酚醛树脂合成和酚醛泡沫板材的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,随着我国经济的不断发展,高层次建筑物越来越多,建筑安全节能是社会可持续发展所面临的一项重要任务。然而,由于传统的保温材料聚苯乙烯(PS)和聚氨酯(PU)泡沫在阻燃方面性能非常不好,遇明火甚至火星即可燃烧,而且在燃烧过程中会产生对环境和人类都具有巨大危害的有毒气体,保温材料易燃所发生的重大火灾近年来频频发生。鉴于此,防火性能优越的酚醛泡沫(PF)保温材料就应运而生。
     酚醛泡沫虽具有隔热保温、难燃低烟、耐热稳定性好等诸多优点,然而其材质本身较脆易粉化、酸性较强的缺点仍不容忽视。本文针对目前市场所销售的酚醛泡沫这两大缺点,通过对制备酚醛树脂和酚醛泡沫的配方及工艺不断改进,得到了综合性能优越的酚醛泡沫保温板材,其韧性较市场上产品有所提高,产品接近中性,对墙体几乎无腐蚀性,各力学性能也完全达到了国家标准,而且该生产工艺重复性好、可控性强、生产过程不涉及高温高压等条件,非常适合工业化生产。本文主要内容如下:
     1.首先,在参阅数十篇相关参考文献的基础上,本文对酚醛树脂概况、反应机理以及固化动力学、耐热性能等方面做了简要阐述。然后,本文介绍了酚醛树脂在国内外的发展及应用。最后,本文针对酚醛泡沫的概况、改性研究、发展应用以及国内外生产企业进行了分析陈述。
     2.通过对影响酚醛树脂合成的因素(温度、时间、物料比、催化剂及其用量等)做系统的实验及分析,再结合后期制备酚醛泡沫所得到的反馈信息,我们掌握了合成可发性酚醛树脂的工艺,并优化得到了适合发泡的最佳配方,并对得到的酚醛树脂做了表征及测定,如FTIR、GPC等。
     3.在制备出性能稳定、可发性强的酚醛树脂基础上,我们对影响发泡结果的条件做了详细的研究,主要包括发泡剂种类及用量、固化温度、固化时间、表面活性剂种类及用量、固化剂种类及用量等。在试验及综合分析的基础上,我们制备出了综合性能优越的酚醛泡沫保温板材,并对其各方面性能进行了相应的测试及表征。
     4.最后,在掌握了单纯酚醛泡沫发泡技术及工艺的基础上,我们针对聚氨酯预聚体改善酚醛泡沫的韧性进行了深入研究,并详细介绍了实验结果,对改善后的酚醛泡沫做了客观的评价。
In recent years, more and more high-rise buildings are being built with the continuous development of economy. Safety and energy-saving have become important tasks for the sustainable development of society. However, since traditional insulation materials, such as polystyrene (PS) and polyurethane(PU) foam, possess poor flame-retartant performance, they will burn in case of fire or even sparks, and generate toxic gases which is harmful to the environment and human being. Fires caused by the traditional insulation materials occur frequently in recent years. It is urgent to develop new flame-retartant materials. Fortunately, PF(phenolic foam) just meets this requirement.
     Phenolic foam exsists insulation, flame-retartant, low smoke, excellent heat stability and many other advantages. However, the material itself has the disadvantage of fragility, easy powder and strong acidity. In this thesis, we focused on two major drawbacks of the current market sales phenolic foam. By improving formulation and process of the preparation of phenolic resin and phenolic foam, we obtained the phenolic foam insulation board with excellent comprehensive performance. The ductility of our product is much improved compared with the products on the market. Our products are nearly neutral, avoiding corrosion to the wall. The comprehensive properties reached the national standard completely. In addition, the production process is repeatable, controllable, free of high temparature and high pressure. So this process is suitable for industrial production. The main contents of this thesis are as follows:
     1. First of all, on the basis of dozens of relative references, this thesis briefly introduced the general situation of the phenolic resin, reaction mechanism, the curing kinetics and heat resistance etc. Then, this thesis described the development and application of phenolic resin. Finally, this thesis concentrated on situation, modified research, development and application of domestic and foreign manufacturers of phenolic foam analysis statements.
     2. Via systematic experiments and analysis on the factors that influence the synthesis of phenolic resin (temperature, time, material ratio, catalyst and its usage), associated with the feedback information obtained by preparation of phenolic foam, we studied synthesis process for phenolic resin, and optimized the foaming formula. The as-prepared phenolic resin have been characterized by FTIR/GPC etc.
     3. We developed a process to steadily produce PR suitable for foaming, and further studied the effects of conditions, such as foaming agents, curing temperature, curing time, surfactants, curing agents, on the final foam. And finally, we measured the comprehensive properties of the phenolic resin foam board according to the corresponding standard.
     4. Finally, on the basis of the simple phenolic foaming technology and process, we tried to improve the ductility of PF by polyurethane prepolymers and investigated the effects in detail.
引文
[1]Dominguez J C, Oliet M, Rojo E, et al. Kinetic study of a phenolic-novolac resin curing process by rheological and DSC analysis Original Research Article[J]. Thermochimica Acta.2010. 498(1-2):39~44.
    [2]Honga U S, Cho K.H, Cho M H,et al. Wear mechanism of multiphase friction materials with different phenolic resin matrices[J].2009.266(7-8):739~744.
    [3]Hew-Der Wu, Chen-Chi M. Ma.Thermodynamic properties of the novolac type phenolic resin blended with poly(hydroxyl ether of bisphenol[J]. Polymer,1998.39(3):703~709.
    [4]Ishida H.,Allen D J. Physical and mechanical characterization of nearfzero shrinkage polybenzoxazines[J]. J Polym Sci, Polym Phys,1996.34:1019~1030.
    [5]Choi M H., Jeon B H., Chung I J. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites[J]. Polymer,2000.41:3243~3252.
    [6]Choi M H, Chung I J, Lee J D. Morphology and Curing Behaviors of Phenolic Resin-Layered Silicate Nanocomposites Prepared by Melt Intercalation[J]. Chem Mater,2000.12:2977~2983.
    [7]Zaks Y, Raucher D. Pearce E M,et al. Some structure-property relationships in polymer flammability:Studies of phenolic-derived[J]. J Appl Polym Sci,1982.27:913~930.
    [8]Armat R, Bike S G., Chu G., Jones F N.Rheological behavior of solutions of amphiphilic acrylic copolymers in mixed solvents[J]. J. App. Polym. Sci.,1996.60:1927~1938.
    [9]Higuchi M., Urakawa T, Morita M. Condensation reactions of phenolic resins.1. Kinetics and mechanisms of the base-catalyzed self-condensation of 2-hydroxymethylphenol[J]. Polymer, 2001.42:4563-4567.
    [10]Kaledkovski B., Hepler J. Synthesis of phenol-formaldehyde resole resins in the presence of tetraalkylammonium hydroxides as catalysts[J]. Original Research Article,2000.41:1679~1684.
    [11]Manfredi L B., Riccardi C C.Vazquez A..Modelling of resol resin polymerization with various formaldehyde/phenol molar ratios[J]. Polym. Int.,2001.50:796~802.
    [12]Shipp D A, Solomon D H. Functionality in phenol-formaldehyde step-growth polymerization[J]. Polymer,1992.38(16):4229~4232.
    [13]Martin J S, Morras M L, Rodriguez M,et al. Study of the curing process of a vinyl ester resin by means of TSR and DMTA[J], Polymer,2000.41(11):4203~4211.
    [14]Auad M L, Stefani P,Aranguren M.Rheological study of the curing kinetics of epoxy-phenol novolac resin[J]. J Appl Polym Sci,2006.102(5):4430~4439.
    [15]Alonso M V, Perez J M, Rodriguez.F. et al. Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods[J]. Thermochim Acta,2004.419:161~167.
    [16]Alonso M V, Garcia J, Rodriguez F,et al. Master curve and time-temperature-transformation cure diagram of lignin-phenolic and phenolic resol resins[J]. J Appl Polym Sci,2007.103(5): 3362~3369.
    [17]Markovic S, Zlatanic A, Djonlagic J.Dynamic mechanical analysis study of the curing of phenol-formaldehyde novolac resins[J]. J Appl Polym Sci,2001.81(8):1902~1913.
    [18]Halley P J, Mackay M. Chemorheology of thermosets-An overview[J]. Polym Eng Sci,1996. 36(5):593~609.
    [19]Castro J M., Macosko C W.Kinetics and rheology of typical polyurethane reaction injection moulding systems[J]. Soc Plast Eng,1980.26(12):434~438.
    [20]Dominguez J C, Alonso M V.Oliet,M.,et al. Chemorheological study of the curing kinetics of a phenolic resol resin gelled[J]. European Polymer Journal,2010.46(1):50~57.
    [21]Ma C C M, Lee C T, Wu H D.Mechanical properties, thermal stability, and flame retardance of pultruded fiber-reinforced poly(ethylene oxide)-toughened novolak-type phenolic resin[J]. J Appl Polym Sci,1998.69(6):1129~1136.
    [22]Horold S. Phosphorus flame retardants in thermoset resins[J]. Polym Degrad Stab,1999.64(3): 427~431.
    [23]King P W, MIitchell R H, Westwood A R. Structural analysis of phenolic resole resins[J]. J Appl Polym Sci,1974.18:1117~1130.
    [24]Abdalla M O, Ludwick A, Mitchell T. Boron-modified phenolic resins for high performance applications[J]. Polymer,2003.44(24):7353~7359.
    [25]Lin J M, Ma M C C.Thermal degradation of phenolic resin/silica hybrid creamers[J]. Polym Degrad Stab,2000.69(2):229~235.
    [26]朱苗淼,王汝敏,魏晓莹.硼酚醛树脂的合成及改性研究进展.中国胶粘剂[J],2011.6(20):378~381.
    [27]刘喜宗.硼酚醛树脂的制备和研究进展.中国胶粘剂[J],2009.8(18):42~46.
    [28]谭晓明.高羟甲基含量硼酚醛树脂的合成及表征.塑料工业[J],2001.4(29):6~8.
    [29]Rodriguez E, Garcia R.Characterisation of boron-doped coal-derived carbon foams and their oxidation behaviour[J], Original Research Article,2012.93:288~297.
    [30]陈孝飞,闫联生.硼改性酚醛泡沫的耐高温性能[J].复合材料学报,2011.5(28):89~94.
    [31]Reghunadhan Nair C P,Bindu R L, Ninan KN.Addition curable phenolic resins based on ethynyl phenyl azo functional novolac[J]. Polymer,2002.43(9):2609~2617.
    [32]张兴林.酚醛树脂的现代应用及发展趋势[J].热固性树脂,2007.22:47~49.
    [33]陈精明,吴晓卫.甲阶酚醛树脂的合成研究进展[J].热固性树脂,2004.19(6):16~19.
    [34]毛津淑,方洞浦,常津等.酚醛泡沫塑料综述[J].化学工业与工程,1998.15(3):38~43.
    [35]Shen H, Lavoie A J.Nutt S R.Enhanced peel resistance of fiber reinforced phenolic foams[J]. Compos Pt A-Appl Sci Manuf,2003.34(10):941~948.
    [36]Shen H, Nutt S.Mechanical characterization of short fiber reinforced phenolic foam[J]. Compos Pt A-Appl Sci Manuf,2003.34(9):899~906.
    [37]Desai A, Shen H,Nutt S R. Mechanical behavior of hybrid composite phenolic foam[J]. J Cell Plast,2008.44:15~36.
    [38]Desai A, Nutt S R., Alonso M V. Modeling of fiber-reinforced phenolic foam[J]. J Cell Plast, 2008.44:391-413.
    [39]Goichi B,Shoji A, Souma M.Development and evaluation of frp sandwich beams containing glass fibers into phenolic foam core. In:Sandwich structures 7:Advancing with sandwich structures and materials[J]. Alberg:Springer Netherlands,2005:1007~1016.
    [40]Goichi Ben,Akiko S.Pultrusion techniques and evaluations of sandwich beam using phenolic foam composite[j]. Adv Compos Mater,2005.14(3):277~288.
    [41]Seung A., Kim B G., Kim S S,et al.Novel foaming methods to fabricate activated carbon reinforced microcellular phenolic foams[J]. Composites Science and Technology,2013.76: 45~51.
    [42]Wei D,Zhang L,Zhao Z K,et al.Study on phenolic resin foam modified by montmorillonite and carbon fibers[J]. Procedia Engineering,2012.27:374~383.
    [43]Zhang L Y, Ma J. Effect of coupling agent on mechanical properties of hollow carbon microsphere/phenolic resin syntactic foam[J]. Composites Science and Technology,2010.70(8): 1265~1271.
    [44]Lei S W, Guo Q, Shi J L,et al. Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength[J]. Carbon,2010.48(9):2644~2646.
    [45]Alonso M V,Auad M L,Nutt,S.Short-fiber-reinforced epoxy foams[J]. Composites Part A: Applied Science and Manufacturing,2006.37(11):1952~1960.
    [46]Morimoto K., Suzuki T. Adhesion between glass-fiber and matrix of glass-fiber reinforced rigid polyurethane foam under tension[J]. Polym Plast Technol Engng,1984.22(1):55~76.
    [47]Gupta N,Karthikeyan C S,Sankaran S,et al.Correlation of Processing Methodology to the Physical and Mechanical Properties of Syntactic Foams With and Without Fibers[J]. Materials Characterizationno,1999.43(4):271~277.
    [48]Shen H B, Lavoie A J, Nutt S R.Enhanced peel resistance of fiber reinforced phenolic foams[J]. 2003.34(10):941~948.
    [49]Balch D K, Dunand D C.Load partitioning in aluminum syntactic foams containing ceramic microspheres[J]. Acta Mater,2006.54(6):1501~1511.
    [50]J.R.M.,d'Almeida.An analysis of the effect of the diameters of glass microspheres on the mechanical behavior of glass-microsphere/epoxy-matrix composites[J]. Compos Sci Technol, 1999.59(14):2087~2091.
    [51]Lee J, Yee A F. Fracture of glass bead/epoxy composites:on micro-mechanical deformations[J]. Polymer,2000.41(23):8363-8373.
    [52]Wouterson E M, Hu X,Wong S C,et al..Specific properties and fracture toughness of syntactic foam:effect of foam microstructures Compos[J].Sci Technol.2005.65(11~12):1840~1850.
    [53]Hu L H, Zhou Y H, Liu R J, et al.Progress of bio-based phenolic foam[J]. Mater,2012.40(1): 44~46.
    [54]Lora J H.,Glasser W G.Recent industrial applications of lignin:a sustainable alternative to nonrenewable materials[J]. Environ,2002.10:39~48.
    [55]Kleinert Mm Barth T.Phenols from lignin[J]. Chem. Eng. Technol.,2008.31(5):736~745.
    [56]Hu L H, Zhou Y H. Zhang,M..Methods to improve lignin's reactivity as a phenol substitute and as replacement for other phenolic compounds:a brief review[J]. Bioresources,2011.6(3): 3515~3525.
    [57]Tejado Labidi J. Echeverri J M.et al.Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis[J]. Bioresource Technology, 2007.98(8):1655~1663.
    [58]Carlos A C, Pakdel H, Roy C.Production of monomeric phenols by thermochemical conversion of biomass:a review[J]. Bioresour. Technol,2001.79:277~299.
    [59]Vazquez G, Gonzalez J,Antorrena F G.Effect of chemical modification of lignin on the gluebond performance of lignin-phenolic resins[J]. Bioresour. Technol,1997.60:191~198.
    [60]Malutan T, Nicu R, Popa V I.Contrib.ution to the study of hydroxymethylation reaction of alkali lignin[J]. Bioresources,2008.3(1):13~20.
    [61]郑超,李长斌,吕虎.木质素改性酚醛泡沫的研究[J].广州化工,2012.40(22):53~54.
    [62]Hu L H, Zhou Y H, Liu R J et al.Synthesis of foaming resol resin modified with oxidatively degraded lignosulfonate[J], Industrial Crops and Products,2013.44:364~366.
    [63]Kim B G.,Lee D G.Development of microwave foaming method for phenolic insulation foams[J]. Journal of Materials Processing Technology,2008.201(1~3):716~719.
    [64]程珏,梁明莉,金关泰.聚氨酯预聚物改性酚醛泡沫塑料脆性的研究[J].塑料工业,2004.32(1):7~9.
    [65]钱伯章.酚醛泡沫塑料新产品新应用[J].国外塑料,2011.29(3):37~41.
    [66]殷宜初.国内外酚醛泡沫的开发与应用[J].保温材料与建筑节能,2004.10:46~48.
    [67]郑超,李长斌,吕占美.酚醛泡沫的发展现状及应用[J].广州化工,2011.39(7):16~18.
    [68]韦铮.水溶性酚醛树脂游离苯酚水蒸汽蒸馏测定方法的研究[J].北京林业大学学报,1987.9(3):286~292.
    [69]杨静新,蒋子珺,徐圆圆.低甲醛树脂中游离甲醛的测定[J].印染,2006.13(2):p.38~39.
    [70]冀克俭,张银生,尤瑜升.酚醛树脂固化过程的红外光谱分析[J].分析测试学报,1993.12(2):53~56.
    [71]赵鹏,赵彤,王娟等.酸固化剂对酚醛泡沫微观结构的影响[J].塑料工业,2011.39(5):86~90.
    [72]吴存雷.聚氨酯预聚体技术及其应用[J].聚氨酯工业,2000.15(3):1~4.
    [73]BEYLER,G.柔性聚氨酯泡沫燃烧产物毒性评估[J].消防科学与技术,2007.26(5):476~484.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700