肝细胞生长因子及其受体c-met在人垂体瘤中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂体瘤是神经外科病人中常见的肿瘤。其主要临床表现为肿瘤渐进性生长或瘤体急性出血挤压正常垂体,导致腺体激素分泌异常继而引起高催乳素血症、肢端肥大症、Cushing综合征、甲状腺功能亢进等,挤压视神经导致视力、视野改变,挤压、侵袭硬脑膜导致头痛等症状。垂体瘤的治疗包括手术切除、放疗、化疗等。垂体瘤手术后仍有可能会复发。对可能会复发的垂体瘤手术后可给予放疗、化疗。侵袭性垂体瘤是介于良性和恶性垂体瘤之间的肿瘤,其表现为生长突破其包膜并侵犯硬脑膜、视神经、骨质等毗邻结构。侵袭性垂体瘤因毗邻结构重要使手术不能完全切除,手术后易复发。
     肝细胞生长因子(HGF)是具有促进肿瘤生长及血管生成作用的重要因子。其受体酪氨酸激酶受体c-met是HGF的已知唯一受体。HGF/c-met信号通路在促进肿瘤细胞增殖、迁徙、侵袭及肿瘤血管生成中具有重要的作用。针对HGF和c-met的治疗可以抑制肿瘤生长及血管生成,降低肿瘤HGF和c-met表达水平。HGF及c-met在胶质瘤、脑膜瘤、施万细胞瘤等脑肿瘤中高表达,且其表达水平高和患者恶性预后相关。HGF及c-met蛋白在垂体瘤中的表达情况及其作用还没有文献研究。
     本实验研究目的是:通过免疫组织细胞化学观察HGF及c-met蛋白在人垂体瘤病理标本中的表达情况,研究HGF及c-met蛋白表达与微血管密度及细胞增生、肿瘤侵袭性等临床预后指标的相关性,探讨HGF及c-met蛋白在人垂体瘤发病中的机制及潜在的治疗价值。
     目的
     研究HGF及c-met蛋白在人垂体瘤病理标本中的表达情况,研究HGF及c-met蛋白表达与微血管密度及细胞增生、肿瘤侵袭性等临床预后指标的相关性。
     材料与方法
     收集人垂体瘤手术切除病理标本,行免疫组化染色,观察HGF及c-met蛋白在人垂体瘤病理标本中的表达情况,研究HGF及c-met蛋白表达与微血管密度及细胞增生、肿瘤侵袭性等临床预后指标的相关性。
     1.材料
     收集人垂体瘤手术切除病理标本65例及患者临床资料如患者年龄、性别、肿瘤组织类型、影像学资料等。
     2.免疫组织化学染色
     检测HGF和c-met蛋白表达是使用抗HGF和c-met抗体,通过链霉菌-亲和素-生物素复合物(SABC)方法染色。检测微血管密度是通过使用抗CD34抗体,检测细胞增殖指标是通过使用抗Ki-67抗体。
     3.免疫组织化学结果分析
     HGF和c-Met免疫组化结果记录为:一,无阳性细胞;+,小于30%的细胞阳性;++,30%-60%的细胞阳性;+++,大于60%的细胞阳性.Ki-67免疫组化结果记录为每个高倍镜(×400)下阳性细胞的数目,每个标本观察阳性细胞数目最多的5个视野,用平均数作为结果.微血管密度记录为高倍镜(×400)下CD34阳性的血管或细胞簇的数目,每个标本观察CD34阳性数目最多的5个视野,用平均数作为结果.
     4.统计学分析
     使用Spearman等级相关性分析方法研究HGF及c-met蛋白表达与微血管密度及细胞增生、肿瘤侵袭性等临床预后指标的相关性,SPSS17.0软件。
     结果
     HGF及c-met蛋白在人垂体瘤中高表达,HGF及c-met蛋白阳性表达率为98%及92%。HGF蛋白表达阳性细胞数和微血管密度(MVD)的相关性系数为0.31(P=0.01),和细胞增殖指标Ki-67的相关性系数为0.32(P=0.01)。c-met蛋白表达阳性细胞数和MVD的相关性系数为0.3(P=0.02),和Ki-67的相关性系数为0.38(P=0.00)。
     结论
     HGF及c-met蛋白在人垂体瘤中高表达,其表达程度和微血管密度及细胞增殖指标具有显著相关性,提示HGF及c-met在垂体瘤血管生成及细胞增殖中具有一定的作用,为研究垂体瘤的发病机制提供新的方向。抑制HGF及c-met表达可能会抑制垂体瘤的生长,为垂体瘤化疗提供新的手段。
Pituitary adenomas are common tumors in patients from Department of Neurosurgery. Progressive tumor growth or intratumoral hemorrhage can compress surrounding structures and cause clinical manifestations in patients. Compression of pituitary gland can result in disorder of hormone secretion and cause symptoms such as hyperprolactinoma, acromegaly, Cushing's disease and hyperthyroidism; compression of optic nerve can cause changes in vision and visual field; compression or invasion of cerebral dural matter will cause symptoms like headache. Treatments of pituitary adenomas include surgery, radiotherapy and chemotherapy. Tumors may recur after surgical resection. Radiotherapy or chemotherapy should be given for tumors that may recur after surgery. Invasiveness of pituitary adenomas refers to that tumors grow beyond its capsule and invade adjacent structures such as dural matter, optic nerve and skull. Invasive pituitary adenomas make complete surgical resection impossible because of adjacent impotant structures and prone to recur after surgery.
     HGF is an important growth factor for tumor growth and angiogenesis. Its only known receptor c-met is a receptor tyrosine kinase. HGF/c-met pathway is important for tumor cell proliferation, migration, invasion and angiogenesis. Therapeutic approaches targeting HGF or c-met can decrease HGF and c-met expression levels and inhibit tumor growth and angiogenesis. HGF and c-met are ovexpressed in gliomas, meningiomas and schwannomas, and their expression levels correlates with patients'poor prognosis. However, HGF and c-met protein expression in pituitary adenomas has not been reported.
     The aim of this study is as follows:to investigate HGF and c-met protein expression in human pituitary adenomas from patients; to analyze the correlation of HGF and c-met protein expression with prognostic markers such as microvessel density, proliferative marker and tumor invasiveness; to explore the mechanism of HGF and c-met protein expression in pathogenesis pituitary adenomas and their therapeutic potential.
     Objective
     To investigate HGF and c-met protein expression in human pituitary adenomas from patients; to analyze the correlation of HGF and c-met protein expression with prognostic markers such as microvessel density, proliferative marker and tumor invasiveness; to explore the mechanism of HGF and c-met protein expression in pathogenesis pituitary adenomas and their therapeutic potential.
     Methods
     Immunohistochemical staining was done to detect HGF and c-met protein expression in human pituitary adenomas. Statistical analysis was done to investigate the correlation of HGF and c-met protein expression with prognostic markers such as microvessel density, proliferative marker and tumor invasiveness.
     1. Samples
     65samples of pituitary adenomas and patients'clinical data such as patients'age, sex, tumor phenotypes on imaging and tumor histology types were collected.
     2. Immunohistochemical staining
     HGF and c-met protein expression, tumor angiogenesis and cell proliferation were detected by strepto-avidin-biotin complex method method using antibodies anti-HGF, anti-c-met, anti-CD34and anti-Ki-67.
     3. Analysis of results
     HGF and c-Met immunoreactivity was recorded as follows:-, no immunopositive cells;+,30%of tumor cells are immunopositive;++,30%-60%of tumor cells are immunopositive;+++,60%of tumor cells are immunopositive. Scores for Ki-67were recorded as the number of immunopositive cells per high-power microscope (X400). The number of immunopositive cells under5microscopes per slide with the highest cell counts was counted and the average was recorded. MVD was recorded as the number of vessels or clusters of cells immunopositive for CD34per high-power microscope (×400). Each immunostained cell or cell cluster that was clearly separated from adjacent micro vessels was considered as a single countable microvessel. MVD under5microscopes per slide with the highest vascular counts were counted and the average was recorded.
     4. Statistical analysis
     Statistical analysis of the correlation of HGF and c-met protein expression with prognostic markers such as microvessel density, proliferative marker and tumor invasiveness were done using Spearman rank correlation analysis (SPSS Version18.0). P<0.05is considered statistically significant.
     Results
     HGF and c-met protein are expressed in most pituitary tumors. HGF and c-met protein expression existed in98%and92%of pituitary adenomas respectively. HGF immunoreactivity has significant correlation with MVD (Spearman's correlation coefficient r=0.31, P=0.01) and has significant correlation with cell proliferation index Ki-67(r=0.32, P=0.01). c-met immunoreactivity has significant correlation with MVD (r=0.3, P=0.02) and has significant correlation with cell proliferation index Ki-67(r=0.38, P=0.00).
     Conclusions
     HGF and c-met protein are expressed in most pituitary tumors, and their expression levels significantly correlate with angiogenic and proliferative markers. The results indicate that HGF and c-met protein may have important roles in angiogenesis and cell proliferation in pituitary adenomas; and offer a new direction for investigating pituitary tumor pathogenesis. HGF and c-met can be new promising chemotherapeutic targets in pituitary adenomas as previous anti-HGF or anti-c-met approaches can inhibit tumor growth in other tumors.
引文
1. CBTRUS. Annual report:Central brain tumor registry of the United States.1997.
    2. Brandi, M. L., Gagel, R. F., Angeli, A., Bilezikian, J. P., Beck-Peccoz, P., Bordi, C., et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab.2001;86:5658-5671.
    3. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res.1997;57:5391-5398.
    4. Moriyama T, Kataoka H, Kawano H, Yokogami K, Nakano S, Goya T, et al. Comparative analysis of expression of hepatocyte growth factor and its receptor, c-met, in gliomas, meningiomas and schwannomas in humans. Cancer Lett.1998;124:149-155.
    5. Arrieta O, Garcia E, Guevara P, Garcia-Navarrete R, Ondarza R, Rembao D, et al. Hepatocyte growth factor is associated with poor prognosis of malignant gliomas and is a predictor for recurrence of meningioma. Cancer.2002;94:3210-3218.
    6. Lamszus K, Laterra J, Westphal M, Rosen EM. Scatter factor/hepatocyte growth factor (HGF) content and function in human gliomas. Int J Dev Neurosci.1999; 17:517-530
    7. Hov H, Tian E, Holien T, Holt RU, Vatsveen TK, Fagerli UM, et al. c-Met signaling promotes IL-6-induced myeloma cell proliferation. Eur J Haematol.2009;82:277-287
    8. Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE, et al. The scatter factor/hepatocyte growth factor:c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res.2005;65:9355-9362
    9. Hecht M, Papoutsi M, Tran HD, Wilting J, Schweigerer L. Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res.2004;64:6109-6118
    10. Khoury H, Naujokas MA, Zuo D, Sangwan V, Frigault MM, Petkiewicz S, et al. HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell.2005;16:550-561
    11. Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene.2003;22:8498-8508
    12. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res.1997;57:5391-5398
    13. Moriyama T, Kataoka H, Kawano H, Yokogami K, Nakano S, Goya T, et al. Comparative analysis of expression of hepatocyte growth factor and its receptor, c-met, in gliomas, meningiomas and schwannomas in humans. Cancer Lett.1998; 124:149-155
    14. Rosen EM, Laterra J, Joseph A, Jin L, Fuchs A, Way D, et al. Scatter factor expression and regulation in human glial tumors. Int J Cancer.1996;67:248-255
    15. Laterra J, Nam M, Rosen E, Rao JS, Lamszus K, Goldberg ID, et al. Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest.1997;76:565-577
    16. Laterra J, Rosen E, Nam M, Ranganathan S, Fielding K, Johnston P. Scatter factor/hepatocyte growth factor expression enhances human glioblastoma tumorigenicity and growth. Biochem Biophys Res Commun.1997;235:743-747
    17. Abounader R, Ranganathan S, Lal B, Fielding K, Book A, Dietz H, et al. Reversion of human glioblastoma malignancy by Ul small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J Natl Cancer Inst.1999;91:1548-1556
    18. Abounader R, Lal B, Luddy C, Koe G, Davidson B, Rosen EM, et al. In vivo targeting of HGF and c-met expression via Ul snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. Faseb J.2002;16:108-110
    19. Hecht M, Papoutsi M, Tran HD, Wilting J, Schweigerer L. Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res.2004;64:6109-6118
    20. Arrieta O, Garcia E, Guevara P, Garcia-Navarrete R, Ondarza R, Rembao D, et al. Hepatocyte growth factor is associated with poor prognosis of malignant gliomas and is a predictor for recurrence of meningioma. Cancer.2002;94:3210-3218
    21. Martinez-Rumayor A, Arrieta O, Guevara P, Escobar E, Rembao D, Salina C, et al. Coexpression of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor cMET predict recurrence of meningiomas. Cancer Lett.2004;213:117-124
    22. Plaschke-Schlutter A, Behrens J, Gherardi E, Birchmeier W. Characterization of the scatter factor/hepatocyte growth factor gene promoter. Positive and negative regulatory elements direct gene expression to mesenchymal cells. J Biol Chem.1995;270:830-836
    23. Brockmann MA, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery.2003;52:1391-1399
    24. Lamszus K, Jin L, Fuchs A, Shi E, Chowdhury S, Yao Y, et al. Scatter factor stimulates tumor growth and tumor angiogenesis in human breast cancers in the mammary fat pads of nude mice. Lab Invest.1997;76:339-353
    25. Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM, et al. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res.2000;60:4277-4283
    26. Abounader R, Lal B, Luddy C, Koe G, Davidson B, Rosen EM, et al. In vivo targeting of HGF and c-met expression via UlsnRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis, Faseb J 2002,16:108-110
    27 Lloyd RJ, Kovacs K, Young WF, et al. In:Pathology and genetics. Tumours of endocrine tumours. DeLellis RA, Lloyd RV, Heitz PU. IARC:Lyon.2004.pp.9-48.
    28. Sautner D and Saeger W. Invasiveness of pituitary adenomas. Path. Res. Pract.1991;187:632-636.
    29. Pizarro CB, Oliveira MC, Coutinho LB, and Ferreira NP. Braz. J. Med. Biol. Res.2004;37:235-243.
    30. Saeger W, Ludecke B, and Ludecke DK. Endocr.Pathol.2004;15:264-265.
    31. Erroi A, Bassetti M, Spada A, Giannattasio G. Microvasculature of human micro- and macroprolactinomas. Neuroendocrinology. 1986;43:159-165.
    32. Jugenburg M, Kovacs K, Stefaneanu L, Scheithauer BW. Vasculature in nontumorous hypophyses, pituitary adenomas, and carcinomas:a quantitative morphological study. Endocr Pathol.1995;6:115-124.
    33. Vidal S, Horvath E, Kovacs K, and Scheithauer BW. In:Endocrine pathology. Differential diagnosis and molecular advances. Lloyd, R. V. (ed.). Humana Press:Totowa, NJ,2004;pp.61-74.
    34. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, and Wass JAH. Angiogenesis in pituitary adenomas-relationship to endocrine function, treatment and outcome. J. Endocrinol.2000; 165:475-481.
    35. Lohrer P, Gloddek J, Hopfner U, Losa M, Uhl E, Pagotto U, et al. Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro. Neuroendocrinology.2001;74:95-105.
    36. Delgrange E, Trouillas J, Maiter D, Donckier J, Turnaire J. Sex-related difference in the growth of prolactinomas:a clinical and proliferation marker study. J Clin Endocrinol Metab.1997;82:2102-2107
    37. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JAH. Angiogenesis in pituitary adenomas-relationship to endocrine function, treatment and outcome. Clin Endocrino.2000;165:475-481.
    1. Xiaoqi L, Raymond LE. Polo-like kinase (Plk) 1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci U S A. 2003;100:5789-94.
    2. Du W, Hattori Y, Yamada T, Matsumoto K, Nakamura T, Sagawa M, et al. NK4, an antagonist of hepatocyte growth factor (HGF), inhibits growth of multiple myeloma cells molecular targeting of angiogenic growth factor. Blood.2007; 109:3042-3049.
    3. Matsumoto K, Nakamura T. NK4 (HGF antagonist angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 2003;94:321-327.
    4. Cui JJ, McTigue M, Nambu M, Tran-Dube M, Pairish M, Shen H, et al. Discovery of a Novel Class of Exquisitely Selective Mesenchymal-Epithelial Transition Factor (c-MET) Protein Kinase Inhibitors and Identification of the Clinical Candidate 2-(4-(1-(Quinolin-6-ylmethyl)-1H-[1,2,3]triazolo[4,5-b]pyrazin-6-yl)-1H-pyrazol-1-yl)ethanoI (PF-04217903) for the Treatment of Cancer. J Med Chem.2012;55:8091-8109.
    5. Roger A, John L. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol.2005;7:436-451.
    6. Tomioka D, Maehara N, Kuba K, Mizumoto K, Tanaka M, Matsumoto K, et al. Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res.2001;61:7518-7524.
    7. Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Mct-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 2003;63:7345-7335.
    1. Shlomo Melmed. Mechanisms for pituitary tumorigenesis:the plastic pituitary. J Clin Invest.2003:112:1603-1618.
    2. Melmed S. Pathogenesis of pituitary tumors. Endocrinology and Metabolism Clinics of North America.1999:28:1-12.
    3. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab.2001;86:5658-5671.
    4. Drouin J. Molecular mechanisms of pituitary differentiation and regulation:Implications for hormone deficiencies and hormone resistance syndromes. Front Horm Res.2006;35:74-87.
    5. Li X, Perissi V, Liu F, Rose DW, Rosenfeld MG Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science. 2002;297:1180-1183.
    6. Gallardo ME, Lopez-Rios J, Fernaud-Espinosa I, Granadino B, Sanz R, Ramos C, et al. Genomic cloning and characterization of the human homeobox gene SIX6 reveals a cluster of SIX genes in chromosome 14 and associates SIX6 hemizygosity with bilateral anophthalmia and pituitary anomalies. Genomics.1999;61:82-91.
    7. Li X, Perissi V, Liu F, Rose DW, Rosenfeld MG. Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science. 2002;297:1180-1183.
    8. Chesnokova V, Zonis S, Rubinek T, Yu R, Ben-Shlomo A, Kovacs K, et al. Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Canccr Research.2007;67:10564-10572
    9. Danilova N, Krupnik VE, Sugden D, Zhdanova IV. Melatonin stimulates cell proliferation in zebrafish embryo and accelerates its development. FASEB Journal.2004; 18:751-753.
    10. Wu YJ, Chen W, Liu JL, Zhang JH, Luo HS, Cui S. Estradiol promotes pituitary cell proliferation and gonadotroph differentiation at different doses and with different mechanisms in chick embryo. Steroids.2009;74:441-448.
    11. Ben-Jonathan N, Liu JW. Pituitary lactotrophs endocrine, paracrine, juxtacrine, and autocrine interactions. Trends Endocrinol Metab. 1992;3:254-258.
    12. Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med.1999;5:1317-1321.
    13. Al-Gahtany M, Horvath E, Kovacs K. Pituitary hyperplasia. Hormones.2003;2:149-158.
    14. Alkhani AM, Cusimano M, Kovacs K, Bilbao JM, Horvath E, Singer W. Cytology of pituitary thyrotroph hyperplasia in protracted primary hypothyroidism. Pituitary.1999;1:291-295.
    15. Alexander JM, Biller BM, Bikkal H, Zervas NT, Arnold A, Klibanski A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest. 1990;86:336-840.
    16. Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab. 1990;71:1427-1433.
    17. Clayton RN, Pfeifer M, Atkinson AB, Belchetz P, Wass JA, Kyrodimou E, et al. Different patterns of allelic loss (loss of heterozygosity) in recurrent human pituitary tumors provide evidence for multiclonal origins. Clin Cancer Res.2000;6:3973-3982.
    18. Hassounah M, Lach B, Allam A, Al-Khalaf H, Siddiqui Y, Pangue-Cruz N, et al. Benign tumors from the human nervous system express high levels of survivin and are resistant to spontaneous and radiation-induced apoptosis. J Neurooncol.2005;72:203-208.
    19. Boggild MD, Jenkinson S, Pistorello M, Boscaro M, Scanarini M, McTeman P, et al. Molecular genetic studies of sporadic pituitary tumors. J Clin Endocrinol Metab.1994;78:387-392.
    20. Herman V, Drazin NZ, Gonsky R, Melmed S. Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab.1993;77:50-55.
    21. Karga HJ, Alexander JM, Hedley-Whyte ET, Klibanski A, Jameson JL. Ras mutations in human pituitary tumors. J Clin Endocrinol Metab.1992;74:914-919.
    22. Pei L, Melmed S, Scheithauer B, Kovacs K, Prager D. H-ras mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab.1994;78:842-846.
    23. Woloschak M, Roberts JL, Post K. c-myc, c-fos, and c-myb gene expression in human pituitary adenomas. J Clin Endocrinol Metab. 1994;79:253-257.
    24. U HS, Kelley P, Lee WH. Abnormalities of the human growth hormone gene and protooncogenes in some human pituitary adenomas. Mol Endocrinol.1988;2:85-89.
    25. Sherr CJ. D-type cyclins. Trends Biochem Sci.1995;20:187-190.
    26. Motokura T, Arnold A. Cyclin D and oncogenesis. Curr Opin Genet Dev.1993;3:5-10.
    27. Hunter T, Pines P. Cyclins and cancer. Ⅱ:Cyclin D and CDK inhibitors come of age. Cell.1994;79:573-582.
    28. Harbour JW, Dean DC. Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol.2000;2:65-67.
    29. Nevins JR, Leone G, DeGregori J, Jakoi L. Role of the rb/E2F pathway in cell growth control. J Cell Physiol.1997;173:233-236.
    30. Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lambom K, Waldman FM, et al. Multiple genetic aberrations including evidence of chromosome 11 q 13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg.1999;90:306-314.
    31. Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN, et al. Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res.1999;5:2133-2139.
    32. Ezzat S, Zheng L, Zhu XF, Wu GE, Asa SL. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J Clin Invest.2002;109:69-78.
    33. Ezzat S, Zheng L, Asa SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness a mechanism underlying pituitary neoplasia. Mol Endocrinol. 2004; 18:2543-2552.
    34. Zhang X, Horwitz GA, Prezant TR, Valentini A, Nakashima M, Bronstein MD, et al. Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol Endocrinol.1999;13:156-166.
    35. Yu R, Ren SG, Horwitz GA, Wang Z, Melmed S. Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival:Evidence from live cell imaging. Mol Endocrinol.2000; 14:1137-1146.
    36. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, et al. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab.1999;84:761-767.
    37. Saez C, Japon MA, Ramos-Morales F, Romero F, Segura DI, Tortolero M, et al. hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene.1999; 18:5473-5476.
    38. McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS, et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab.2002;87:4238-4244.
    39. McCabe CJ, Khaira JS, Boelaert K, Heaney AP, Tannahill LA, Hussain S, et al. Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas:Relationships to clinical tumour behaviour. Clin Endocrinol. 2003;58:141-150.
    40. Hunter JA, Skelly RH, Aylwin SJ, Geddes JF, Evanson J, Besser GM, et al. The relationship between pituitary tumour transforming gene (PTTG) expression and in vitro hormone and vascular endothelial growth factor (VEGF) secretion from human pituitary adenomas. Eur J Endocrinol.2003;148:203-211.
    41. Abbud RA, Takumi I, Barker EM, Ren SG, Chen DY, Wawrowsky K, et al. Early multipotential pituitary focal hyperplasia in the alpha-subunit of glycoprotein hormone-driven pituitary tumor-transforming gene transgenic mice. Mol Endocrinol.2005; 19:1383-1391.
    42. Zou H, McGarry TJ, Bemal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science.1999;285:418-422.
    43. Yu R, Lu W, Chen J, McCabe CJ, Melmed S. Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology.2003;144:4991-4998.
    44. Bernal JA, Luna R, Espina A, Lazaro I, Ramos-Morales F, Romero F, et al. (2002). Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet.2002;32:306-311.
    45. Yu R, Heaney AP, Lu W, Chen J, Melmed S. Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis. J Biol Chem.2000;275:36502-36505.
    46. Tong Y, Tan Y, Zhou C, Melmed S. Pituitary tumor transforming gene interacts with Spl to modulate Gl/S cell phase transition. Oncogene.2007;26:5596-5605.
    47. Pei L. Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene trans-activation function. J Biol Chem.2000;275:31191-31198.
    48. Malik MT, Kakar SS. Regulation of angiogenesis and invasion by human pituitary tumor transforming gene (PTTG) through increased expression and secretion of matrix metalloproteinase-2 (MMP-2). Mol Cancer.2006;5:61.
    49. Arzt E, Chesnokova V, Stalla GK, Melmed S. Pituitary adenoma growth:A model for cellular senescence and cytokine action. Cell Cycle.2009;8:677-678.
    50. Zhang H. Molecular signaling and genetic pathways of senescence:Its role in tumorigenesis and aging. J Cell Physiol. 2007;210:567-574.
    51. Chesnokova V, Zonis S, Kovacs K, Ben-Shlomo A, Wawrowsky K, Bannykh S, et al. p21 (Cipl) restrains pituitary tumor growth. Proc Natl Acad Sci U S A.2008;105:17498-17503.
    52. Alexander JM. Tumor suppressor loss in pituitary tumors. Brain Pathol.2001;11:342-355.
    53. Agarwal SK, Kennedy PA, Scacheri PC, Novotny EA, Hickman AB, Cerrato A, et al. Menin molecular interactions:Insights into normal functions and tumorigenesis. Horm Metab Res.2005;37:369-374.
    54. Marx SJ, Agarwal SK, Kester MB, Heppner C, Kim YS, Skarulis MC, et al. Multiple endocrine neoplasia type 1:Clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog Horm Res.1999;54:397-438.
    55. Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci U S A.2001;98:1118-1123.
    56. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. (1992). Effects of an Rb mutation in the mouse. Nature. 1992;359:295-300.
    57. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, et al. CDK inhibitors p18(INK4c) and p27(Kipl) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev.1998; 12:2899-2911.
    58. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA. Angiogenesis in pituitary adenomas-relationship to endocrine function, treatment and outcome. J Endocrinol.2000; 165:475-481.
    59. Vidal S, Kovacs K, Horvath E, Scheithauer BW, Kuroki T, Lloyd RV. Microvessel density in pituitary adenomas and carcinomas. Virchows Arch.2001;438:595-602.
    60. Ishikawa H, Heaney AP, Yu R, Horwitz GA, Melmed S. Human pituitary tumor-transforming gene induces angiogenesis. J Clin Endocrinol Metab.2001;86:867-874.
    61. Qian ZR, Sano T, Yoshimoto K, Asa SL, Yamada S, Mizusawa N, et al. (2007). Tumor-specific downregulation and methylation of the CDH13 (H-cadherin) and CDH1 (E-cadherin) genes correlate with aggressiveness of human pituitary adenomas. Mod Pathol. 2007;20:1269-1277.
    62. Elston MS, Gill AJ, Conaglen J V, Clarkson A, Cook RJ, Little NS, et al. Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J Clin Endocrinol Metab.2009;94:1436-1442.
    63. Qian ZR, Li CC, Yamasaki H, Mizusawa N, Yoshimoto K, Yamada S, et al. Role of E-cadherin, alpha-, beta-, and gamma-catenins, and p120 (cell adhesion molecules) in prolactinoma behavior. Mod Pathol.2002;15:1357-1365.
    64. Semba S, Han SY, Ikeda H, Horii A. Frequent nuclear accumulation of beta-catenin in pituitary adenoma. Cancer,2001;91:42-48.
    65. Gong J, Zhao Y, Abdel-Fattah R, Amos S, Xiao A, Lopes MB, et al. Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas. Pituitary.2008; 11:37-48.
    66. Sautner D, Saeger W. Invasiveness of pituitary adenomas. Path Res Pract.1991;187:632-636.
    67. Saeger W. Pituitary tumors:prognostic indicators. Endocrine.2005;28:57-66.
    68. Meij BP, Lopes MB, Ellegala DB, Alden TD, Laws ER Jr. The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J Neurosurg.2002;96:195-208.
    69. Asa SL, Kovacs K, Horvath E, Singer W, Smyth HS. A syndrome characterized by estrogenic insufficiency, galactorrhea and decreased urinary gonadotropin. J Clin Endocrinol Metab.1992;13:79-87.
    70. Asa SL. Tumors of the pituitary gland. Armed Forces Institute of Pathology.1998.
    71. Schreiber S, Saeger W, Ludecke DK. Proliferation markers in different types of clinically non-secreting pituitary adenomas. Pituitary. 1999;1:213-220.
    72. Saeger W, Ludecke B, Ludecke DK. Comparison of proliferation markers and clinical tumor growth in inactive adenomas. Endocr Pathol.2004; 15:264-265.
    73. Lloyd RJ, Kovacs K, Young WF, et al. In:Pathology and genetics. Tumours of endocrine tumours. DeLellis RA, Lloyd RV, Heitz PU. IARC:Lyon,2004;9-48.
    74. Saeger W. Latent hyperplasias and adenomas in post-mortem pituitaries. Endocr Pathol.1995;6:379-380.
    75. Machiavelli GA, Rivolta CM, Artese R, Basso A, Burdman JA. Expression of c-myc and c-fos and binding sites for estradiol and progesterone in human pituitary tumors. Neurol Res.1998;20:709-712.
    76. Auer LM, Clarici G. The first 100 transsphenoidally operated pituitary adenomas in a non-specialised centre:surgical results and tumour-recurrence. Neurol Res.1985;7:153-160.
    77. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA. Angiogenesis in pituitary adenomas-relationship to endocrine function, treatment and outcome. J Endocrinol.2000; 165:475-481.
    78. Vidal S, Horvath E, Kovacs K, Scheithauer BW. In:Endocrine pathology. Differential diagnosis and molecular advances. Lloyd, R. V. (ed.). Humana Press.2004;61-74.
    79. Landolt AM, Shibata T, Kleihues P. Growth rate of human pituitary adenomas. J Neurosurg.1987;67:803-806.
    80. Pizarro CB, Oliveira MC, Coutinho LB, Ferreira NP. Measurement of Ki-67 antigen in 159 pituitary adenomas using the MIB-1 monoclonal antibody. Braz J Med Biol Res.2004;37:235-243.
    81. Hsu DW, Hakim F, Biller BM, de la Monte S, Zervas NT, Klibanski A, et al. Significance of proliferating cell nuclear antigen index in predicting pituitary adenoma recurrence. J Neurosurg.1993;78:753-761.
    82. Nose-Alberti V, Mesquita M1, Martin LC, Kayath MJ. Adrenocorticotropin-Producing Pituitary Carcinoma with Expression of c-erbB-2 and High PCNA Index:A Comparative Study with Pituitary Adenomas and Normal Pituitary Tissues. Endocr Pathol. 1998;9:53-62.
    83. Espay AJ, Azzarelli B, Williams LS, Bodensteiner JB. Recurrence in pituitary adenomas in childhood and adolescence. J Child Neurol. 2001; 16:364-367.
    84. Hentschel SJ, McCutcheon 1E, Moore W, Durity FA. P53 and MIB-1 immunohistochemistry as predictors of the clinical behavior of nonfunctioning pituitary adenomas. Can J Neurol Sci.2003;30:215-219.
    85. Vidal S, Kovacs K, Horvath E, Rotondo F, Kuroki T, Lloyd RV, et al. Topoisomerase Ⅱalpha expression in pituitary adenomas and carcinomas:relationship to tumor behavior. Mod Pathol.2002; 15:1205-1212.
    86. Munscher A, Schmid M, Saeger W, Schreiber S, Ludecke DK. GH-, PRL-, POMC-, beta-TSH-, beta-LH-, beta-FSH-mRNA in gonadotroph adenomas of the pituitary by in situ hybridization in comparison with immunostaining and clinical data. Endocr Pathol. 2001;12,171-180.
    87. Lloyd RV, Jin L, Qian X, Kulig E. Aberrant p27kipl expression in endocrine and other tumors. Am J Pathol.1997; 150:401-407.
    88. Korbonits M, Chahal HS, Kaltsas G, Jordan S, Urmanova Y, Khalimova Z, et al. Expression of phosphorylated p27(Kipl) protein and Jun activation domain-binding protein 1 in human pituitary tumors. J Clin Endocrinol Metab.2002;87:2635-2643.
    89. Bamberger CM, Fehn M, Bamberger AM, Ludecke DK, Beil FU, Saeger W, et al. Reduced expression levels of the cell-cycle inhibitor p27Kipl in human pituitary adenomas. Eur J Endocrinol.1999; 140:250-255.
    90. Nakabayashi H, Sunada I, Hara M. Immunohistochemical analyses of cell cycle-related proteins, apoptosis, and proliferation in pituitary adenomas. J Histochem Cytochem.2001;49:1193-1194.
    91. Liu W, Asa SL, Ezzat S. Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Brain Pathol.2002;12:412-419.
    92. Abe T, Liidecke DK. Effects of preoperative octreotide treatment on different subtypes of 90 GH-secreting pituitary adenomas and outcome in one surgical centre. Eur J Endocrinol.2001; 145:137-145.
    93. Hardy J. In:Diagnosis and treatment of pituitary tumors. Kohler, P. O. and Ross, G. T. Excerpta Medica.1973; 179-194.
    94. Radner H, Katenkamp D, Reifenberger G, Deckert M, Pietsch T, Wiestler OD. New developments in the pathology of skull base tumors. Virchows Arch.2001;438,321-335.
    95. Rees DA, Hanna FW, Davies JS, Mills RG, Vafidis J, Scanlon ME Long-term follow-up results of transsphenoidal surgery for Cushing's disease in a single centre using strict criteria for remission. Clin Endocrinol.2002;56,541-551.
    96. Molitch ME. Medical management of prolactin-secreting pituitary adenomas. Pituitary.2002;5:55-65.
    97. Bevan JS, Webster J, Burke CW, Scanlon ME Dopamine agonists and pituitary tumor shrinkage. Endocr Rev.1992; 13:220-240.
    98. Saeger W. Effect of drugs on pituitary ultrastructure. Microsc Res Techn.1992;20:162-176.
    99. Hamester U, Saeger W, Ludecke DK. Light microscopical morphometry of prolactin secreting adenomas under treatment with dopamine agonists. Histol Histopathol.1987;2:135-142.
    100. Freda PU. Somatostatin analogs in acromegaly. J Clin Endocrinol Metab.2002;87:3013-3018.
    101. Barkan AL, Kelch RP, Hopwood NJ, Beitins IZ. Treatment of acromegaly with the long-acting somatostatin analog SMS 201-995. J Clin Endocrinol Metab.1988;66:16-23
    102. Beck-Peccoz P, Brucker-Davis F, Persani L, Smallridge RC, Weintraub BD. Thyrotropin-secreting pituitary tumors. Endocr Rev. 1996;17:610-638.
    103. Molitch ME. In:Diagnosis and management pituitary tumors. Thapar K, Kovacs K, Scheithauer B W, Lloyd RV. Humana Press. 2001:247-268.
    104. Kovalic JJ, Grigsby PW, Fineberg BB. Recurrent pituitary adenomas after surgical resection:the role of radiation therapy. Radiology. 1990; 177:273-275.
    105. Wowra B, Stummer W. Efficacy of gamma knife radiosurgery for nonfunctioning pituitary adenomas:a quantitative follow up with magnetic resonance imaging-based volumetric analysis. J Neurosurg.2002;97:429-432.
    106. Landolt AM, Haller D, Lomax N, Scheib S, Schubiger O, Siegfried J, et al. Stereotactic radiosurgery for recurrent surgically treated acromegaly:comparison with fractionated radiotherapy. J Neurosurg.1998;88:1002-1008.
    107. Minniti G, Jaffrain-Rea ML, Osti M, Esposito V, Santoro A, Solda F, et al. The long-term efficacy of conventional radiotherapy in patients with GH-secreting pituitary adenomas. Clin Endocrinol.2005;62:210-216.
    108. Gaffey TA, Scheithauer BW, Lloyd RV, Burger PC, Robbins P, Fereidooni F, et al. Corticotroph carcinoma of the pituitary:a clinicopathological study. Report of four cases. J Neurosurg.2002;96:352-360.
    109. Cai WY, Alexander JM, Hedley-Whyte ET, Scheithauer BW, Jameson JL, Zervas NT, et al. ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab.1994;78:89-93.
    1. Nakamura T, Nawa K, Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun.1984;122:1450-1459
    2. Stoker M, Perryman M. An epithelial scatter factor released by embryo fibroblasts. J Cell Sci.1985;77:209-223
    3. Weidner KM, Arakaki N, Hartmann Q Vandekerckhove J, Weingart S, Rieder H, et al. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci U S A.1991;88:7001-7005
    4. Furlong RA, Takehara T, Taylor WG, Nakamura T, Rubin JS. Comparison of biological and immunochemical properties indicates that scatter factor and hepatocyte growth factor are indistinguishable. J Cell Sci.1991;100:173-177
    5. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature.1984;311:29-33
    6. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science.1991;251:802-804
    7. Seki T, Hagiya M, Shimonishi M, Nakamura T, Shimizu S. Organization of the human hepatocyte growth factor-encoding gene. Gene. 1991;102:213-219
    8. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature.1989;342:440-443
    9. Miyazawa K, Shimomura T, Kitamura A, Kondo J, Morimoto Y, Kitamura N. Molecular cloning and sequence analysis of the cDNA for a human serine protease reponsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor Ⅻ. J Biol Chem.1993;268:10024-10028
    10. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4:915-925
    11. Gherardi E, Youles ME, Miguel RN, Blundell TL, Iamele L, Gough J, et al. Functional map and domain structure of MET, the product of the c-met protooncogene and receptor for hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A.2003; 100:12039-12044
    12. Ponzetto C, Bardelli A, Zhen Z, Maina F, dalla Zonca P, Giordano S, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell.1994;77:261-271
    13. Boccaccio C, Ando M, Tamagnone L, Bardelli A, Michieli P, Battistini C, et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature.1998;391:285-288
    14. Nakagami H, Morishita R, Yamamoto K, Taniyama Y, Aoki M, Matsumoto K, et al. Mitogenic and antiapoptotic actions of hepatocyte growth factor through ERK, STAT3, and AKT in endothelial cells. Hypertension.2001;37:581-586
    15. Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 1998;8:404-410
    16. Uehara Y, Minowa O, Mori C, Shiota K, Kuno J, Noda T, et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature.1995;373:702-705
    17. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature.1995;373:699-702
    18. Sonnenberg E, Meyer D, Weidner KM, Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993;123:223-235
    19. Michalopoulos GK, DeFrances MC. Liver regeneration. Science.1997;276:60-66
    20. Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol. 2005;7:436-451
    21. Kuniyasu H, Yasui W, Kitadai Y, Yokozaki H, Ito H, Tahara E. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun.1992;189:227-232
    22. Muleris M, Almeida A, Dutrillaux AM, Pruchon E, Vega F, Delattre JY, et al. Oncogene amplification in human gliomas:a molecular cytogenetic analysis. Oncogene.1994;9:2717-2722
    23. Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T, et al. Activating mutations for the met tyrosine kinase receptor in human cancer. Proc Natl Acad Sci U S A.1997;94:11445-11450
    24. Schmidt L, Duh FM, Chen F, Kishida T, Glenn G, Choyke P, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet; 1997,16:68-73
    25. Lamszus K, Laterra J, Westphal M, Rosen EM. Scatter factor/hepatocyte growth factor (HGF) content and function in human gliomas. Int J Dev Neurosci.1999;17:517-530
    26. Hov H, Tian E, Holien T, Holt RU, Vatsveen TK, Fagerli UM, et al. c-Met signaling promotes IL-6-induced myeloma cell proliferation. Eur J Haematol.2009;82:277-287
    27. Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE, et al. The scatter factor/hepatocyte growth factor:c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res.2005;65:9355-9362
    28. Hecht M, Papoutsi M, Tran HD, Wilting J, Schweigerer L. Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas. Cancer Res.2004;64:6109-6118
    29. Khoury H, Naujokas MA, Zuo D, Sangwan V, Frigault MM, Petkiewicz S, et al. HGF converts ErbB2/Neu epithelial morphogenesis to cell invasion. Mol Biol Cell.2005;16:550-561
    30. Gallego MI, Bierie B, Hennighausen L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene.2003;22:8498-8508
    31. Koochekpour S, Jeffers M, Rulong S, Taylor G, Klineberg E, Hudson EA, et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res.1997;57:5391-5398
    32. Moriyama T, Kataoka H, Kawano H, Yokogami K, Nakano S, Goya T, et al. Comparative analysis of expression of hepatocyte growth factor and its receptor, c-met, in gliomas, meningiomas and schwannomas in humans. Cancer Lett.1998;124:149-155
    33. Rosen EM, Laterra J, Joseph A, Jin L, Fuchs A, Way D, et al. Scatter factor expression and regulation in human glial tumors. Int J Cancer.1996;67:248-255
    34. Laterra J, Nam M, Rosen E, Rao JS, Lamszus K, Goldberg ID, et al. Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest. 1997;76:565-577
    35. Laterra J, Rosen E, Nam M, Ranganathan S, Fielding K, Johnston P. Scatter factor/hepatocyte growth factor expression enhances human glioblastoma tumorigenicity and growth. Biochem Biophys Res Commun.1997;235:743-747
    36. Abounader R, Ranganathan S, Lal B, Fielding K, Book A, Dietz H, et al. Reversion of human glioblastoma malignancy by Ul small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J Natl Cancer Inst.1999;91:1548-1556
    37. Abounader R, Lal B, Luddy C, Koe G, Davidson B, Rosen EM, et al. In vivo targeting of HGF and c-met expression via UlsnRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. Faseb J.2002; 16:108-110
    38. Arrieta O, Garcia E, Guevara P, Garcia-Navarrete R, Ondarza R, Rembao D, et al. Hepatocyte growth factor is associated with poor prognosis of malignant gliomas and is a predictor for recurrence of meningioma. Cancer.2002;94:3210-3218
    39. Martinez-Rumayor A, Arrieta O, Guevara P, Escobar E, Rembao D, Salina C, et al. Coexpression of hepatocyte growth factor/scatter factor (HGF/SF) and its receptor cMET predict recurrence of meningiomas. Cancer Lett.2004;213:117-124
    40. Plaschke-Schlutter A, Behrens J, Gherardi E, Birchmeier W. Characterization of the scatter factor/hepatocyte growth factor gene promoter. Positive and negative regulatory elements direct gene expression to mesenchymal cells. J Biol Chem.1995;270:830-836
    41. Walter KA, Hossain MA, Luddy C, Goel N, Reznik TE, Laterra J. Scatter factor/hepatocyte growth factor stimulation of glioblastoma cell cycle progression through G(1) is c-Myc dependent and independent of p27 suppression, Cdk2 activation, or E2F1-dependent transcription. Mol Cell Biol.2002;22:2703-2715
    42. Brockmann MA, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery.2003;52:1391-1399
    43. Lamszus K, Jin L, Fuchs A, Shi E, Chowdhury S, Yao Y, et al. Scatter factor stimulates tumor growth and tumor angiogenesis in human breast cancers in the mammary fat pads of nude mice. Lab Invest.1997;76:339-353
    44. Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM, et al. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res.2000;60:4277-4283
    45. Wagatsuma S, Konno R, Sato S, Yajima A. Tumor angiogenesis, hepatocyte growth factor, and c-Met expression in endometrial carcinoma. Cancer.1998;82:520-530
    46. Kuhnen C, Muehlberger T, Honsel M, Tolnay E, Steinau HU, Muller KM. Impact of c-Met expression on angiogenesis in soft tissue sarcomas:correlation to microvessel-density. J Cancer Res Clin Oncol.2003;129:415-422
    47. Kunkel P, Muller S, Schirmacher P, Stavrou D, Fillbrandt R, Westphal M, et al. Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas. Neuro Oncol.2001;3:82-88
    48. Skoldenberg EG, Christiansson J, Sandstedt B, Larsson A, Lackgren G, Christofferson R. Angiogenesis and angiogenic growth factors in Wilms tumor. J Urol.2001;165:2274-2279
    49. Alexandrakis MG, Passam FJ, Ganotakis E, Dafhis E, Dambaki C, Konsolas J, et al. Bone marrow microvascular density and angiogenic growth factors in multiple myeloma. Clin Chem Lab Med.2004;42:1122-1126
    50. Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol.1992; 119:629-641
    51. Ding S, Merkulova-Rainon T, Han ZC, Tobelem G HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood.2003; 101:4816-4822
    52. Nakamura Y, Morishita R, Higaki J, Kida I, Aoki M, Moriguchi A, et al. Expression of local hepatocyte growth factor system in vascular tissues. Biochem Biophys Res Commun.1995;215:483-488
    53. Rosen EM, Goldberg ID. Scatter factor and angiogenesis. Adv Cancer Res.1995;67:257-279
    54. Hayashi S, Morishita R, Higaki J, Aoki M, Moriguchi A, Kida I, et al. Autocrine-paracrine effects of overexpression of hepatocyte growth factor gene on growth of endothelial cells. Biochem Biophys Res Commun.1996;220:539-545
    55. Martin TA, Harding KG Jiang WG. Regulation of angiogenesis and endothelial cell motility by matrix-bound fibroblasts. Angiogenesis.1999;3:69-76
    56. Oh IS, So SS, Jahng KY, Kim HG Hepatocyte growth factor upregulates thymosin beta4 in human umbilical vein endothelial cells. Biochem Biophys Res Commun.2002;296:401-405
    57. Wang H, Keiser JA. Hepatocyte growth factor enhances MMP activity in human endothelial cells. Biochem Biophys Res Commun. 2000;272:900-905
    58. Grant DS, Kleinman HK, Goldberg ID, Bhargava MM, Nickoloff BJ, Kinsella JL, et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S A.1993;90:1937-1941
    59. Tacchini L, Matteucci E, De Ponti C, Desiderio MA. Hepatocyte growth factor signaling regulates transactivation of genes belonging to the plasminogen activation system via hypoxia inducible factor-1. Exp Cell Res.2003;290:391-401
    60. Martin TA, Mansel R, Jiang WG. Hepatocyte growth factor modulates vascular endothelial-cadherin expression in human endothelial cells. Clin Cancer Res.2001;7:734-737
    61. Purdie KJ, Whitley GS, Johnstone AP, Cartwright JE. Hepatocyte growth factor-induced endothelial cell motility is mediated by the upregulation of inducible nitric oxide synthase expression. Cardiovasc Res.2002;54:659-668
    62. Yamamoto K, Morishita R, Hayashi S, Matsushita H, Nakagami H, Moriguchi A, et al. Contribution of Bcl-2, but not Bcl-xL and Bax, to antiapoptotic actions of hepatocyte growth factor in hypoxia-conditioned human endothelial cells. Hypertension.2001;37:1341-1348
    63. Wang X, Zhou Y, Kim HP, Song R, Zamegar R, Ryter SW, et al. Hepatocyte growth factor protects against hypoxia/reoxygenation-induced apoptosis in endothelial cells. J Biol Chem.2004;279:5237-5243
    64. Ma H, Calderon TM, Fallon JT, Berman JW. Hepatocyte growth factor is a survival factor for endothelial cells and is expressed in human atherosclerotic plaques. Atherosclerosis.2002; 164:79-87
    65. Grant DS, Rose RW, Kinsella JK, Kibbey MC. Angiogenesis as a component of epithelial-mesenchymal interactions. Exs. 1995;74:235-248
    66. Jiang WG, Hiscox SE, Parr C, Martin TA, Matsumoto K, Nakamura T, et al. Antagonistic effect of NK4, a novel hepatocyte growth factor variant, on in vitro angiogenesis of human vascular endothelial cells. Clin Cancer Res.1999;5:3695-3703
    67. Wojta J, Kaun C, Breuss JM, Koshelnick Y, Beckmann R, Hattey E, et al. Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab Invest.1999;79:427-438
    68. Moriyama T, Kataoka H, Hamasuna R, Yokogami K, Uehara H, Kawano H, et al. Up-regulation of vascular endothelial growth factor induced by hepatocyte growth factor/scatter factor stimulation in human glioma cells. Biochem Biophys Res Commun.1998;249:73-77
    69. Reisinger K, Kaufmann R, Gille J. Increased Spl phosphorylation as a mechanism of hepatocyte growth factor (HGF/SF)-induced vascular endothelial growth factor (VEGF/VPF) transcription. J Cell Sci.2003;116:225-238
    70. Zhang YW, Su Y, Volpert OV, Vande Woude GF. Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A.2003;100:12718-12723
    71. Tomita N, Morishita R, Taniyama Y, Koike H, Aoki M, Shimizu H, et al. Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-l. Circulation.2003;107:1411-1417
    72. Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor:the case for paracrine amplification of angiogenesis. Circulation. 1998;97:381-390
    73. Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski.1, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol.2001;158:1111-1120
    74. Beilmann M, Birk G, Lenter MC. Human primary co-culture angiogenesis assay reveals additive stimulation and different angiogenic properties of VEGF and HGF. Cytokine.2004;26:178-185
    75. Gerritsen ME, Tomlinson JE, Zlot C, Ziman M, Hwang S. Using gene expression profiling to identify the molecular basis of the synergistic actions of hepatocyte growth factor and vascular endothelial growth factor in human endothelial cells. Br J Pharmacol. 2003; 140:595-610
    76. Sengupta S, Gherardi E, Sellers LA, Wood JM, Sasisekharan R, Fan TP. Hepatocyte growth factor/scatter factor can induce angiogenesis independently of vascular endothelial growth factor. Arterioscler Thromb Vasc Biol.2003;23:69-75
    77. Kuba K, Matsumoto K, Date K., Shimura H, Tanaka M, Nakamura T. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res.2000;60:6737-6743
    78. Lamszus K, Schmidt NO, Jin L, Laterra J, Zagzag D, Way D, et al. Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int J Cancer.1998;75:19-28
    79. Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, et al. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer. 1999;84:10-18
    80. Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR. Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci.2002;115:3427-3438
    81. MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C, Chen Y, et al. Expression profiling of medulloblastoma:PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet.2001;29:143-152
    82. Abounader R, Montgomery R, Dietz H, Laterra J. Design and expression of chimeric Ul/ribozyme transgenes. Methods Mol Biol. 2004;252:209-219
    83. Lal B, Xia S, Abounader R, Laterra J. Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res.2005;11:4479-4486
    84. Brockmann MA, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, Lamszus K. Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin Cancer Res.2003;9:4578-4585
    85. Matsumoto K, Nakamura T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci. 2003;94:321-327
    86. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al. Angiostatin:a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell.1994;79:315-328
    87. Guessous F, Zhang Y, diPierro C, Marcinkiewicz L, Sarkaria J, Schiff D, et al. An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med Chem.2010;10:28-35.
    88. Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L, et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell.2004;6:61-73
    89. Wen PY, Schiff D, Cloughesy TF, Raizer JJ, Laterra J, Smitt M, et al. A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol.2011;13:437-46.
    90. Welsh JW, Mahadevan D, Ellsworth R, Cooke L, Bearss D, Stea B. The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells Radiat Oncol.2009;22; 69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700