蛋白质酪氨酸磷酸激酶ALK和MET的抑制剂筛选以及蛋白质酪氨酸磷酸酶PTPRU的表达与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质磷酸化和去磷酸化在细胞的生长,增值,分化和转化过程中起着重要的作用,研究表明多种人类的疾病都与蛋白质磷酸酶和磷酸激酶的扩增与突变相关。
     ALK和MET是两个具有代表性的受体型蛋白质酪氨酸激酶,它们的突变经常导致多种人类疾病的发生,因此,它们已成为治疗和开发靶向性药物的重要靶点。本研究以人cDNA文库为模板,分别克隆了ALK和MET的激酶结构域,并以昆虫细胞SF9为宿主,高效地表达了具有激酶活性的ALK和MET的胞内结构域,我们还建立了一套蛋白质酪氨酸磷酸激酶活性的检测系统,并研究了92种公认的蛋白质激酶抑制剂以及多种当今市场上最流行的抗癌药物对激酶活性的影响,成功的筛选到可以专一地、有效地抑制ALK激酶活性的抑制剂GO6976(IC50=30nM)和可以有效抑制MET激酶活性的抑制剂Staurosporine(IC50=20nM),并且本研究进一步利用含有ALK突变体的ALCL细胞系和NSCLC细胞系对ALK抑制剂G06976进行了表征,研究证明了该抑制剂可以在较低浓度(0.2uM-0.3uM)抑制以上细胞的生长并且有效地抑制了这两种癌细胞中主要的细胞信号通路,为研究和开发针对激酶及其突变体活性为靶点的药物奠定了研究基础。
     此外,本研究还克隆了含有MAM结构域的受体型蛋白质酪氨酸磷酸酶——PTPRU的细胞内结构域。我们的研究表明,PTPRU的cadherin-like结构域在决定PTPRU在细胞中定位过程中起着主要的作用,为进一步研究该结构域在生理和病理过程中的功能提供理论依据。
Protein tyrosine kinases play an important role in regulating cell proliferation, differentiation, and transformation. Mutations of these enzymes often cause neoplastic transformation, which makes them unique markers for cancer diagnosis and specific targets for anti-cancer drug development. Alk and c-MET are two typical tyrosine kinases that are frequently mutated in cancer cells. Alk was originally identified as a fusion partner of NPM-ALK in anaplastic large cell lymphoma (ALCL). Recent studies revealed its fusion with EML4 in non-small cell lung cancer (NSCLC) and activation mutations in neuroblastoma as well. c-MET is the receptor of hepatocyte growth factor. It is mutated or over-expressed in various types of tumors including breast, liver, lung, ovary, kidney, and thyroid cancers. ALK and c-MET are hot targets for therapeutic drug development.
     In this study, we cloned the catalytic domains of ALK and MET and expressed them as recombinant proteins by using the baculovirus expression system. We further established an activity assay method and used it to identify inhibitors of ALK and MET. By screening a chemical compound library containing 92 protein kinsase inhibitors, we identified GO6976 as a potent inhibitor of ALK with an IC50 value of 30 nM and staurosporine as a MET inhibitor with an IC50 value of 20 nM. We further characterized the ALK inhibitor GO6976 with NPM-ALK-positive Karpas 299 ALCL cells and EML4-ALK- positive H2228 NSCLC cells. Our data demonstrated that Go6976, at sub-micromolar concentrations, effectively blocked the growth of Karpas 299 and H2228 cells and inhibited activations of major signal transduction pathways within the cells. Together, we not only identified potent inhibitors of Alk and c-MET but also established a good system for further endeavors to identify more selective and potent protein tyrosine kinases inhibitors with therapeutic potentials.
     PTPRU is a MAM domain-containing receptor-like protein tyrosine phosphatase. Previous studies demonstrated an important role of the enzyme in the maintenance of epithelial integrity and in regulation of the Wnt/β-catenin signaling pathway. To better understand the function of PTPRU, we cloned and expressed the intracellular portion of PTPRU as a GST fusion protein in E. coli cells. We purified the protein to homogeneity and used it to immunize mice for antibody production. The resultant antibodies specifically recognized PTPRU over-expressed in cell lines. Western blotting analyses demonstrated the partition of truncated forms of PTPRU containing the cadherin-like domain in the Triton X-100-insoluble fraction, and immunofluorescent cell staining revealed localization of these proteins in the punctate intracellular structures. Our data suggest that the cadherin-like domain of PTPRU has a major role in determining its intracellular localization.
引文
[1] Schlessinger J. Cell signalling by receptor tyrosine kinases. [J]. Cell. 2000;103:211–225.
    [2] Kolibaba KS, Druker BJ. Protein kinases and cancer. Biochim. Biophys. [J]. Acta. 1997;1333:F217–F248.
    [3] Blume-Jensen P, Hunter T. Oncogenic kinase signalling. [J]. Nature. 2001;411:355–365.
    [4] Scheijen B, Griffin JD. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. [J]. Oncogene. 2002;21:3314–3333.
    [5] Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. [J]. Science. 1994;263:1281–1284.
    [6] Shiota M, Fujimoto J, Semba T, et al. Hyperphosphorylation of a novel 80 kDa protein tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. [J]. Oncogene. 1994;9:1567–1574.
    [7] Mathew P, Morris SW, Kane JR, et al. Localization of the murine homolog of the anaplastic lymphoma kinase (Alk) gene on mouse chromosome 17. [J]. Cytogenet. Cell. Genet. 1995;70:143–144.
    [8] Pulford K, Mason DY. CD246 Antigen. Leucocyte Typing VII. In: Mason DY, et al., editors. [J]. White Cell Differentiation Antigens. Oxford University Press; Oxford, UK: 2002.
    [9] Kaneko Y, Frizzera G, Edamura S, et al. A novel translocation, t(2;5)(p23;q35), in childhood phagocytic large T-cell lymphoma mimicking malignant histiocytosis. [J]. Blood. 1989;73:806–813.
    [10] Le Beau MM, Bitter MA, Larson RA, et al. The t(2;5)(p23;q35): a recurring chromoso mal abnormality in Ki-1-positive anaplastic large cell lymphoma. [J]. Leukemia. 1989;3:866–870.
    [11] Rimokh R, Magaud JP, Berger F, et al. A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’). [J]. Br. J. Haematol. 1989;71:31–36.
    [12] Bitter MA, Franklin WA, Larson RA, et al. Morphology in Ki-1(CD30)-positive non-Hodgkin’s lymphoma is correlated with clinical features and the presence of a unique chromosomal abnormality, t(2;5) (p23;q35). [J]. Am. J. Surg. Pathol. 1990;14:305–316.
    [13] Mason DY, Bastard C, Rimokh R, et al. CD30-positive large cell lymphomas (‘Ki-1 lymphoma’) are associated with a chromosomal translocation involving 5q35. [J]. Br. J. Haematol. 1990;74:161–168.
    [14] Sandlund JT, Pui CH, Sandlund JT, et al. Clinicopathlogic features and treatment outcome of chidren with large cell lymphoma and the t(2;5)(p23;q35). [J]. Blood. 1994;84:2467–2471.
    [15] Kadin ME, Morris SW. The t(2;5) in human lymphomas. [J]. Leuk. Lymphoma. 1998;29:249–256.
    [16] Iwahara T, Fujimoto J, Wen D, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. [J]. Oncogene. 1997;14:439–449.
    [17] Morris SW, Naeve C, Mathew P, et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). [J]. Oncogene. 1997;14:2175–2188.
    [18] Loren CE, Scully A, Grabbe C, et al. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. [J]. Genes Cells. 2001;6:531–544.
    [19] Pulford K, Lamant L, Morris SW, et al. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)–ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. [J]. Blood. 1997;89:1394–1404.
    [20] Lamant L, Pulford K, Bischof D, et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. [J]. Am. J. Pathol. 2000;156:1711–1721.
    [21] Stoica GE, Kuo A, Aigner A, et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. [J]. J. Biol. Chem. 2001;276:16772–16779.
    [22] Stoica GE, Kuo A, Powers C, et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. [J]. J. Biol. Chem. 2002;277:35990–35999.
    [23] Tartari CJ, Gunby RH, Coluccia AM, et al. Characterization of some molecular mechanisms governing autoactivation of the catalytic domain of the anaplastic lymhoma kinase. [J]. J. Biol. Chem. 2008;283:3743–3750.
    [24] Degoutin J, Vigny M, Gouzi JY. ALK activation induces Shc and FRS2 recruitment: signaling and phenotypic outcomes in PC12 cells differentiation. [J]. FEBS Lett. 2007;581:727–734.
    [25] Turner SD, Yeung D, Hadfield K, Cook SJ, Alexander DR. The NPM–ALK tyrosine kinase mimics TCR signaling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms. [J]. Cell. Signal. 2007;19:740–747.
    [26] Bai RY, Dieter P, Peschel C, Morris SW, Duyster J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-γto mediate its mitogenicity. [J]. Mol. Cell. Biol. 1998;18:6951–6961.
    [27] Vernersson E, Khoo NKS, Henriksson ML, Roos G, Palmer RH, Hallberg B. Characterization of the expression of the ALK receptor tyrosine kinase in mice. [J]. Gene Exp. Patterns. 2006;6:448–461.
    [28] Falini B, Pileri S, Zinzani PL, et al. ALK+ lymphoma: clinico-pathological findings and outcome. [J]. Blood. 1999;93:2697–2706.
    [29] Englund C, Loren CE, Grabbe C, Deleuil F, Varshney GK, Palmer RH. Jeb signals via the DAlk receptor tyrosine kinase to drive visceral muscle fusion. [J]. Nature. 2003;425:512–516.
    [30] Lee H-H, Norris A, Weiss JB, Frasch M Drosophila jelly belly signals through the receptor tyrosine kinase Alk to specify visceral muscle pioneers. [J]. Nature. 2003;425:507–512.
    [31] Grinstein E, Wernet P. Cellular signaling in normal and cancerous stem cells. [J]. Cell Signal. 2007;12: 2428-2433.
    [32] Johnson, L.N. OReilly, M. Control by phosphorylation. [J]. Current Opinion in Structural Biology. 1996;6: 762-769.
    [33] Naoe T, Suzuki T, Kiyoi H, et al. Nucleophosmin: a versatile molecule associated with hematological malignancies. [J]. Cancer Sci. 2006;10: 963-969.
    [34] Toshinori Iwahara, Jiro Fujimoto, et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specically in the nervous system. [J]. Oncogene. 1997;14: 439-449.
    [35] Hsu FY-Y, Johnston PB, Burke KA, et al. The expression of CD30 in anaplastic large cell lymphoma is regulated by nucelophosmin-anaplastic lymphoma kinase mediated JunB level in a cell type-specific manner. [J]. Cancer Res. 2006; 66: 9002-9008.
    [36] Zandi R, Larsen AB, Andersen P. Mechanisms for oncogenic activation of the epidermal growth factor receptor. [J]. Cell Signal. 2007;10: 2013-2023.
    [37] Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. [J]. N. Engl. J. Med. 2004; 350: 2129-2139.
    [38] Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial INTACT 1. [J]. J Clin Oncol. 2004;22: 777-784.
    [39] Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial INTACT 2. [J]. J Clin Oncol. 2004;22: 785-794.
    [40] Thatcher N, Chang A, Parikh P et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lungcancer:results from a randomised, placebo-controlled, multicentre. [J]. Lancet. 2005;366: 1527-1537.
    [41] Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. [J]. Nature. 2007; 448: 561-566.
    [42] Choi YL, Takeuchi K, Soda M, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. [J]. Cancer Res. 2008; 68: 4971-4976.
    [43] Takeuchi K, Choi YL, Soda M, et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. [J]. Clin. Cancer Res. 2008; 14: 6618-6624.
    [44] Mosse YP, Laudenslager M, Longo L, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455: 930–935.
    [45] Janoueix-Lerosey I, Lequin D, Brugieres L, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. [J]. Nature. 2008;455: 967–970.
    [46] George RE, Sanda T, Hanna M, et al. Activating mutations in ALK provide a therapeutic target in neuroblastoma. [J]. Nature. 2008;455: 975–978.
    [47] Chen Y, Takita J, Choi YL, et al. Oncogenic mutations of ALK kinase in neuroblastoma. [J]. Nature. 2008;455: 971–974.
    [48] Amin HM, Lai R.Pathobiology of ALK+ anaplastic large-cell lymphoma. Blood. 2007;110: 2259-2267.
    [49] Webb TR, Slavish J, George RE, et al. Anaplastic lymphoma kinase: role in cancer pathogenesis and small-molecule inhibitor development for therapy. [J]. Expert review of anticancer therapy. 2009; 9: 331-356.
    [50] Li, R., Morris, S.W. Development of anaplastic lymphoma kinase (ALK) small-molecule inhibitors for cancer therapy. [J]. Med. Res. Rev. 2008;28: 372-412.
    [51] Koivunen, J.P., Mermel, C., Zejnullahu, K., et al. EML4-ALK fusion gene andefficacy of an ALK kinase inhibitor in lung cancer. [J]. Clin. Cancer Res. 2008; 14, 4275-4283.
    [52] Wan, W., Albom M.S., Lu, L., et al. Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. [J]. Blood. 2006; 107: 1617-1623.
    [53] Christensen, J.G., Zou, H.Y., AranGo, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. [J]. Mol. Cancer Ther. 2007;6: 3314-3322.
    [54] Jussi P., Koivunen, Craig Mermel, et al. EML4-ALK Fusion Gene and Efficacy of an ALK Kinase Inhibitor in Lung Cancer. [J]. Clin. Cancer Res. 2008;14: 4275-4283.
    [55] Slupianek A, NS. M, Hoser G, et al. Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase mediated lymphomagenesis. [J]. Cancer Res. 2001;61: 2194-2199
    [56] Bai RY, Ouyang T, Miething C, et al. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. [J]. blood. 2000;96: 4319-4327
    [57] Zamo A, Chiarle R, Piva R, et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. [J]. Oncogene. 2002; 21: 1038-1047
    [58] Nieborowska-Skorska M, Slupianek A, Xue L, et al. [J]. Cancer Res. 2001; 61: 6517-6523
    [59] Cussac D, Greenland C, Roche S, et al. Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. [J]. Blood. 2004; 103: 1464-1471.
    [60] Manabu Soda, Shuji Takada, KenGo Takeuchi, et al. A mouse model for EML4-ALK-positive Lung Cancer. [J]. PNAS.2008; 105: 19893-19897.
    [1] Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. [J]. Science. 1991; 802–804
    [2] Galland F, Stefanova M, Lafage M, et al. Localization of the 5' end of the MCF2 oncogene to human chromosome. [J]. Cytogenet. Cell Genet. 1992; 60 (2): 114–116.
    [3] Cooper CS., The met oncogene: from detection by transfection to transmembrane receptor for hepatocyte growth factor. [J]. Oncogene. 1992; 7 (1): 3–7
    [4] Andersen JN, Jansen PG, Echwald SM, et al. A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. [J]. FASEB J. 2004; 18(1): 8-30.
    [5] Gentile A, Trusolino L, Comoglio PM., The Met tyrosine kinase receptor in development and cancer. [J]. Cancer Metastasis Rev. 2008; 27 (1): 85–94.
    [6] Maestrini E., Tamagnone L., Longati P., et al. A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. [J]. Proc Natl Acad Sci USA 1996; 93: 674–678.
    [7] Sattler M., Salgia R., c-Met and hepatocyte growth factor: potential as novel targets in cancer therapy. [J]. Curr Oncol Rep 2007; 9:102–108.
    [8] Gandino L, Longati P, Medico E, et al., Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase". J. Biol. Chem. 1994; 269 (3): 1815–1820.
    [9] Peschard P, Fournier TM, Lamorte L, et al., Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. [J]. Mol. Cell. 1994; 8 (5): 995–1004.
    [10] Ponzetto C., Bardelli A., Zhen Z., et al., A multifunctional docking site mediatessignaling and transformation by the hepatocyte growth factor/scatter factor receptor family. [J]. Cell. 1994 77 (2): 261–271
    [11] Maina F, Casagranda F, Audero E, et al., Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. [J]. Cell. 1996; 87 (3): 531–542
    [12] Abounader R, Reznik T, Colantuoni C, et al., Regulation of c-Met-dependent gene expression by PTEN. [J]. Oncogene. 2004; 23 (57): 9173–9182
    [13] Pelicci G, Giordano S, Zhen Z, et al., The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. [J]. Oncogene. 1995; 10 (8): 1631–1638
    [14] Weidner KM, Di Cesare S, Sachs M, et al., ). Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. [J]. Nature 1996; 384 (6605): 173–176
    [15] Furge KA, Zhang YW, Vande Woude GF., Met receptor tyrosine kinase: enhanced signaling through adapter proteins. [J]. Oncogene. 2000; 19 (49): 5582–5589
    [16] Gual P., Giordano S., Anguissola S., et al., Gab1 phosphorylation: a novel mechanism for negative regulation of HGF receptor signaling. [J]. Oncogene. 2004; 20 (2): 156–166
    [17] Gual P., Giordano S., Williams TA., Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. [J]. Oncogene. 2000; 19 (12): 1509–1518
    [18] O'Brien LE., Tang K., Kats ES. et al., ERK and MMPs sequentially regulate distinct stages of epithelial tubule development. [J]. Dev. Cell. 2004; 7 (1): 21–32
    [19] Marshall CJ., Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995; 80 (2): 179–185
    [20] Graziani A, Gramaglia D, Cantley LC, et al., The tyrosine-phosphorylatedhepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. [J]. J. Biol. Chem. 1991; 266 (33): 22087–22090
    [21] Boccaccio C., AndòM., Tamagnone L., et al., Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. [J]. Nature. 1998; 391 (6664): 285–288
    [22] Stellrecht CM, Gandhi V., MET receptor tyrosine kinase as a therapeutic anticancer target. [J]. Cancer Lett. 2009; 280(1):1-14.
    [23] Gude NA, Emmanuel G, Wu W, et al., Activation of Notch-mediated protective signaling in the myocardium. Circ. Res. 2008; 102 (9): 1025–1035
    [24] Wagh PK, Peace BE, Waltz SE., Met-related receptor tyrosine kinase Ron in tumor growth and metastasis. [J]. Adv Cancer Res. 2008;100: 1-33.
    [25] Eric S. Kim, Ravi Salgia. MET Pathway as a Therapeutic Target. [J]. J Thorac Oncol. 2009;4(4): 444–447
    [27] Birchmeier C, Gherardi E, Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. [J]. Trends Cell Biol. 1998; 8 (10): 404–410.
    [28] Uehara Y, Minowa O, Mori C, Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. [J]. Nature. 1995;373 (6516): 702–705
    [29] Shirasaki F, Makhluf HA, LeRoy C, et al., Ets transcription factors cooperate with Sp1 to activate the human tenascin-C promoter. [J]. Oncogene. 1999; 18 (54): 7755–7764
    [30] Gambarotta G, Boccaccio C, Giordano S, et al., Ets up-regulates MET transcription. [J]. Oncogene. 1996; 13 (9): 1911–1917
    [31] Pennacchietti S, Michieli P, Galluzzo M, et al., Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. [J]. Cancer Cell. 2003; 3 (4): 347–361
    [32] Cipriani NA, Abidoye OO, Vokes E, et al., MET as a target for treatment of chest tumors. [J]. Lung Cancer. 2009; 63(2):169-179
    [1] Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. [J]. Cell. 1995 Jan 27;80(2):225-236.
    [2] Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Protein tyrosine phosphatases in the human genome. [J]. Cell. 2004 Jun 11;117(6):699-711.
    [3] Andersen JN, Jansen PG, Echwald SM, Mortensen OH, Fukada T, Del Vecchio R, Tonks NK, M?ller NP. A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage. [J]. FASEB J. 2004 Jan;18(1):8-30.
    [4] Majeti R, Weiss A. Regulatory mechanisms for receptor protein tyrosine phosphatases. [J]. Chem Rev. 2001 Aug;101(8):2441-2448.
    [5] Besco JA, Frostholm A, Popesco MC, Burghes AH, Rotter A. Genomic organization and alternative splicing of the human and mouse RPTPrho genes. [J]. BMC Genomics. 2001;2(1):1.
    [6] Besco J, Popesco MC, Davuluri RV, Frostholm A, Rotter A. Genomic structure and alternative splicing of murine R2B receptor protein tyrosine phosphatases (PTPkappa, mu, rho and PCP-2). [J]. BMC Genomics. 2004 Feb 11;5(1):14.
    [7] Brady-Kalnay SM, Mourton T, Nixon JP, Pietz GE, Kinch M, Chen H, Brackenbury R, Rimm DL, Del Vecchio RL, Tonks NK.Dynamic interaction of PTPmu with multiple cadherins in vivo. [J]. J Cell Biol. 1998 Apr 6;141(1):287-296.
    [8] Brady-Kalnay SM, Rimm DL, Tonks NK. Receptor protein tyrosine phosphatase PTPmu associates with cadherins and catenins in vivo. [J]. J Cell Biol. 1995 Aug;130(4):977-986.
    [9] Fuchs M, Müller T, Lerch MM, Ullrich A. Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. [J]. J Biol Chem. 1996 Jul 12;271(28):16712-16719.
    [10] Yan HX, He YQ, Dong H, Zhang P, Zeng JZ, Cao HF, Wu MC, Wang HY. Physical and functional interaction between receptor-like protein tyrosine phosphatase PCP-2 and beta-catenin. [J]. Biochemistry. 2002 Dec 31; 41(52): 15854-15860.
    [11] Yan HX, Yang W, Zhang R, Chen L, Tang L, Zhai B, Liu SQ, Cao HF, Man XB, Wu HP, Wu MC, Wang HY. Protein-tyrosine phosphatase PCP-2 inhibits beta-catenin signaling and increases E-cadherin-dependent cell adhesion. [J]. J. Biol. Chem. 2006 Jun 2;281(22):15423-15433.
    [12] Li W, Zhang Y, Li H, Sun Y, Fu Y, Wu X, Zhao Z, Fu X, [J]. Chem. Res. Chinese U., 2008., 24(5):592-596.
    [13] Chen Y,Yang S,Fu Y,Wang J,Zhao Z,Fu X, [J]. Chem. Res. Chinese U., 2008., 24(3):344-347
    [14] Zhao R, Fu X, Li Q, Krantz SB, Zhao ZJ. Specific interaction of protein tyrosine phosphatase-MEG2 with phosphatidylserine. [J]. J Biol Chem. 2003 Jun 20; 278(25):22609-22614.
    [15] Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. [J]. Science. 2010 Jan 1;327(5961):46-50.
    [16] Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. [J]. Cell. 2009 Dec 11;139(6):1056-1068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700