according to the gel curve of corresponding thermosetting resin. The result of unsaturated polyester resin rotational molding experiment shows that the main problem is wall inhomogeneous. And this problem relate to the unsaturated polyester resin's original viscosity and gel velocity. With the help of the orthogonal test about original viscosity, gel velocity and the quality, it shows that the original viscosity effect the wall thickness and the gel velocity influence the wall homogeneous; it all shows that the orthogonal test can give the best processing parameter according to the certain product with different shape and size.
     Continuous fibre reinforced resin rotational moulding process was studied through special experiment. The results show that the main problem is not poor material distribution but surface bubbles. That's different from liquid resin rotational moulding. A view device was made in order to observe the formation of those bubbles. It can be concluded that non-uniform seepage velocity of the liquid resin and little driving force are the main factors which produce the surface bubbles. Product with non-surface defects (bubbles) can be obtained by adding flow channels in the inner wall of the mould.
     High speed centrifugal rotational moulding process was put forward and investigated in order to solve the problem which the driving force is small when liquid resin permeate continuous fibre. The results show that this technology can mostly reduce the number of surface bubbles. But there are still some bubbles in the inner wall of rotational moulding product. After the process simulation it can be concluded that this problem is caused by excessive rotational speed of the mould. Suitable process parameters can be obtained through process simulation.
     In the last part of this theis, liquid foaming resin system rotational moulding process was studied. The principle of this process was introduced. Rotational speed, speed ratio, ratio of raw materials and temperature which is important to the foaming process was analyzed. The experimentation results indicate that the bubble number increased with the increasing of the main axial speed. Uniform and compact foam can be obtained when the ratio of isocyanate and polyether was 1:1 and the ratio of stabilizing agent was 0.5~5%.
     According to the work which has been done and results which has been obtained in this thesis, The originality innovation includes the following points:
     1) study the rotational moulding process by using unsaturated polyester resin as raw material, firstly.
     2) The couple of chemical change and physical change in continuous fibre reinforced unsaturated polyester resin rotational moulding process was investigated, firstly and some meaningful results were obtained.
     3) The method of improving the rotational velocity of the mould is used in order to reduce the number of surface bubbles, firstly.
     4) Based on the finite element theory, the Lagrangian-Eulerian advection remap algorithm was used to simulate rotational moulding process.
引文
[1] J. A. Nickerson. Modem Plastics Encyclopedia[M]. Mcgraw-Hill/Modem Plastics, 1968. 12-44.[2] R. J. Crawford. Introduction to Rotational Molding[J]. Rotational Molding of Plastics, 1996, 2: 1-6.
    [3] G. L. Beall. Rotatinal Molding-Design, Materials, Tooling and Processing[M]. Munich: Hanser, 1998. 245.
    [4] 丁立波,李义,张嵬.塑料旋转模塑关键技术研究[J].试验技术与试验机.2005,(45)1:25-27.
    [5] 刘国海,孙彤彤.滚塑加工技术的发展概况[J].中国包装工业.1999,(5):29-31
    [6] 孙彤彤,刘国海.滚塑成型的现状与未来[J].国外塑料.1998,16(4):11-13
    [7] Mooney P J. An Analysis of the North American Rotational Molding Business. New Canaan, 1995
    [8] 张惠曦.滚塑制品的应用与开发[J].中国包装.1998,18(1):70-71
    [9] 王欣,魏若奇.滚塑加工现状与发展趋势[J].中国塑料,1997,11(4):17-25
    [10] 邱桂学,姜爱民,许淑贞等.用于大型滚塑成型的LLDPE/HDPE共混料[J].青岛化工学院学报,1996,17(1):51
    [11] 李百顺.聚乙烯滚塑工艺及设备[J].中国塑料.1999,13(4):45-48
    [12] 张恒.塑料及其复合材料的旋转模塑成型[M].北京:化学工业出版社,1999
    [13] R. J. Crawford, P. J. Nugent, W. Xin. Prediction of Optimum Process Conditions for Rotomoulded Products[J]. Int. Polym. Proc., 1991, 6(1): 56-60.
    [14] S. Andrzejewski, G. Cheney, P. Dodge. Simple Rules to Follow for Obtaining Proper Cure for Rotomoulded Polyethylene Parts[J]. Rotation, 1997, 6(3): 18-19.
    [15] M. Kontopoulou. A study of the Parameters Involved in the Rotational Molding of Plastics[M]. Ph. D. Thesis in Chemical Engineering. McMaster University, 1995. 139.
    [16] H. R. Howard. Variables in Rotomolding that are Controllable by the Molder[R]. paper presented at ARM Fall Meeting, Chicago, 1997.
    [17] P. J. Nugent. Theoretical and Experimental Studies of Heat Transfer During Rotational Molding[D]. Ph. D. Thesis in Mechanical and Manufacturing Engineering, The Queen's University, Belfast, 1990.
    [18] Crawford R J, Nugent P J. A new Process Control System for Rotational Moulding[J]. Plastic, Rubber and Composites Processing and Applications. 1992, 17(1): 23~31.
    [19] 郭同凯.旋转模塑过程的热交换计算机模拟系统.新技术新工艺[J].1997,(3):7.
    [20] 陈昌杰,李惠康,刘汝范等.塑料滚塑搪塑[M].北京:化学工业出版社,1997
    [21] 朱伟平.碳酸钙用量对旋转模塑用PVC增塑糊性能的影响[J].塑料助剂,2000,(2):20-24.
    [22] 赵鑫,王标兵,胡国胜.尼龙粉末的研究进展与应用[J].化学推进剂与高分子材料.2005,3(1):28-30.
    [23] 毛滓淑,常津,陈贻瑞等.酚醛泡沫塑料综述[J].化学工业与工程.1998,15(3)38-53
    [24] J. Slapnik. Plastic Process[P]. U. S. Pat: 2989783, 1961-06-27
    [25] R. A. Nonweiler. Method of Producing an Expanded Polystyrene Foam Having a Dense Surface[P]. U. S. Pat: 3309439, 1967-03-14
    [26] R. A. Nonweiler. Composition for making Coated Expanded Polystyrene Foam[P]. U. S. Pat: 3457205, 1969-07-22
    [27] Mitsubishi Petrochemical Co. Ltd. Process for Manufacturing a Synthetic Resin Foam Having a Skin[P]. British Pat: GB1321341, 1973-07-27
    [28] K. Hosoda, N. Shiina, Y. Kadowaki et al. Method for Producing a Composite Foamed Article[P]. U. S. Pat: 3814778, 1974-07-04
    [29] N. Shiina and K. Hosoda. Method for Rotational Molding of Composite Foamed Plastic Articles[P]. U. S. Pat: 3914361, 1975-12-21
    [30] C. E. Slade. Rotational Molding of Articles with Foamed Inner Layer[P]. Canadian Pat: CA983226, 1976-12-10
    [31] H. Mori, E. Adachi, Y. Nogichi. Method of Producing Composite Foamed Shaped Articles from Thermoplastic Resins[P]. U. S. Pat: 3962390
    [32] R. J. Crawford and P. J. Nugent. A Method of Rotational Molding and Rotationally Molded Products[P]. International Pat: WO95/19877, 1995-01-20
    [33] D. G. Needham. Polyolefin-based Composition for Rotational Molding[P]. U. S. Pat: 5532282, 199607-02
    [34] R. I. Kliene. Rotational Molding of Articles Having Cellular Interiors[P]. British Pat: GB2311245, 1997-09-24
    [35] J. J. Strebel. Compositions and Process for Rotational Molding Foamed Articles[P]. U. S. Pat: 5783611, 1998-07-21
    [36] J. J. Strebel. Compositions and Process for Rotational Molding Articles[P]. U. S. Pat: 5830392, 1998-09-03
    [37] J. J. Strebel. Rotational Molding compositions and Process for Producing Foamed Articles Therefrom[P]. U. S. Pat: 5922778, 1999-07-13
    [38] C. C. Lee. Foamble Compositions for Rotational Molding[P]. U. S. Pat: 5928584, 1999-07-27
    [39] 藏群传,张威,王剑.国内外滚塑成型设备的现状及发展趋势[J].塑料包装,2000,10(3):28-38.
    [40] Archer E, Harkin-Jones E, Kearns M P, et al. Investigation of the processing characteristics and mechanical properties of metallocene-catalysed polyethylene foams for rotational moulding[J]. Journal of Cellular Plastics 2003, 39(6): 487-497.
    [41] 周家华.PVC低发泡制品的挤出成型技术[EB/OL].http://218.25.86.165/bbs/read.php?tid=3539,2006-04-22.
    [42] Harkin-Jones E. Rotational Molding of Reactive Plastics. Ph. D Thesis. The Queen's University of Belfast, 1992.
    [43] 伍钦,蔡梅琳,曾朝霞等.不饱和聚酯树脂的进展[J].化工进展,1999,(6):39-40.
    [44] 庄国雄.二丁基氧化锡催化合成双酚A不饱和聚酯树脂[J].化学世界,1998,(8):427-429.
    [45] 钱昱辉;安鑫南.萜烯—马来酸酐不饱和聚酯树脂的合成及其性能研究[J].1996,16(2):33-37.
    [46] 韩秀萍,蒋欣,李玉录等.不饱和聚酯树脂的合成研究进展[J].广东化工,2004,(9):26-28.
    [47] 于同福,毕鸿琴,唐世珩等.不饱和聚酯树脂的常温固化[J].热固性树脂,2006,21(4):50-53.
    [48] 王庆,王庭慰,魏无际.不饱和聚酯树脂增稠特性和固化行为的研究[J].工程塑料应用,2006,34(4):37-40.
    [49] 沃丁柱主编.复合材料大全[M].北京:化学工业出版社,2000
    [50] J D Ferry. Viscoelastic properties of polymer [M] 3rd ed Now York wiley, 1980.
    [51] J M ijoric C H Lee A composite of chemorheological models for themoset cure [J] J Appl Polym ScJ 1989. 38: 2155
    [52] M J Perry, et al Resin transfer molding of epoxy/graphite composite [A]. proc 24th SAMPE Tech cont[C] 1992
    [53] M B Roller Rheology of curing thermoset a review[J]. Polym Eng Scj 1986. 26: 432
    [54] M L w illians R F lander J D ferry The temperature dependence of relaxation mechanisms in amorphous polymers & other glassforming liquid[J]. J A m Chem Soc, 1995, 77: 3701
    [55] 李海晨,王彪,林新.关于RTM工艺过程树脂渗流的几个重要问题[J].哈尔滨工业大学学报.2001,33(6):769-772.
    [56] Park H, Lee WI, Han W S, Wantrin A. Multiconstraint optimization of composite structures manufactured by resin transfer molding process[J]. J. of composite Materials, 2005, 39(4): 347-349.
    [57] 戴福洪,张博明,杜善义.RTM工艺注模过程边缘效应模拟分析[J].复合材料学报,2004,21(2):163-167.
    [58] GiokceA, ChohraM, Advani, SureshG, WalshS M. Permeability estimation algorithm to simultaneously characterize the distribution media and the fabric perform in vacuum assisted resin transfer molding process [J]. composite Science and Technology, 2005, 65(14): 21-29.
    [59] 邓英尔,谢和平,黄润秋等.低渗透孔隙-裂隙介质气体非线性渗流运动方程[J].四川大学学报(工程科学版),2006,38(4):24-27.
    [60] 张立娟,岳湘安,刘中春等.聚合物溶液在孔隙介质中的渗流机理[J].石油大学学报(自然科学版),2005,29(1):51-61.
    [61] Young W B, Han K, Fong L H, et al. Flow Simulation in Molds With Preplaced Fiber Mats[J]. Polymer Composites, 1991, 12(6): 391~403.
    [62] Frederick R, Phelan J R. Simulation of the Injection Process in Resin Transfer Molding[J]. Polymer Composites, 1997, 18 Limited, 1997.
    [63] Rudd C D, Long A C, Kendall K N, et al. Liquid molding Technologies[M]. Cambridge England: Woodhead Publishing Limited. 1997.
    [64] 王继辉,张光辉,熊仁杰.RTM充模过程的计算机模拟[J].计算力学学报,1997,14(1):753-756.
    [65] Brusehke M V, Adrvuni S G. A Finite Element/Control Volume Approach to Mold Filling in Anisotropic Porous Media[J]. Polymer Composites, 1990, 11(6): 621-632.
    [66] Bruce M, Gihson V C, Redshaw C, Solan G A, White A J P, Williams D J. Chem Commun. 1998, 22: 2523-2524.
    [67] Britovesk G J P, Bruce M, gihson V C, Kimberley B S, Maddox P J, Mastroianni S, MeTavish S J, Redshaw C, Solan G A, Stremberg S, White A J P, Williams D J. J Am Chem Soc. 1999, 121: 8728-8740.
    [68] 方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001,46-51.
    [69] NetComposites. Guide To Composites[EB/OL]. http://www.netcomposites.com/education.asp?sequence=27, 2006-11-28.
    [70] Gang Wang. Finite Element Simulations of Free Surface Flows With Surface Tension in Complex Geometries[J]. Journal of Fluids Engineering. 2002, 124(3): 584-594.
    [71] Ashgriz, Nasser; Barbat, Tiberiu; Ostergaard, Dale; Ganjoo, Deepak. Advection of an interface on unstructured meshes[C]. Philadelphia: American Physical Society, 1998.
    [72] Nasser Ashgriz, Tiberiu Barbat, Gang Wang. A computational Lagrangian-Eulerian advection remap for free surface flows[J]. International Journal for Numerical Methods in Fluids. 2003, 44(1): 1-32.
    [73] Milos Milosevic, Helmut Wurmus, Zivota Zivkovic. ANALYZING MICRO-ELECTRO-MECHANICAL-FLUIDIC SYSTEMS BY 2D COUPLED-FIELD ANALYSES[J]. Mechanical Engineering. 2004, 2(1): 1-10.
    [74] Huerta A., Liu, W.K., "Viscous Flow with Large Free Surface Motion", Computer Methods in Applied Mechanics and Engineering, Vol. 69, 1988.
    [75] Jyi-Tyan, Y., "A VOF-FEM and Cupled Inkjet Simulation", Proceedings of ASME FEDSM'01, ASME Fluids Engineering Division Summer Meeting, USA, 2001.
    [76] ANSYS Document.
    [77] 方禹声,朱吕民.聚氨酯泡沫塑料[M]。北京:化学工业出版社,1984:260-290.
    [78] 王章忠,张祖凤.硬质聚氨酯泡沫塑料芯材与夹层结构的研究[J],机械工程材料,2004,28(1):44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700