多酸/半导体复合膜的制备及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决能源危机问题,太阳能的开发和利用已经成为世界范围内的研究热点。其中,提高半导体材料的光电转换效率是一个重要的研究课题。多金属氧酸盐(多酸),是一种良好的电子接受体,能够捕获半导体材料中的光生电子,从而减小半导体中载流子的复合,以提高其光电转换效率。本文以多酸为修饰组分,制备了各种半导体/多酸复合膜材料,并考察了它们的光电转换性能。具体如下:
     1.利用交替沉积自组装技术将PW_(12)和TiO_2制备成纳米复合膜,并用紫外可见光谱、红外光谱和原子力显微镜表征。光电流测试表明,PW_(12)/TiO_2膜的光电流响应强度与膜的层数有关。另外,与单独TiO_2膜相比,PW_(12)/TiO_2复合膜展示了更高的光电流响应和对甲醇的光电催化能力,并且PW_(12)/TiO_2膜的能量转换效率比单独TiO_2膜的能量转换效率提高了50%。
     2.采用交替沉积自组装技术将P_2W_(18)和聚烯丙基胺盐酸盐修饰的CdS(CdS-PAH)制备成纳米复合膜。与单独的CdS-PAH膜相比,CdS-PAH/P_2W_(18)复合膜的光电流响应强度和能量转换效率都提高了约1.5倍。这表明,多酸扮演了一个有效的电子接受体,减小了CdS中光生电子-空穴对的复合,从而提高了CdS的光电性能。我们通过荧光和表面光电压测试进一步证明了这个机理。
     3.使用交替沉积自组装技术将SiMo_(12)和CuPc制备成纳米复合膜。在全光和可见光的照射下,CuPc/SiMo_(12)膜都展示了比单独CuPc膜更高的光电流响应。并且,与CuPc薄膜相比,SiMo_(12)/CuPc复合膜的能量转换效率提高了约8.7倍。表面光电压测试表明,CuPc和SiMo_(12)之间发生了有效的光生电荷转移。另外,CuPc/SiMo_(12)复合膜对水合肼展示了很好的光电催化性能。
     4.制备了多酸(PW_(12)、P_2W_(18))/TiO_2复合膜并组装成光电池。通过光电流、I-V曲线、电化学阻抗谱和开路光电压测试分析了不同的种类和含量的多酸/TiO_2复合膜的光电性能、电子转移和复合性质。在TiO_2中加入少量的多酸时(0.75%),显示了比单独TiO_2膜更高的光电流响应,并且PW_(12)(0.75%)/TiO_2膜和P_2W_(18)(0.75%)/TiO_2膜的能量转换效率分别是TiO_2膜的2.6倍和1.6倍。电化学阻抗谱表明,多酸的引入降低了TiO_2中载流子的复合,增加了载流子的转移,以至提高了TiO_2的能量转换效率。而在TiO_2膜中引入过量的多酸(7.5%),多酸则变成了电子陷阱填充位点,从而降低了光电性能。
     5.制备了以TiO_2和PW_(12)/TiO_2为光阳极的染料敏化太阳能电池。与TiO_2光阳极相比,0.75%-PW_(12)/TiO_2复合光阳极的能量转换效率提高了33%,而7.5%-PW_(12)/TiO_2光阳极的能量转换效率却降低了。这主要是因为:(1)0.75%-PW_(12)/TiO_2复合膜能够吸附更多的染料;(2)多酸的引入减小了光生载流子的复合,提高了载流子的转移。而7.5%-PW_(12)/TiO_2光阳极中,可能形成了电子陷阱填充位点,降低了光电性能。
The utilization of solar energy has become a hotspot in the world to solve the shortage offossil energy. Among them, an important research topic is to improve light-to-electricityconversion efficiency of the semiconductor materials. Polyoxometalates (POMs) are a kind ofgood electron acceptors. They can transport photogenerated electrons in the semiconductors,which reduces the electron-hole recombination and then improves the photovoltaic response.In this paper, we prepared a series of semiconductors/POMs composite films and investigatedtheir photovoltaic performances.
     1. We fabricated the nanocomposite films of PW_(12)and TiO_2by the layer-by-layer (LbL)self-assembly method. These films were characterized by UV-vis spectroscopy, IR spectra,and atomic force microscopy. Photocurrent measurements suggested that the photocurrentresponse of the PW_(12)/TiO_2composite film was highly dependent on the deposited number oflayers. Furthermore, the PW_(12)/TiO_2composite film demonstrated the higher photocurrent andphotoelectrooxidation activity for methanol than the TiO_2film, and the power conversionefficiency of the PW_(12)/TiO_2film was improved by50%.
     2. We prepared the composite thin films of P_2W_(18)andpoly(allylaminehydrochloride)-modified CdS (CdS-PAH) by the LbL self-assembly method.The CdS-PAH/P_2W_(18)composite film displayed a ca.1.5-fold increase in the photocurrentresponse and power conversion efficiency, as compared to the single CdS-PAH film. Thisindicated that P_2W_(18)could act as electron acceptors to efficiently suppress electron holerecombination in CdS and improve the photovoltaic performance. Such a mechanism wasfurther proven by experimental data of fluorescence emission spectra and surfacephotovoltage spectroscopy.
     3. A composite film containing CuPc and SiMo_(12)was fabricated by the LbLself-assembly method. Under both solar light and visible light irradiation, the photocurrentresponse of the CuPc/SiMo_(12)film was markedly enhanced in comparison with those of theCuPc/PSS film, and the CuPc/SiMo_(12)film displayed a ca.8.7-fold increase in the powerconversion efficiency. Surface photovoltage measurements indicated that the photoinducedelectron transfer occurred between CuPc and POMs. Furthermore, the CuPc/POMs compositefilm exhibited good photoelectrocatalytic performance for the oxidation of hydrazine.
     4. We prepared the POMs(PW_(12)、P_2W_(18))/TiO_2composite films and assembled the cells.We study on the photoelectrochemical performance, the electron transport and electron–holerecombination of the different content and type POMs in TiO_2film by measurements ofelectrochemical impedance spectroscopy (EIS), photocurrent responses and I–V curves. ThePOMs/TiO_2films at low POMs loadings (0.75%) displayed the enhanced photovoltaicperformance. The power conversion efficiency of PW_(12)(0.75%)/TiO_2film andP_2W_(18)(0.75%)/TiO_2film was2.6times and1.6times that of TiO_2film, respectively. EISmeasurements proved that introducing POMs into TiO_2film could reduce electron-holerecombination and facilitate photogenerated electron transfer, which enhanced the light-to-electricity conversion efficiency. However, the excessive content (7.5%) of POMscould almost cause a negative effect on photovoltaic performance due to electron trap fillingsites.
     5. We fabricated the DSSCs based on both the only TiO_2photoanode and the PW_(12)/TiO_2photoanode. Compared to the TiO_2photoanode, the power conversion efficiency of0.75%-PW_(12)/TiO_2photoanode was improved by33%, while the7.5%-PW_(12)/TiO_2photoanodecould cause a negative effect on photovoltaic performance. The reasons were as follows:(1)the0.75%-PW_(12)/TiO_2film could adsord more dye;(2) The incorporating of PW_(12)into TiO_2photoanode could reduce electron-hole recombination and improve electron transfer. However,electron trap filling sites were present in the7.5%-PW_(12)/TiO_2photoanode.
引文
[1]邓南圣,吴峰.环境光化学[M].北京:化学工业出版社,2003.
    [2] Goetzberger A, Hebling C, Schock H W. Photovoltaic materials, history, status and outlook[J]. MaterSci Eng R-Rep,2003,40(1):1-46.
    [3] European Roadmap for PV R&D. European Commission Joint Research Center,2004EUR21087EN.
    [4] Bequerel E. Recherches surles effets de la radiation chimique de la lumiere solaireaumoyen descourantselectriques[J]. C. R. Acad. Sci.,1839,9:145-149.
    [5]熊绍珍,朱美芳.太阳能电池基础与应用[M].北京:科学出版社,2009.
    [6] O'Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films[J]. Nature,1991,353(6346):737-740.
    [7] Yella A, Lee H W, Tsao, H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redoxelectrolyte exceed12percent efficiency[J]. Science,2011,334(6056):629-634.
    [8] Chepin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for conversion solarradiation electrical power[J]. J Appl Phys,1954,8(4):676-679.
    [9] Ralph E L. Intersociety energy conversion engineering conference.1968,2:116-121.
    [10] Szlufcik J, Nijs J, Mertens R, et al. Semiconductor devices,1996,2733:556-562.
    [11] Zhao J. Recent advances of high-efficiency single crystalline silieon solar cells in processingtechnologies and substrate materials[J]. Sol Energy Mater Sol Cells,2004,82(1-2):53-64.
    [12] Duriseh W, Bitnar B, Mayor J, et al. Effieieney model for photovoltaic modules and demonstration ofits application to energy yield estimation[J]. Sol Energy Mater Sol Cells,2007,91(l):79-84.
    [13] Szweda R. Third Generation Solar Cells[J]. III-Vs Review,2003,16(6):53-55.
    [14]李万河.太阳能电池的种类[J].电子工业专用设备,2007,159(4):5-9.
    [15]秦桂红,严彪,唐人剑.多晶硅薄膜太阳能电池的研制及发展趋势[J].上海有色金属,2004,25(1):38-42.
    [16] Podraza N J, Chen C, Sainju D, et al. Transparent conducting oxide sculptured thin films forphotovoltaic applications[J], Mater Res Soc Symp Proc,2005,865:273-278.
    [17] Martins N, Canhola P, Quintela M, et al. Performances of an in-Line PECVD system used to produceamorphous and nanocrystalline silicon solar cells[J]. Thin Solid Films,2006,511-512(26):238-242.
    [18]郝国强,张德贤,张延生等. Si太阳电池p层微晶结构的研究[J].电源技术,2003,27(5):459-461.
    [19] Mahan A H, Xu Y, Iwaniczko E, et al. Amorphous silicon films and solar cells deposited by HWCVDat ultra-high deposition rates[J]. J Non-Cryst Solids,2002,299-302(1):2-8.
    [20]邓志杰.非晶硅太阳电池进展和展望[J].电源技术,1999,23(1):29-32.
    [21] Arokiaraj J, Okui H, Taguchi H. High-quality thin film GaAs bonded to Si using SeS2-A new approachfor high-efficiency tandem solar cells[J]. Sol Energ Mat Sol C,2001,66(1-4):607-614.
    [22] Bertness K A, Friedman D J, Kurtz S R. High-efficiency GaInP/GaAs tandem solar cells[J]. J PropulPower,1996,12(5):842-846.
    [23] Nakada T, Kume T, Kunioka A. Superstrate-type CuInSe2-based thin film solar cells by alow-temperature process using sodium compounds[J]. Sol Energ Mat Sol C,1998,50(1-4):97-103.
    [24] Arici E, Sariciftci N S, Meissner D. Hybrid solar cells based on nanoparticles of CuInS2in organicmatrices[J]. Adv Funct Mater,2003,13(2):165-171.
    [25] Abrahams M S, Buiocchi C J, Tietjen J J. Detection of selenium clustering in GaAs by transmissionelectron microscopy[J]. J Appl Phys,1967,38(2):760-764.
    [26]张静全,蔡伟,郑家贵等. CdTe太阳能电池研究进展[J].半导体光电,2000,21(2):88-92.
    [27] Geisz D J, Friedman. III-N-V semiconductors for solar photovoltaic applications[J]. SemiconductorScience and Technology,2002,17(8):769-777.
    [28]张永刚,刘天东,朱诚等. InGaP/GaAs串接太阳电池的设计与研制[J].稀有金属,2004,28(3):522-525.
    [29] Tang C W. Two-layer organic photovoltaic cell[J]. Appl Phys Lett,1986,48(2):183-185.
    [30] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conductingpolymer to buckminsterfullerene[J]. Science,1992,258(5087):1474-1476.
    [31] Yu G., Gao J, Hummelen J C, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network ofinternal donor-acceptor heterojunctions[J]. Science,1995,270(5243):1789-1791.
    [32] Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells byself-organization of polymer blends[J]. Nat Mater,2005,4(11):864-868.
    [33] Tsang S, Chen S, So F. Energy level alignment and sub-bandgap charge generation inpolymer:fullerene bulk heterojunction solar cells[J]. Adv Mater,2013,25(17):2434-2439.
    [34] Yao K, Chen L, Chen, X. Self-Organized Hole Transport Layers Based on Polythiophene DiblockCopolymers for Inverted Organic Solar Cells with High Efficiency[J]. Chem Mater,2013,25(6):897-904.
    [35] Hou J, Tan Z, Yan Y, et al. Synthesis and photovoltaic properties of two-dimensional conjugatedpolythiophenes with bi(thienylenevinylene) side chains[J]. J Am Chem Soc,2006,128(14):4911-4916.
    [36] Li Y, Zou Y. Conjugated polymer photovoltaic materials with broad absorption band and high chargecarrier mobility[J]. Adv Mater,2008,20(15):2952-2958.
    [37] Guenes S, Neugebauer H, Sariciftci N, et al. Conjugated polymer-based organic solar cells[J]. ChemRev,2007,107(4):1324-1338.
    [38] Carroll E C, Compton O C, Madsen D, et al. Ultrafast carrier dynamics in exfoliated andfunctionalized calcium niobate nanosheets in water and methanol[J]. J Phys Chem C,2008,112(7):2394-2403.
    [39] Cheng Y, Yang, S, Hsu, C. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J].Chem Rev,2009,109(11):5868-5923.
    [40] Svensson M, Zhang F, Veenstra S C, et al. High-performance polymer solar cells of an alternatingpolyfluorene copolymer and a fullerene derivative[J]. Adv Mater,2003,15(12):988-991.
    [41] Muehlbacher D, Scharber M, Morana, M, et al. High photovoltaic performance of a low-bandgappolymer[J]. Adv Mater,2006,18(21):2884.
    [42] Chen L, Hong Z, Li G, et al. Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells[J]. Adv Mater,2009,21(14-15):1434-1449.
    [43] Hou J, Chen H Y, Zhang S, et al. Synthesis, characterization, and photovoltaic properties of a low bandgap polymer based on silole-containing polythiophenes and2,1,3-benzothiadiazole[J]. J Am Chem Soc,2008,130(48):16144-16145.
    [44] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells[J]. Science,2002,295(5564):2425-2427.
    [45] Liang Y, Wu Y, Feng D, et al. Development of New Semiconducting Polymers for High PerformanceSolar Cells[J]. J Am Chem Soc,2009,131(1):56.
    [46]苑嗣纯,葛兴,赵建庄.有机光电材料与有机光电器件[J].北京农学院学报,2010,25(3):75-80.
    [47] Hardin B E, Snaith H J, McGehee M D. The renaissance of dye-sensitized solar cells[J]. NaturePhotonics,20126(3):162-169.
    [48] Dürr M, Schmid A, Obermaier M, et al. Low-temperature fabrication of dye-sensitized solar cells bytransfer of composite porous layers[J]. Nature Materials,2005,4(8):607-611.
    [49] Shankar K, Bandara J, Paulose M, et al. Highly efficient solar cells using TiO2nanotube arrayssensitized with a donor-antenna dye[J]. Nano Lett,2008,8(6):1654-1659.
    [50] Kawashima T, Ezure T, Okada K, et al. FTO/ITO double layered transparent conductive oxide fordye-sensitized solar cells[J]. J Photochem Photobio A,2004,164(1-3):199-202.
    [51] Hannappel T, Burfeindt B, Storck W, et al. Measurement of ultrafast photoinduced electron transferfrom chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2film[J].J Phys Chem B,1997,101(35):6799~6802.
    [52] Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chem Rev,1995,95(1):49-68.
    [53]孔凡太,戴松元.染料敏化太阳电池研究进展[J].化学进展,2006,18(11):1409-1424.
    [54]安佰超,乔庆东.染料敏化太阳能电池的进展及前景[J],化工科技,2007,15(1):51-54.
    [55] Tsubomura H, Matsumura M, Nomura Y, et al. Dye sensitized zinc oxide:aqueous electrolyte:platinum photocell[J]. Nature1976,261(5559):402-403.
    [56] Chen S G, Chappel S, Diamant Y, et al. Preparation of Nb2O5coated TiO2nanoporous electrodes andtheir application in dye-sensitized solar cells[J]. Chem Mater,2001,13(12),4629-4634.
    [57] Chappel S, Chen S G, Zaban A. TiO2coated nanoporous SnO2electrodes for Dye-sensitized solarcells[J], Langmuir2002,18(8):3336-3342.
    [58] Bjrksten U, Moser J, Griitzel M. Photoelectrochemical studies on nanoerystalline hematite films[J].Chem Mater,1994,6(6):858-863.
    [59] Wang Z S, Huang C H, Huang Y Y. A highly efficient solar cell made from a dye-modified ZnOcovered TiO2nanoporous electrode [J]. Chem Mater,2001, l3(2):678-682.
    [60] Gr tzel, M. Photoelectrochemical cells[J]. Nature,2001,414(6861):338-344.
    [61] Robertson N. Optimizing dyes for dye-sensitized solar cells[J]. Angew Chem Int Ed,2006,45(15):2338–2345.
    [62] Zhang Z, Chen P, Murakami T N, et al. The2,2,6,6tetramethyl1-piperidinyloxy radical: An efficient,iodine-free redox mediator for dye-sensitized solar cells[J]. Adv Funct Mater,2008,18(2):341-346.
    [63] Nazeeruddin M K, Angelis D, Fantacci F, et al. Combined experimental and DFT–TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers[J]. J Am Chem Soc,2005,127(48):16835–16847.
    [64] Ondersma J W, Hamann T W. Recombination and redox couples in dye-sensitized solar cells[J]. CoordChem Rev,2013,257(9-10):1533-1543.
    [65] Chen D H, Caruso, R A. Recent progress in the synthesis of spherical titania nanostructures and theirapplications[J]. Adv Funct Mater,2013,23(11):1356-1374.
    [66] Chiba Y, Islam A, Watanabe Y, et al. Dye-sensitized solar cells with conversion efficiency of11.1%[J].Jpn J Appl Phys,2006,45(24-28):638–640.
    [67] Boschloo G, Hagfeldt A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solarcells[J]. Acc Chem Rec,2009,42(11):1819–1826.
    [68] Hamann T W, Jensen R A, Martinson A B F, et al. Advancing beyond current generation dye-sensitizedsolar cells[J]. Energ Environ Sci,2008,1(1):66–78.
    [69] Hagfeldt A, Boschloo G. Sun L, et al. Dye-sensitized solar cells[J]. Chem Rev,2010,110(11):6595–6663.
    [70]王松.原位生长掺杂TiO2薄膜电极及其光电转换性能研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [71]胡晨明, R.M.怀特.太阳电池[M].北京:北京大学出版社,1990.
    [72]刘恩科.光电池及其应用[M].北京:科学出版社,1989.
    [73]周永溶.半导体材料[M].北京:北京理工大学出版社,1992.
    [74]王季陶,刘明登.半导体材料[M].北京:高等教育出版社,1990.
    [75] Rensmo H, Keis K, Lindstrom H, et al. High light-to-energy conversion efficiencies for solar cellsbased on nanostructured ZnO electrodes[J]. J Phys Chem B,1997,101(14):2598-2601.
    [76] Chappel S, Zaban A. Nanoporous SnO2electrodes for dye-sensitized solar cells:Improved cellperformance by the synthesis of18nm SnO2colloids[J]. Sol Energy Mat And Sol Cells,2002,71(2):141-152.
    [77]王光丽,徐静娟,陈洪渊光电化学传感器的研究进展[J].中国科学B辑:化学,2009,39(11):1336-1347.
    [78] Choi H G, Min J, Lee W H, et al. Adsorption behavior and photoelectric response characteristics ofbacteriorhodopsin thin films fabricated by self-assembly technique[J]. Colloid Surf B,2002,23(4):327-337.
    [79] Lahav M, Heleg-Shabtai V, Wasserman J, et al. Photoelectrochemistry with integratedphotosensitizer-electron acceptor and Au-nanoparticle arrays[J]. J Am Chem Soc,2000,122(46):11480-11487.
    [80] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev,2009,38(1):253-278.
    [81]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [82] Terao Y, Sasabe H, Adachi C. Correlation of hole mobility, exciton diffusion length, and solar cellcharacteristics in phthaloeyanine/fullerene organic solar cells[J]. Applied Physics Letters,2007,90(10):103515(1-3).
    [83] Vasseur K, Rand B P, Cheyns D. Structural evolution of evaporated lead phthalocyanine thin films fornear-infrared sensitive solar cells[J]. Chem Mater,2011,23(3):886-895.
    [84] Kim Y, Lee J G, Han K, et al. Hole-transporting polyimide for organic electroluminescent display[J].Thin Solid Films,1999,363(1-2):263-267.
    [85] Wang Y, Hu N, Zhou Z. Single-walled carbon nanotube/cobalt phthalocyanine derivative hybridmaterial: preparation, characterization and its gas sensing properties[J]. J Mater Chem,2011,21(11):3779-3787.
    [86] Yenilmez H Y, Okur A, Gül A. PeriPherally tetra-palladated phthalocyanines[J]. J Organomet Chem,2007,692(5):940-945.
    [87] Alvarado S F, Rossi L, Muller P, et al. Charge-carrier injection into CuPc thin films: a scanningtunneling microscopy study[J]. Synth Met,2001122(1):73-77.
    [88] Ceyhan T, Altindal A, Ozkaya A R. Novel ball-type four dithioerythritol bridgedmetallophthalocyanines and their water-soluble derivatives: Synthesis and characterization, andelectrochemical, electrocatalytic, electrical and gas sensing properties[J]. Dalton Transactions,2010,39(41):9801-9814.
    [89]余家国,赵修建,赵青南. TiO2纳米薄膜的溶胶-凝胶工艺制备和表征[J].物理化学学报,2000,16(9):792-797.
    [90] Sakai H, Kawahara H, Shimazaki M, et al. Preparation of ultrafine titanium dioxide particles usinghydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcoholaddition[J]. Langmuir,1998,14(8):2208-2212.
    [91] Duminica F D, Maury F, Senocq F. Atmospheric pressure MOCVD of TiO2thin films using variousreactive gas mixtures[J]. Surf Coat Tech,2004,188-189(11-12):255-259.
    [92] Yu J G, Yu X X. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres[J].Environ Sci Technol,2008,42(13):4902-4907.
    [93] Wu J J, Liu S C. Catalyst-free growth and characterization of ZnO nanorods[J]. J Phys Chem B,2002,106(37):9546-9551.
    [94] Dryfe R A W, Simm A O, Kralj B. Electroless deposition of palladium at bare and templatedliquid/liquid interfaces[J]. J Am Chem Soc,2003,125(43):13014-13015.
    [95] Switzer J A, Hodes G. Electrodeposition and chemical bath deposition of functional nanomaterials[J].MRS Bulletin,2010,35(10):743-750.
    [96] Liu R, Vertegel A A, Bohannan E W, et al. Epitaxial electrodeposition of zinc oxide nanopillars onsingle-crystal gold[J]. Chem Mater,2001,13(2):508-512.
    [97]陈美娟. CdS、CdSe敏化ZnO纳米棒阵列薄膜电极的制备及其光电化学性能研究[D]:[硕士学位论文].武汉:华中师范大学,2008.
    [98] Li Z G, Miyake S. Characteristics of N-doped TiO2thin films grown on unheated glass substrate byinductively coupled plasma assisted dc reactive magnetron sputtering[J]. Appl Surf Sci,2009,255(22):9149-9153.
    [99] Foster H A, Sheel D W, Sheel P, et al. Antimicrobial activity of titania/silver and titania/copper filmsprepared by CVD[J]. J Photochem Photobiol A,2010,216(2-3):283-289.
    [100] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science,1997,277(5330):1232-1237.
    [101] Bamwenda G R, Tsubota S,Nakamura T, et al. Photoassisted hydrogen production from a waterethanol solution:a comparison of activities of Au-TiO2and Pt-TiO2[J]. J Photochem Photobiol A: Chem,1995,89(2):177–89.
    [102] Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metaldeposition: characterization and photonic efficiency of Pt,Au and Pd deposited on TiO2catalyst[J]. WaterRes,2004,38(13):3001–3008.
    [103] Subramanian V, Wolf E, Kamat P. Semiconductor-metal composite nanostructures,to what extent dometal nanoparticles improve the photocatalytic activity of TiO2films[J]. J Phys Chem B,2001,105(46):11439–11446.
    [104] Bardos E S, Czili H, Horvath A. Photocatalytic oxidation of oxalic acid enhanced by silver depositionon a TiO2surface[J]. J Photochem Photobiol A:Chem,2003,154(2-3):195–201.
    [105] Pelaez M, Nolan N T, Pillai S C, et al.3A review on the visible light active titanium dioxidephotocatalysts for environmental applications[J]. Appl Catal., B,2012,125:331-349.
    [106] Kumar S G., Devi L G. Review on modified TiO2photocatalysis under UV/visible light: Selectedresults and related mechanisms on interfacial charge carrier transfer dynamics[J]. J Phys Chem A,2011,115(46)13211-13241.
    [107] Hou Q, Zheng Y, Chen J. F, et al. Visible-light-response iodine-doped titanium dioxide nanocrystalsfor dye-sensitized solar cells[J]. J Mater Chem,2011,21(11):3877-3883.
    [108] Gopidas K R, Bohorquez M, Kamat P V. Photophysical and photochemical aspects of coupledsemiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmiumsulfide-silver(I) iodide systems[J]. J Phys Chem,1990,94(16):6435–6440.
    [109] Thavasi V, Renugopalakrishnan V, Jose R, et al. Controlled electron injection and transport atmaterials interfaces in dye sensitized solar cells[J]. Mater. Sci. Eng., R,2009,63(3):81-99.
    [110] Yu M, Long Y Z, Sun B, et al. Recent advances in solar cells based on one-dimensional nanostructurearrays[J]. Nanoscale,2012,4(9):2783-2796.
    [111] Wang J, Lin Z. Dye-sensitized TiO2nanotube solar cells: Rational structural and surface engineeringon TiO2nanotubes[J]. Chem Asian J,2012,7(12):2754-2762.
    [112] Roy P, Kim D, Lee K, et al. TiO2nanotubes and their application in dye-sensitized solar cells[J].Nanoscale,2010,2(1):45-59.
    [113] Shankar K, Mor G K, Prakasam H E, et al. Highly-ordered TiO2nanotube arrays up to220μm inlength: Use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology,2007,18(6):065707.
    [114] Wang Y, Yang W, Shi W. Preparation and characterization of anatase TiO2nanosheets-basedmicrospheres for dye-sensitized solar cells[J]. Ind Eng Chem Res,2011,50(21):11982–11987.
    [115] Pope M T.杂多和同多金属氧酸盐[M].王恩波等译.长春:吉林大学出版社,1991.
    [116] Pope M T, Müller A. Polyoxometalate Chemistry[M]. Kluwer: Dordrecht,2001.1-10.
    [117]王恩波,李阳光,鹿颖,等.多酸化学概论[M].长春:东北师范大学出版社,2009.
    [118] Hill C L (Guest Editor). Chem Rev,1998,98(1):1-390.
    [119] Berzelius.[J]. J Pogg Ann,1826,6:369.
    [120] Pope M T.杂多和同多金属氧酸盐[M].王恩波等译.长春:吉林大学出版社,1991.
    [121] Pauling L. J Am Chem Soc,1929,5:2868.
    [122] Keggin.[J]. J F Proc R Soc,1934,144A:75.
    [123] Long D-L, Tsunashima R, Cornin L, Polyoxometalates: Building blockd for functional nanoscalesystems[J]. Angew Chem Int Ed,2010,49(10):1736-1758.
    [124] Besson C, Musarv D, Lahootun V, et al. Vicinal Dinitridoruthenium-substituted polyoxometalatesγ-[XW10O38{RuN}2]6-(X=Si or Ge)[J]. Chem Eur J,2009,15(39):10233-10243.
    [125] Li C, Jiang Z X, Gao J B, et al. Ultra-deep desulfurization of diesel: oxidation with a recoverablecatalyst assembled in emulsion[J]. Chem Eur J,2004,10(9):2277-2280.
    [126] Liu S Q, Kurth D G, Volkmer D. Polyoxometalates as pH-sensitive probes in self-assembledmultilayers[J]. Chem Comm,2002,(9):976-977.
    [127] Rhule J T, Hill C L, Judd D A. Polyoxometalates in medicine[J]. Chem Rev,1998,98:327-357.
    [128] Long D-L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: Fromself assembly to designer materials and devices[J]. Chem Soc Rev,2007,36:105-121.
    [129] Dolbecq A, Dumas E, Mayer C R, et al. Hybrid organic-inorganic polyoxometalates compounds:From structural diversity to applications[J]. Chem Rev,2010,110(10):6009-6048.
    [130]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.
    [131] Yamase T. Photo-and electrochromism of polyoxometalates and related materials[J]. Chem Rev,1998,98(1):307-325.
    [132] Misono M, Okuhara T, Ichiki T, et al. Pesudoliquid behavior of heteropoly compound catalysts,unusual pressure dependences of the rate and selectivity for ethanol dehydration[J]. J Am Chem Soc,1987,109(18):55355536.
    [133] Hiskia A, Papaconstantinou E. Photocatalytic oxidation of organic compounds by polyoxometalatesof molybdenum and tungsten. Catalyst regeneration by dioxygen[J]. Inorg Chem,1992,31(2):163-167.
    [134] Papaconstantinou E, Ioannidis A, Hiskia A, et al. Photocatalytic processes by polyoxometalates.Splitting of water. The role of dioxygen[J]. Molecular Engineering,1993,3(1-3):231-239.
    [135] Maldotti A, Amadelli R, Varani G, et al. Photocatalytic processes with polyoxotungstates: Oxidationof cyclohexylamine[J]. Inorg Chem,1994,33(13):2968-2973.
    [136] Guo Y, Hu C, Jiang S, et al. Heterogeneous photodegradation of aqueous hydroxy butanedioic acidby microporous polyoxometalates[J]. Appl. Catal., B,2002,36(1):9-17.
    [137] Troupis A, Hiskia A, Papaconstantinou E. Photocatalytic reduction-Recovery of silver usingpolyoxometalates[J]. Appl. Catal., B,2003,42(3):305-315.
    [138] Gkika E, Troupis A, Hiskia A, et al. Photocatalytic reduction of chromium and oxidation of organicsby polyoxometalates[J]. Appl. Catal., B,2006,62(1-2):28-34.
    [139] Hiskia A, Mylonas A, Papaconstantinou E. Comparison of the photoredox properties ofpolyoxometallates and semiconducting particles[J]. Chem Soc Rev,2001,30(1):62–69.
    [140] Guo Y, Hu C. Heterogeneous photocatalysis by solid polyoxometalates[J]. J Mol Catal A: Chem,2007,262(1-2):136-148.
    [141] Sivakumar R, Thomas J, Yoon M. Polyoxometalate-based molecular/nano composites: Advances inenvironmental remediation by photocatalysis and biomimetic approaches to solar energy conversion[J]. JPhotochem Photobiol, C,2012,13(4):277-298.
    [142] Yoon M, Chang J A, KimY, et al. Heteropoly acid-incorporated TiO2colloids as novel photocatalyticsystems resembling the photosynthetic reaction center[J]. J Phys Chem B,2001,105(13):2539-2545.
    [143] Ozer R R, Ferry J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems[J].Environ Sci Technol,2001,35(15):3242-3246.
    [144] Gu C, Shannon C. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems forthe oxidation of methanol[J]. J Mol Catal A: Chem,2007,262(1-2):185-189.
    [145] Xie Y. Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstateencapsulated in titania nanotubes[J]. Adv Funct Mater,2006,16(14):1823-1831.
    [146] Jiang S, Guo Y, Wang C, et al. One-step sol-gel preparation and enhanced photocatalytic activity ofporous polyoxometalate-tantalum pentoxide nanocomposites[J]. J Colloid Interface Sci,2007,308(1):208-215.
    [147] Park H, Choi W. Photoelectrochemical investigation on electron transfer mediating behaviors ofpolyoxometalate in UV-illuminated suspensions of TiO2and Pt/TiO2[J]. J Phys Chem B,2003,107(16):3885-3890.
    [148] Parayil S K, Lee Y M, Yoon, M. Photoelectrochemical solar cell properties of heteropolytungsticacid-incorporated TiO2nanodisc thin films[J]. Electrochem Commun,2009,11(6):1211-1216.
    [149] Lee H, Lee J, Lee Y H, et al. Formation of Ag+-N-TiO2nanochains and their HPA-composites ashighly visible light-sensitive photocatalysts toward two-color solar cells[J]. J Mater Chem,2011,21(34):12829-12835.
    [150] Wang S, Liu L, Chen W, et al. Polyoxometalate-anatase TiO2composite introduced into thephotoanode of the dye-sensitized solar cells to retard the recombination and increase the electron lifetime[J].Dalton Transactions,2013,42(8):2691-2695.
    [151] Jin G, Wang S M, Chen W L, et al. A photovoltaic system composed of a keplerate-typepolyoxometalate and a water-soluble poly(p-phenylenevinylene) derivative[J]. J Mater Chem A,2013,DOI:10.1039/c3ta10814g.
    [152] Ahmed I, Farha R, Goldmann M, et al. A molecular photovoltaic system based on Dawson typepolyoxometalate and porphyrin formed by layer-by-layer self assembly[J]. Chem Commun,2013,49(5):496-498.
    [153] Gao L H, Sun Q L, Qi J M, et al. Enhanced photocurrent generation from an electrostaticallyself-assembled film of sandwich-type tetracadmium(II) tungstophosphorate/hemicyanine[J]. ElectrochimActa,2013,92:236-242.
    [154] Gao L, Sun Q, Wang K. Photoelectrochemical properties of a series of electrostaticallyself-assembled films based on sandwich-type polyoxometalates and a bichromophore hemicyanine dye[J]. JColloid Interface Sci,2013,393(1):92-96.
    [155] Gao L, Sun Q, Lin X, et al. Photoelectrochemical properties of three inorganic/organic hybrid filmsformed from sandwich-type tetrazinc(II) tungstophosphorate and hemicyanines with varied alkyl chainlengths[J]. Colloids and Surfaces A: Physicochem Eng Aspects,2013,423:162-169.
    [156] Luo X, Li F, Xu B, et al. Enhanced photovoltaic response of the first polyoxometalate-modified zincoxide photoanode for solar cell application[J]. J Mater Chem,2012,22(30):15050-15055.
    [157] Yang Y, Xu L, Li F, et al. Enhanced photovoltaic response by incorporating polyoxometalate into aphthalocyanine-sensitized electrode[J]. J Mater Chem,2010,20(48):10835-10840.
    [158] Wang L, Xu L, Mu Z, et al. Synergistic enhancement of photovoltaic performance of TiO2photoanodes by incorporation of Dawson-type polyoxometalate and gold nanoparticles[J]. J Mater Chem,2012,22(44):23627-23632.
    [1] Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, andapplications[J]. Chem Rev,2007,107(7):2891-2959.
    [2] Zubavichus Y V, Slovokhotov Y L, Nazeeruddin M K, et al. Structural characterization of solar cellprototypes based on nanocrystalline TiO2anatase sensitized with Ru complexes. X-ray diffraction, XPS,and XAFS spectroscopy study[J]. Chem Mater,2002,14(8):3556-3563.
    [3] Thimsen E, Rastgar N, Biswas P. Nanostructured TiO2films with controlled morphology synthesized ina single step process: performance of dye-sensitized solar cells and photo watersplitting[J]. J Phys Chem C,2008,112(11):4134-4140.
    [4] Song X M, Wu J M, Tang M Z, et al. Enhanced photoelectrochemical response of a composite titaniathin film with single-crystalline rutile nanorods embedded in anatase aggregates[J]. J Phys Chem C,2008,112(49):19484-19493.
    [5] Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag-TiO2nanocomposites via reduction/oxidation of Ag[J]. Chem Mater,2008,20(20):6543-6549.
    [6] Chen H, Chen S, Quan X, et al. Fabrication of TiO2-Pt coaxial nanotube array Schottky structures forenhanced photocatalytic degradation of phenol in aqueous solution[J]. J Phys Chem C,2008,112(25):9285-9290.
    [7] Baker D R, Kamat P V. Photosensitization of TiO2nanostructures with CdS quantum dots: Particulateversus tubular support architectures[J]. Adv Funct Mater,2009,19(5):805-811.
    [8] Cozzoli P D, Curri M L, Agostiano A. Efficient charge storage in photoexcited TiO2nanorod-noblemetal nanoparticle composite systems[J]. Chem Commun,2005,(25):3186-3188.
    [9] Ozer R R, Ferry J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems[J].Environ Sci Technol,2001,35(15):3242-3246.
    [10] Tachikawa T, Tojo S, Fujitsuka M, et al. One-electron redox processes duringpolyoxometalate-mediated photocatalytic reactions of TiO2studied by two-color two-laser flashphotolysis[J]. Chem Eur J,2006,12(11):3124-3131.
    [11] Pope M T, Müller A. Polyoxometalate chemistry: An old field with new dimensions in severaldisciplines[J]. Angew Chem Int Ed Engl,1991,30(1):34-48.
    [12] Park H, Choi W. Photoelectrochemical investigation on electron transfer mediating behaviors ofpolyoxometalate in UV-illuminated suspensions of TiO2and Pt/TiO2[J]. J Phys Chem B,2003,107(16):3885-3890.
    [13] Kim S H, Park O H, Nederberg F, et al. Application of block-copolymer supramolecular assembly forthe fabrication of complex TiO2nanostructures[J]. Small,2008,4(12):2162-2165.
    [14] Kang S H, Lim J W, Kim H S, et al. Photo and electrochemical characteristics dependent on the phaseratio of nanocolumnar structured TiO2films by RF magnetron sputtering technique [J]. Chem Mater,2009,21(13):2777-2788.
    [15] Zhu A M, Nie L H, Wu Q H, et al. Crystalline, uniform-sized TiO2nanosphere films by a novel plasmaCVD process at atmospheric pressure and room temperature[J]. Chem Vap Deposition,2007,13(4):141-144.
    [16] Xu B B, Xu L, Gao G G, et al. Multicolor electrochromic and pH-sensitive nanocomposite thin filmbased on polyoxometalates and polyviologen[J]. Electrochim Acta,2009,54(8):2246-2252.
    [17] Xu B B, Xu L, Gao G G., et al. Effects of film structure on electrochromic properties of the multilayerfilms containing polyoxometalates[J]. J Colloid Interface Sci,2009,330(2):408-414.
    [18] Yanagida S, Nakajima A, Sasaki T, et al. Processing and photocatalytic properties of transparent12tungsto(VI) phosphoric acid-TiO2hybrid films[J]. Chem Mater2008,20(11):3757-3764.
    [19]Wu H. J Biol Chem,1920,43,189.
    [20] O'Regan B, Moser J, Anderson M, et al. Vectorial electron injection into transparent semiconductormembranes and electric field effects on the dynamics of light-induced charge separation[J]. J Phys Chem,1990,94(24):8720-8726.
    [21] Wang Z S, Sasaki T, Muramatsu M, et al. Self-assembled multilayers of titania nanoparticles andnanosheets with polyelectrolytes[J]. Chem Mater2003,15(3):807-812.
    [22] Liu S Q, Kurth D G, Bredenk tter B, et al. The structure of self-assembled multilayers withpolyoxometalate nanoclusters[J]. J Am Chem Soc2002,124(41):12279-12287.
    [23] Kniprath R, Duhm S, Glowatzki H, et al. Internal structure of nanoporous TiO2/polyion thin filmsprepared by layer-by-layer deposition[J]. Langmuir,2007,23(19):9860-9865.
    [24] Ding H M, Zhang X Q, Ram M K, et al. Ultrathin films of tetrasulfonated copperphthalocyanine-capped titanium dioxide nanoparticles: Fabrication, characterization, and photovoltaiceffect[J]. J Colloid Interface Sci,2005,290(1):166-171.
    [25] Zhang X F, Chen S, Quan X, et al. Preparation and characterization of BiVO4film electrode andinvestigation of its photoelectrocatalytic (PEC) ability under visible light [J]. Sep Purif Technol,2009,64(3):309-313.
    [26] Tsuchiya H, Macak J M, Ghicov A, et al. Characterization of electronic properties of TiO2nanotubefilms[J]. Corros Sci,2007,49(1):203-210.
    [27] Nonomura K, Loewenstein T, Michaelis E, et al. Photoelectrochemical characterisation andoptimisation of electrodeposited ZnO thin films sensitised by porphyrins and phthalocyanines[J]. PhysChem Chem Phys,2006,8(33):3867-3875.
    [28] Troupis A, Hiskia A, Papaconstantinou E. Photocatalytic reduction-Recovery of silver usingpolyoxometalates[J]. Appl Catal B,2003,42(3):305-315.
    [29] Papaconstantinou E. Photochemistry of polyoxometallates of molybdenum and tungsten and/orvanadium[J]. Chem Soc Rev1989,18:1-31.
    [30] Mandelbaum P A, Regazzoni A E, Blesa M A, et al. Photo-electro-oxidation of alcohols on titaniumdioxide thin film electrodes[J]. J Phys Chem B,1999,103(26):5505-5511.
    [31] Marugán J, Christensen P, Egerton T, et al. Synthesis, characterization and activity of photocatalyticsol-gel TiO2powders and electrodes[J]. Appl Catal B,2009,89(1-2):273-283.
    [32]Georgieva J, Armyanov S, Valova E, et al. Preparation and photoelectrochemical characterisation ofelectrosynthesised titanium dioxide deposits on stainless steel substrates[J]. Electrochim Acta,2006,51(10):2076-2087.
    [1] Yildiz H B, Tel-Vered R, Willner I. CdS nanoparticles/β-cyclodextrin-functionalized electrodes forenhanced photoelectrochemistry[J]. Angew Chem,2008,47(35):6629-6633.
    [2] Jie J S, Zhang W J, Jiang Y, et al. Photoconductive Characteristics of Single-Crystal CdSNanoribbons[J]. Nano Lett,2006,6(9):1887–1892.
    [3] Chaudhary Y S, Woolerton T W, Allen C S, et al. Visible light-driven CO2reduction by enzyme coupledCdS nanocrystals[J]. Chem Commun,2012,48(1):58-60.
    [4] Shalom M, Hod I, Tachan Z, et al. Quantum dot based anode and cathode for high voltage tandemphoto-electrochemical solar cell[J]. Energy Environ Sci,2011,4(5):1874–1878.
    [5] Ke D, Liu S, Dai K, et al. CdS/regenerated cellulose nanocomposite films for highly efficientphotocatalytic H2production under visible light irradiation[J]. J Phys Chem C,2009,113(36):16021–16026.
    [6] Ganesh T, Mane R S, Cai G, et al. ZnO nanoparticles-cds quantum dots/n3dye molecules: dualphotosensitization[J]. J Phys Chem C,2009,113(18):7666–7669.
    [7] Park H, Choi W. Photoelectrochemical investigation on electron transfer mediating behaviors ofpolyoxometalate in UV-illuminated suspensions of TiO2and Pt/TiO2[J]. J Phys Chem B,2003,107(16):3885–3890.
    [8] Parayil S K, Lee Y M, Yoon M. Photoelectrochemical solar cell properties of heteropolytungsticacid-incorporated TiO2nanodisc thin films[J]. Electrochem Commun,2009,11(6):1211–1216.
    [9] Yang Y, Xu L, Li F, et al. Enhanced photovoltaic response by incorporating polyoxometalate into aphthalocyanine-sensitized electrode[J]. J Mater Chem,2010,20(48)10835–10840.
    [10] Finke R G, Droege M W, Domaille P J. Trivacant heteropolytungstate derivatives.3. Rationalsyntheses, characterization, two-dimensional183W NMR, and properties of P2W18M4(H2O)2O6810-andP4W30M4(H2O)2O11216-(M=Co, Cu, Zn)[J]. Inorg Chem,1987,26(23):3886–3896.
    [11] Zhang S, Zhu Y, Yang X, et al. Fabrication of fluorescent hollow capsule with CdS-polyelectrolytecomposite films[J]. Mater Lett2006,60(29-30):3447–3450.
    [12] Liu S, Xu L, Li F, et al. Enhanced electrochromic performance of composite films by combination ofpolyoxometalate with poly(3,4-ethylenedioxythiophene)[J]. J Mater Chem2011,21(6)1946–1952.
    [13] Liu S, Xu L, Li F, et al. Carbon nanotubes-assisted polyoxometalate nanocomposite film withenhanced electrochromic performance[J]. Electrochim Acta,2011,56(24):8156–8162.
    [14] Ballardini R, Mulazzani Q G, Venturi M, et al. Photophysical characterization of thedecatungstoeuropate(9-) anion[J]. Inorg Chem,1984,23(3):300–305.
    [15] Hickey S G, Riley D J. Photoelectrochemical studies of CdS nanoparticle-modified electrodes[J]. JPhys Chem B,1999,103(22):4599–4602.
    [16] Jiang S, Guo Y, Wang C, et al. One-step sol-gel preparation and enhanced photocatalytic activity ofporous polyoxometalate-tantalum pentoxide nanocomposites[J]. J Colloid Interface Sci,2007,308(1):208–215.
    [17] Comuzzi C, Dolcetti G, Trovarelli A, et al. The solid-state rearrangement of the Wells-DawsonK6P2W18O62·10H2O to a stable Keggin-type heteropolyanion phase: A catalyst for the selective oxidation ofisobutane to isobutene[J]. Catal Lett1996,36(1-2):75–79.
    [18] Rong M Z, Zhang M Q, Liang H C, et al. Surface modification and particles size distribution control innano-CdS/polystyrene composite film[J]. Chem Phys,2003,286(2-3):267–276.
    [19] Bernardini G, Zhao C, Wedd A G, et al. Ionic liquid-enhanced photooxidation of water using thepolyoxometalate anion [P62W18O62]-as the sensitizer[J]. Inorg Chem,2011,50(13):5899–5909.
    [20] Troupis A, Gkika E, Triantis T, et al. Photocatalytic reductive destruction of azo dyes bypolyoxometallates: Naphthol blue black[J]. J Photochem Photobiol A,2007,1882(2-3):272–278.
    [21] Chi Y J, Fu H G, Qi L H, et al. Preparation and photoelectric performance of ITO/TiO2/CdS compositethin films[J]. J Photochem Photobiol A,2008,195(2-3):357–363.
    [22] Mountrichas G, Sandanayaka A S D, Economopoulos S P, et al. Photoinduced electron transfer inaqueous carbon nanotube/block copolymer/CdS hybrids: Application in the construction ofphotoelectrochemical cells[J]. J Mater.Chem,2009,19(47):8990–8998.
    [23] Gu C, Shannon C. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems for theoxidation of methanol[J]. J Mol Catal A Chem,2007,262(1-2):185–189.
    [1] Hains A W, Liang Z, Woodhouse M A, et al. Molecular semiconductors in organic photovoltaic cells[J].Chem Rev,2010,110(11):6689–6735.
    [2] Sessolo M, Bolink H J, Hybrid organic-inorganic light-emitting diodes[J]. Adv Mater,2011,23(16):1829–1845.
    [3] Kim F S, Ren G, Jenekhe SA, One-dimensional nanostructures of π-conjugated molecular systems:Assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics[J]. Chem Mater,2011,23(3):682–732.
    [4] Zhang S, Arunachalam P, Abe T, et al. Photocatalytic decomposition of N-methyl-2-pyrrolidone,aldehydes, and thiol by biphase and p/n junction-like organic semiconductor composite nanoparticlesresponsive to nearly full spectrum of visible light[J]. J Photochem Photobiol A,2012,244:18–23.
    [5] Shirota Y, Organic materials for electronic and optoelectronic devices [J]. J Mater Chem,2000,10(1):1–25.
    [6] Cid J J, García-Iglesias M, Yum J H, et al. Structure-function relationships in unsymmetrical zincphthalocyanines for dye-sensitized solar cells[J]. Chem Eur J,2009,15(20):5130–5137.
    [7] Barszcza B, Boguckia A, Biadaszb A, et al. Molecular orientation and spectral investigations ofLangmuir–Blodgett films of selected copper phthalocyanines[J]. J Photochem Photobiol A,2011,218(1):48–57.
    [8] Lin Y, Li Y, Zhan X. Small molecule semiconductors for high-efficiency organic photovoltaics[J]. ChemSoc Rev,2012,41(11):4245–4272.
    [9] Bottari G, De La Torre G, Guldi D M, et al. Covalent and noncovalent phthalocyanine-Carbonnanostructure systems: Synthesis, photoinduced electron transfer, and application to molecularphotovoltaics[J]. Chem Rev,2010,110(11):6768–6816.
    [10] Gregg B A. Excitonic solar cells[J]. J Phys Chem B,2003,107(20):4688-4698.
    [11] Rocchiccioli-deltcheff C, Fournier M, Franck R, et al. Vibrational investigations of polyoxometalates.2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to thekeggin structure[J]. Inorg Chem,1983,22(2):207216.
    [12] Liu S Q, Kurth D G, Bredenkotter B, et al. The structure of self-assembled multilayers withpolyoxometalate nanoclusters[J]. J Am Chem Soc,2002,124(41):12279–12287.
    [13] Cui Q H, Jiang L, Zhang C, et al. Coaxial organic p-n heterojunction nanowire arrays: One-stepsynthesis and photoelectric properties[J]. Adv Mater,2012,24(17):2332–2336.
    [14] López X, Bo C, Poblet J M. Electronic properties of polyoxometalates: Electron and proton affinity ofmixed-addenda Keggin and wells-dawson anions[J]. J Am Chem Soc,2002,124(42):12574–12582.
    [15] Schroder D K. Surface voltage and surface photovoltage: History, theory and applications[J]. Meas SciTechnol,2001,12(3):16–31.
    [16] Fan H, Jiang T, Li H, et al. Effect of BiVO4crystalline phases on the photoinduced carriers behaviorand photocatalytic activity[J] J Phys Chem C,2012,116(3):2425–2430.
    [1] Thompson T L, Yates Jr. J T. Surface science studies of the photoactivation of TiO2-Newphotochemical processes[J]. Chem Rev,2006,106(10):4428–4453.
    [2] Zhang M, Wang Q, Chen C, et al. Oxygen atom transfer in the photocatalytic oxidation of alcohols byTiO2: Oxygen isotope studies[J]. Angew Chem Int Ed Engl,2009,48(33):6081–6084.
    [3] Clifford J N, Palomares E, Nazeeruddin Md K, et al. Multistep Electron Transfer Processes on DyeCo-sensitized Nanocrystalline TiO2Films[J]. J Am Chem Soc,2004,126(18):5670–5671.
    [4] Allam N K, Shankar K, Grimes C A. Photoelectrochemical and water photoelectrolysis properties ofordered TiO2nanotubes fabricated by Ti anodization in fluoride-free HCl electrolytes[J]. J Mater Chem,2008,18(20):2341–2348.
    [5] Xie Y. Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstateencapsulated in titania nanotubes[J]. Adv Funct Mater,2006,16(14):1823–1831.
    [6] Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag-TiO2nanocomposites via reduction/oxidation of Ag[J]. Chem Mater,2008,20(20):6543–6549.
    [7] Yum J H, Jang S R, Walter P, et al. Efficient co-sensitization of nanocrystalline TiO2films by organicsensitizers[J]. Chem Commun,2007,(44):4680–4682.
    [8] Li L, Yang X, Gao J, et al. Highly efficient CdS quantum dot-sensitized solar cells based on a modifiedpolysulfide electrolyte[J]. J Am Chem Soc,2011,133(22):8458–8460.
    [9] Ayele D W, Chen H M, Su W N, et al. Controlled synthesis of CdSe quantum dots by amicrowave-enhanced process: A green approach for mass production[J]. Chem Eur J,2011,17(20):5737–5744.
    [10] Zhang C, Chen S, Mo L E, et al. Charge recombination and band-edge shift in the dye-sensitizedMg2+-doped TiO2solar cells[J]. J Phys Chem C,2011,115(33):16418–16424.
    [11] Wang H, Bai Y, Wu Q, et al. Rutile TiO2nano-branched arrays on FTO for dye-sensitized solar cells[J].Phys Chem Chem Phys,2011,13(15):7008–7013.
    [12] Vomiero A, Concina I, Natile M M, et al. ZnO/TiO2nanonetwork as efficient photoanode in excitonicsolar cells[J]. Appl Phys Lett,2009,95(19):193104.
    [13] Song J, Yin Z, Yang Z, et al. Enhancement of photogenerated electron transport in dye-sensitized solarcells with introduction of a reduced graphene oxide-TiO2junction [J]. Chem Eur J,2011,17(39):10832–10837.
    [14] Tian H, Hu L, Zhang C, et al. Enhanced photovoltaic performance of dye-sensitized solar cells using ahighly crystallized mesoporous TiO2electrode modified by boron doping[J]. J Mater Chem,2011,21(3):863–868.
    [15] Han L, Koide N, Chiba Y, et al. Modeling of an equivalent circuit for dye-sensitized solar cells[J]Appl Phys Lett,2004,84(13):2433–2435.
    [16] Yun H G, Park J H, Bae B S, et al. Dye-sensitized solar cells with TiO2nano-particles on TiO2nano-tube-grown Ti substrates [J] J Mater Chem,2011,21(11):3558–3561.
    [17] Zhang Z, Zakeeruddin S M, O'Regan B C, et al. Influence of4-guanidinobutyric acid as coadsorbentin reducing recombination in dye-sensitized solar cells[J] J Phys Chem B,2005,109(46):21818–21824.
    [18] Kern R, Sastrawan R, Ferber J, R. et al. Modeling and interpretation of electrical impedance spectra ofdye solar cells operated under open-circuit conditions[J] Electrochim Acta,2002,47(26):4213–4225.
    [19] Qian J, Liu P, Xiao Y, Y et al. TiO2-coated multilayered SnO2hollow microspheres for dye-sensitizedsolar cells[J]. Adv Mater2009,21(36):3663–3667.
    [20] Hiskia A, Mylonas A, Papaconstantinou E. Comparison of the photoredox properties ofpolyoxometallates and semiconducting particles[J] Chem Soc Rev,2001,30(1):62–69.
    [21] Wu X, Chen Z, Max Lu G Q, et al. Nanosized anatase TiO2single crystals with tunable exposed (001)facets for enhanced energy conversion efficiency of dye-sensitized solar cells[J]. Adv Funct Mater2011,21(21):4167–4172.
    [1] Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells[J]. Chem Rev,2010,110(11):6595–6663.
    [2] Gr tzel M. Solar energy conversion by dye-sensitized photovoltaic cells[J]. Inorg Chem,2005,44(20):6841–6851.
    [3] Standridge S D, Schatz G C, Hupp J T. Distance dependence of plasmon-enhanced photocurrent indye-sensitized solar cells[J]. J Am Chem Soc,2009,131(24):8407–8409.
    [4] Kroeze J E, Hirata N, Koops S, et al. Alkyl chain barriers for kinetic optimization in dye-sensitizedsolar cells[J]. J Am Chem Soc,2006,128(50):16376–16383.
    [5] Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redoxelectrolyte exceed12percent efficiency[J]. Science,2011,334(6056):629–634.
    [6] Mishra A, Fischer M K R, Büuerle P. Metal-Free organic dyes for dye-Sensitized solar cells: Fromstructure: Property relationships to design rules[J]. Angew Chem Int Ed Engl,2009,48(14):2474–2499.
    [7] Li T C, Spokoyny A M, She C, et al. Ni(III)/(IV) Bis(dicarbollide) as a fast, noncorrosive redox shuttlefor dye-sensitized solar cells[J]. J Am Chem Soc2010,132(13):4580–4582.
    [8] Sauvage F, Chhor S, Marchioro A, et al. Butyronitrile-based electrolyte for dye-sensitized solar cells[J].J Am Chem Soc,2011,133(33):13103–13109.
    [9] Jiang Q W, Li G R, Liu S, et al. Surface-nitrided nickel with bifunctional structure as low-cost counterelectrode for dye-sensitized solar cells[J]. J Phys Chem C,2010,114(31):13397–13401.
    [10] Gr tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]. JPhotochem Photobiol A,2004,164(1-3):3–14.
    [11] Yang M, Kim D, Jha H, et al. Nb doping of TiO2nanotubes for an enhanced efficiency ofdye-sensitized solar cells[J]. Chem Commun,2011,47(7):20322034.
    [12] Kim Y, Kim C H, Lee Y, et al. Enhanced performance of dye-sensitized TiO2solar cells incorporatingCOOH-functionalized Si nanoparticles[J]. Chem Mater,2010,22(1):207–211.
    [13] Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag-TiO2nanocomposites via reduction/oxidation of Ag[J]. Chem Mater,2008,20(20):6543–6549.
    [14] Vomiero A, Concina I, Natile M M, et al. ZnO/TiO2nanonetwork as efficient photoanode in excitonicsolar cells[J]. Appl Phys Lett,2009,95(19):193104.
    [15] Umeyama T, Imahori H. Carbon nanotube-modified electrodes for solar energy conversion[J]. EnergyEnviron Sci,2008,1(1):120-133.
    [16] Song J, Yin Z, Yang Z, et al. Enhancement of photogenerated electron transport in dye-sensitized solarcells with introduction of a reduced graphene oxide-TiO2junction[J]. Chem Eur J2011,17(39):10832–10837

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700