构建生物碱骨架的催化不对称碳—碳键形成反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性含氮杂环化合物广泛存在于生物碱、药物活性分子中,也是有机合成的重要中间体。发展高效合成该类分子的方法学具有重要的意义。本文设计了多种不对称催化反应,成功构建了多种生物碱骨架,用于合成吡咯类、吲哚类生物碱,取得了非常好的结果,并首次实现了吲哚类生物碱(+)-Folicanthine的不对称催化全合成。
     光学活性的二氢吡咯烷是一类有着广泛用途的有机合成中间体。异腈羧酸酯与贫电子烯烃的环化反应,一步构建多个手性中心,是合成二氢吡咯烷非常有效和原子经济的方法。本文首次实现了金鸡纳碱衍生物催化异腈羧酸酯与硝基烯烃的不对称环化反应,可以快捷高效地合成手性的二氢吡咯衍生物,发现具有6-位酚羟基的金鸡纳碱衍生物能够很好地催化该反应,对于各类底物都能取得很好的结果,得到高达99%的对映选择性。利用该不对称合成策略,通过衍生,可以进一步合成多取代的手性四氢吡咯衍生物。
     光学活性的四氢吡咯和氧化吲哚螺环是一类非常重要的手性分子。本文发展了一类仿生催化的不对称1,3-偶极环加成反应,利用手性磷酸催化剂能够实现酮亚胺转化为甲亚胺叶立德,继而与贫电子烯烃高选择性地发生不对称1,3-偶极环加成反应;在温和的条件下,得到构型单一,高达99%的对映选择性。利用该合成方法,可以快速构建手性多取代四氢吡咯和氧化吲哚螺环结构,为多样性导向合成生理活性化合物提供了很好的方法学。
     基于碳氢活化的交叉脱氢偶联反应是形成C-C最直接有效的手段,发展高选择性的不对称氧化偶联反应具有很大的挑战。我们利用DDQ(二氯二氰苯醌)作为氧化剂,将3-苄基吲哚衍生物氧化成α,β-不饱和亚胺中间体,通过手性噁唑啉配体与铜形成的配合物活化1,3-二羰基化合物,脱氢偶联产物获得高达98%的对映选择性。而且脱氢偶联产物可以很容易转化成高光学活性多取代吲哚啉并环结构。
     六氢吡咯吲哚类骨架广泛存在于生物碱以及生物活性分子中。我们通过布朗斯特酸活化3-羟基氧化吲哚和烯酰胺的反应,高收率和高立体选择性地得到了含有手性季碳的3,3’-双取代的氧化吲哚产物,对映选择性高达96%ee。以此反应为基础,首次实现了天然产物生物碱(+)-Folicanthine的催化不对称全合成。
Chiral cyclic molecules, especially those nitrogen-containing skeletons, are core structural element commonly present in numerous nature products and biologically active molecules, as well as important buiding blocks in organic synthesis. In this dissertation, we have developed several enantioselective catalytic methods as a broadly applicable to access key chiral building blocks, and have accomplished the first enantioselective total synthesis of (+)-Folicanthine.
     Optically active2,3-dihydropyrroles are important unsaturated heterocyclic compounds, which can not only be transformed into multisubstituted pyrrolidines for the further synthesis of chiral building blocks, but also have been applied to the total synthesis of natural products. We have disclosed the first asymmetric catalytic cycloaddition reaction of α-substituted isocyanoesters with nitroolefins by cinchona alkaloid derivatives to yield2,3-dihydropyrroles with excellent diastereo-and enantioselectivities (up to>20/1dr,>99%ee). Cinchona alkaloids bearing a C6'-hydroxy, which can serve as bifunctional organocatalysts, showed much higher stereoselectivity than their parent molecules. The applications of this asymmetric cycloaddition in the synthesis of structurally diverse pyrrolidines have been demonstrated by diastereoselective reduction and Michael addition with phenylethynyl lithium.
     Five-membered nitrogenous heterocycles, in particular, pyrrolidines and spirooxindoles, are key structural motifs prevalent in numerous biologically significant molecules and natural alkaloids. We have developed a highly efficient, so far unique, bio-inspired diversity-oriented synthesis of pyrrolidine derivative collection, which relies on the strategic use of phosphoric acid-catalyzed biomimetic transamination of keto esters and amines, the precursors of amino acids, to in situ generate azomethine ylides, which readily participated in the highly enantioselective1,3-dipolar cycloaddition with a structurally diverse range of dipolarophiles. As a result, highly functionalized pyrrolidines and spirooxindole derivatives were obtained with excellent enantioselectivity.
     C-H activation-based cross-coupling reactions have emerged as robust alternatives to conventional transformations for the creation of new C-C bonds. These reactions may be limited by the absence of binding sites in carbohydrogen compounds that enable the formation of a stereochemically defined transition state for achieving high enantioselectivity. We have disclosed a unique highly enantioselective C-H activation-based oxidative coupling reaction of3-arylmethylindoles with dibenzyl malonate by using chiral Lewis acids as catalysts. The reaction proceeded probably via a conjugate addition of the chiral Lewis acid-bonded malonate ester to the vinylogous iminium cation generated from dehydrogenation of3-arylmethylindoles with DDQ. In addition, the protocol also represents a unique sp3C-H activation-based approach to access oxindole derivatives bearing quaternary stereogenic center with high optical purity.
     Cyclotryptamine alkaloids constitute a large family of natural products that show fascinating biological activities. we have developed a highly enantioselective nucleophilic substitution reaction of3-hydroxyoxindoles with enecarbamates catalyzed by chiral phosphoric acids (up to96%ee), providing a new entry to3,3'-disubstituted oxindoles with creation of a quaternary all-carbon stereogenic center at the C3position. This method holds great potential in asymmetric total syntheses of hexahydropyrroloindole alkaloids. By using this protocol to prepare the key chiral building block, we accomplished the first catalytic enantioselective total synthesis of (+)-folicanthine, which was synthesized in12steps from3-hydroxyoxindole in3.7%overall yield.
引文
[1]王锋鹏.生物碱化学,北京:北京工业出版社,2008.
    [2]Buckingham J.;Baggaley,K.H.;Roberts,A.D.;Szabo,L.F.Dictionary of Alkaloids second edition,CRC press,Taylor & Fracis Group,Boca Raton, London New York,2010.
    [3]Wall.M.E.;Wani,M.C.;Cook,C.E.;Palmer,K.H.;McPail,A.I.,Sim,G.A. Plant antitumor agents.I.The isolation and structure of camptothecin,a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminate.J.Am. Chen.Soc.1966,88,3888-3890.
    [4]Wang,X.;Zhou,X.;Hecht,S.M.Role of the 20-hydroxyl group in camptothecin binding by the Topoisomerase I-DNA binary complex. Biochemistry,1999,38,4374-4381.
    [5]O'Leary, J.; Muggia, F. M. Camptothecins:a review of their development and schedules of administration. Eur. J. Cancer.1998,34,1500-1508.
    [6](a) Pilli, R. A.; Ferreira de Oliveira, M. Recent progress in the chemistry of the Stemona alkaloids. Nat. Prod.Rep.2000,17,117-127. (b) Ye, Y.; Qin, G-W.; Xu, R.-S. Alkaloids of Stemona japonica.J. Nat. Prod.1994,57,665-669.
    [7](a) Cui, C.-B.; Kakeya, H.; Osada, H. Spirotryprostatin B, a novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. J. Antibiot,1996,49, 832-835. (b) Cui, C.-B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, Spirotryprostatins A and B, produced by Aspergillusfumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 1996,52, 12651-12666.
    [8](a) Pearson, W. H. In studies in natural product chemistry; Atta-Ur-Rahman, Ed.; Elsevier:New York,1998; Vol.1, p 323. (b) Sardina, F. J.; Rapoport, H. Enantiospecific synthesis of heterocycles from a-amino acids. Chem. Rev.1996, 96,1825-1872. (c) Gothelf, K. V.; Jorgensen, K. A. Asymmetric 1,3-dipolar cycloaddition reactions. Chem. Rev.1998,98,863-909. (d) Pearson, W. H. Alkaloid synthesis via [3+2] cycloadditions. Pure Appl. Chem.2002,74, 1339-1347. (e) Felpin, F. X.; Lebreton, J. Recent Advances in the Total Synthesis of Piperidine and Pyrrolidine Natural Alkaloids with Ring-Closing Metathesis as a Key Step. Eur. J. Org. Chem.2003,19,3693-3712. (f) Marti, C.; Carreira, E. M. Construction of spiro[pyrrolidine-3,3'-oxindoles]-recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem.2003,2209-2219. (g) Pearson, W. H.; Stoy, P. Cycloadditions of nonstabilized 2-azaallyllithiums (2-azaallyl anions) and azomethine ylides with alkenes:[3+2] approaches to pyrrolidines and application to alkaloid total synthesis. Synlett.2003,903-921. (h) Cheng, Y.; Huang, Z. T.; Wang, M. X. Heterocyclic enamines:the versatile intermediates in the synthesis of heterocyclic compounds and natural products. Curr. Org. Chem. 2004,8,325-351. (i) Coldham, I.; Hufton, R. Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chem. Rev.2005,105,2765-2809. (j) Pandey, G.; Banerjee, P.; Gadre, S. R. Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides. Chem. Rev. 2006,106,4484-4517. (k) Nair, V.; Suja, T. D. Intramolecular 1,3-dipolar cycloaddition reactions in targeted syntheses. Tetrahedron 2007,63,12247-12275. (1) Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed.2007,46,8748-8758.
    [9]Douglas, C. J.; Overman, L. E. Catalytic asymmetric synthesis of all-carbon quaternary stereocenters. Proc. Natl. Acad. Sci. U.S.A.2004,101,5363-5367.
    [10](a) Cordell, G A.; Saxton, J. E. The Alkaloids:Chemistry and Physiology, Vol.20, New York,1981, p.3-295. (b) Hino, T.; Nakagawa, M. Chemistry and reactions of cyclic tautomers of tryptamines and tryptophans. Alkaloids 1988,34,1-75. (c) Sevenet, T.; Pusset, J. The Alkaloids:Chemistry and Pharmacology, Vol.48, New York,1996, pp.1-73. (d) Anthoni, U.; Christophersen, C.; Nielsen, P. H. Naturally occurring cyclotryptophans and cyclotryptamines. Alkaloids 1999,13, 163-236.
    [11]Goppi, P. G.; Broglia, C.; Merli, F.; Dell'Olio, M.; Stelitano, C.; Iannitto, E.; Federico, M.; Berte R.; Luisi, D.; Molica, S.; Cavalli, C.; Dezza, L.; Ascari, E. Vinblastine, Bleomycin, and Methotrexate Chemotherapy plus irradiation for patients with early-stage, favorable Hodgkin lymphoma. Cancer 2003,98, 2393-2401.
    [12]Starling, D. Two ultrastructurally distinct tubulin paracrystals induced in sea-urchin eggs by Vinblastine sulphate. J. Cell. Sci.1976,20,79-89.
    [13]Brossi, A.; Schonenberger, B.; Clark, O. E.; Ray, R. Inhibition of acetylcholinesterase from electric eel by (-)- and (+)-physostigmine and related compounds. FEBS letter 1986,201,190-192.
    [14](a) Crich, D.; Banerjee, A. Chemistry of the hexahydropyrrolo[2,3-b]indoles: configuration, conformation, reactivity, and applications in synthesis. Acc. Chem. Res.2007,40,151-161. (b) Steven, A.; Overman, L. E. Total synthesis of complex cyclotryptamine alkaloids:stereocontrolled construction of quaternary carbon stereocenters. Angew. Chem. Int. Ed.2007,46,5488-5508. (c) Ruiz-Sanchis, P.; Savina, S. A.; Albericio, F.; Alvarez, M. Structure, bioactivity and synthesis of natural products with hexahydropyrrolo[2,3-b]indole. Chem. Eur. J.2011,77,1388-1408.
    [15]Rasolonjanahary, R.; SPvenet, T.; Voegelein, F. G. Kordon, C. Psycholeine, a natural alkaloid extracted from Psychotria oleoides, acts as a weak antagonist of somatostatin. Eur. J. Pharmacol.1995,285,19-23.
    [16](a) Verotta, L.; Pilati, T.; TatU, M.; Elisabetsky, E. Amador, T. A. Nunes, D. S. Pyrrolidinoindoline alkaloids from Psychotria colorata. J. Nat. Prod.1998,61, 392-396. (b) Saad, H.-E. A.; Sharkawy, S. H.; Shier, W. T. Biological activities of pyrrolidinoindoline alkaloids from Calycodendron milnei. Planta Med.1995,61, 313-316.
    [17]Scott, A. I.; Mccapra, F.; Hall, E. S. Chimonanthine. a one-step synthesis and biosynthetic model. J. Am. Chem. Soc.1964,86,302-303.
    [18]Hendrickson, J. B.; Goschke, R.; Rees, R. Total synthesis of the calycanthaceous alkaloids. Tetrahedron 1964,20,565-579.
    [19]Hino, T.; Kodato, S.; Takahashi, K.; Yamaguchi, H.; Nakagawa, M. Oxidative dimerization of Nb-methoxycarbonyltryptamines by dye-sensitized photooxygenation in formic acid. Synthesis of (±)-Folicanthine and (±)-Chimonanthine. Tetrahedron Lett.1978,49,4913-4916.
    [20]Fang, C.-L.; Home, S.; Taylor, N.; Rodrigo, R. Dimerization of a 3-substituted oxindole at C-3 and its application to the synthesis of (±)-Folicanthine. J. Am. Chem. Soc.1994,116,9480-9586.
    [21]Ishikawa, H.; Takayama, H.; Aimi, N. Dimerization of indole derivatives with hypervalent iodines(Ⅲ):a new entry for the concise total synthesis of rac- and meso-Chimonanthines. Tetrahedron Lett.2002,43,5637-5639.
    [22]Verotta, L.; Orsini, F.; Sbacchi, M.; Scheildler, M. A.; Amador, T. A.; Elisabetsky, E. Synthesis and antinociceptive activity of Chimonanthines and pyrrolidinoindoline-type alkaloids. Bioorg. Med. Chem.2002,12,2133-2142.
    [23]Link, J. T.; Overman, L. E. Stereocontrolled total syntheses of meso-Chimonanthine and meso-Calycanthine via a novel samarium mediated reductive dialkylation. J. Am. Chem. Soc.1996,118,8166-8167.
    [24]Overman, L. E.; Paone, D. V.; Stearns, B. A. Direct stereo- and enantiocontrolled synthesis of vicinal stereogenic quaternary carbon centers, total syntheses of meso- and (-)-Chimonanthine and (+)-Calycanthine. J. Am. Chem. Soc.1999,121, 7702-7703.
    [25]Overman, L. E.; Larrow, J. F.; Stearns, B. A.; Vance, J. M. Enantioselective construction of vicinal stereogenic quaternary centers by dialkylation:practical total syntheses of (+)- and meso-Chimonanthine. Angew. Chem. Int. Ed.2000,39, 213-215.
    [26]Movassaghi, M.; Schmidt, M. A. Consise total synthesis of (-)-Calycanthine, (+)-Chimonanthine, and (+)-Folicanthine. Angew. Chem. Int. Ed.2007,46, 3725-3728.
    [27](a) Movassaghi, M.; Schmidt, M. A.; Ashenhurst, J. A. Concise total synthesis of (+)-WIN 64821 and (-)-Ditryptophenaline. Angew. Chem. Int. Ed.2008,47, 1485-1487. (b) Iwasa, E.; Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. Total synthesis of (+)-Chaetocin and its analogues: their histone methyltransferase G9a inhibitory activity. J. Am. Chem. Soc.2010, 132,4078-4079. (c) Kim, J.; Movassaghi, M. General approach to Epipolythiodiketopiperazine alkaloids:total synthesis of (+)-Chaetocins A and C and (+)-12,12'-Dideoxychetracin A. J. Am. Chem. Soc.2010,132,14376-14378. (d) Kim, J.; Ashenhurst, J. A.; Movassaghi, M. Total synthesis of (+)-11,11'-Dideoxyverticillin A. Science,2009,324,238-241.
    [1]Kacprzak, K.; Gawronski, J. Cinchona alkaloids and their derivatives:versatile catalysts and ligands in asymmetric synthesis. Synthesis 2001,961-998.
    [2]Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Asymmetric organic catalysis with modified cinchona alkaloids. Acc. Chem. Res.2004,37, 621-631.
    [3](a) Bredig, G.; Fiske, W. S.; Biochem. Z.1912,7-23. (b)Pracejus, H. Organische katalysatoren, LXI. asymmetrische synthesen mit ketenen, I. alkaloid-katalysierte asymmetrische synthesen von α-phenyl- propionsaureestem. Justus Liebigs Ann. Chem.1960,634,9-22.
    [4]Hiemstra, H.; Wynberg, H. Addition of aromatic thiols to conjugated cycloalkenones, catalyzed by chiral.beta.-hydroxy amines. A mechanistic study of homogeneous catalytic asymmetric synthesis. J. Am. Chem. Soc.1981,103, 417-430.
    [5]Kolb. H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev.1994,94,2483-2547.
    [6]Tian, S.-K.; Deng, L. A highly enantioselective chiral Lewis base-catalyzed asymmetric cyanation of ketones. J. Am. Chem. Soc.2001,123,6195-6196.
    [7]Tian, S.-K.; Hong, R.; Deng, L. Catalytic asymmetric cyanosilylation of ketones with chiral Lewis base. J. Am. Chem. Soc.2003,125,9900-9901.
    [8]Li, H.; Wang, B.; Deng, L. Enantioselective nitroaldol reaction of a-ketoesters catalyzed by cinchona alkaloids. J. Am. Chem. Soc.2006,128,732-733.
    [9]Iwabuchi, Y. Nakatani, M.; yokoyama, N.; Hatakeyama, S. Chiral amine-catalyzed asymmetric Baylis-Hillman reaction:A reliable route to highly enantiomerically enriched (α-methylene-β-hydroxy)esters. J. Am. Chem. Soc. 1999,121,10219-10220.
    [10]Shi, M.; Xu, Y.-M. Catalytic, asymmetric Baylis-Hillman reaction of imines with methyl vinyl ketone and methyl acrylate. Angew. Chem. Int. Ed.2002,41, 4507-4510.
    [11]McDaid, P.; Chen, Y.; Deng, L. A highly enantioselective and general conjugate addition of thiols to cyclic enones with an organic catalyst. Angew. Chem. Int. Ed. 2002,41,338-340.
    [12]Li, H.; Wang, Y.; Tang, L.; Deng, L. Highly enantioselective conjugate addition of malonate and β-ketoester to nitroalkenes:asymmetric C-C bond formation with new bifunctional organic catalysts based on cinchona alkaloids. J. Am. Chem. Soc.2004,126,9906-9907.
    [13]Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Stereocontrolled creation of adjacent quaternary and tertiary stereocenters by a catalytic conjugate addition. Angew. Chem. Int. Ed.2005,44,105-108.
    [14](a) Wu, F.; Li, H.; Hong, R.; Deng, L. Construction of quaternary stereocenters by efficient and practical conjugate additions to α,β-unsaturated ketones with a chiral organic catalyst. Angew. Chem. Int. Ed.2006,45,947-950. (b) Wu, F.; Hong, R.; Khan, J.; Liu, X.; Deng, L. Asymmetric synthesis of chiral aldehydes by conjugate additions with bifunctional organocatalysis by cinchona alkaloids. Angew. Chem. Int. Ed.2006,45,4301-4305.
    [15]Li, H.; Song, J.; Liu, X.; Deng, L. Catalytic enantioselective C-C bond forming conjugate additions with vinyl sulfones. J. Am. Chem. Soc.2005,127,8948-8949.
    [16]Wang, Y.; Liu, X.; Deng, L. Dual-function cinchona alkaloid catalysis:catalytic asymmetric tandem conjugate addition-protonation for the direct creation of nonadjacent stereocenters. J. Am. Chem. Soc.2006,128,3928-3930.
    [17]Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. Asymmetric Mannich reactions of P-keto esters with acyl imines catalyzed by cinchona alkaloids. J. Am. Chem. Soc. 2005,127,11256-11257.
    [18]Song, J.; Wang, Y.; Deng, L. The Mannich reaction of malonates with simple imines catalyzed by bifunctional cinchona alkaloids:enantioselective synthesis of β-amino acids. J. Am. Chem. Soc.2006,128,6048-6049.
    [19]Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. Asymmetric Friedel-Crafts reaction of indoles with imines by an organic catalyst. J. Am. Chem. Soc.2006, 128,8156-8157.
    [20]Saegusa, T.; Ito, Y.; Kinoshita, H.; Tomita, S. Synthetic reactions by complex catalysts. XIX. copper-catalyzed cycloaddition reactions of isocyanides. novel synthesis of △1-pyrroline and △2-oxazoline. J. Org. Chem.1971,36,3316-3323.
    [21]Ito, Y.; Sawamura, M.; Hayashi, T. Catalytic asymmetric Aldol reaction:reaction of Aldehydes with isocyanoacetate catalyzed by a chiral Ferrocenylphosphine-Gold(I) complex. J. Am. Chem. Soc.1986,108,6405-6406.
    [22](a) Ito, Y.; Sawamura, M.; Hayashi, T. Asymmetric Aldol reaction of an isocyanoacetate with aldehydes by chiral Ferrocenylphosphine-Gold(Ⅰ) complexes:design and preparation of new efficient Ferrocenylphosphine ligands. Tetrahedron Lett.1987,28,6215-6218. (b) Sawamura, M.; Ito, Y.; Hayashi, T. NMR Studies of the Gold(I)-catalyzed asymmetric Aldol reaction of isocyanoacetate. Tetrahedron Lett.1990,31,2723-2726. (c) Hayashi, T.; Sawamura, M.; Ito, Y. Asymmetric synthesis catalyzed by chiral Ferrocenylphosphine transition metal complexes.10 Gold(I)-catalyzed asymmetric Aldol reaction of isocyanoacetate. Tetrahedron 1992,48,1999-2012.
    [23](a) Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.; Hayashi, T. Asymmetric Aldol reaction of α-isocyanocarboxylates with paraformaldehyde catalyzed by chiral Ferrocenylphosphine-Gold(I) complexes:catalytic asymmetric synthesis of α-alkylserines. Tetrahedron Lett.1988,29,235-238. (b) Ito, Y.; Sawamura, M.; Shirakawa, E.; Hayashizaki, K.; Hayashi, T. Asymmetric synthesis of β-hydroxy-a-alkylamino acids by aymmetric Aldol reaction of a-isocyanocarboxylates catalyzed by chiral Ferrocenylphosphine-Gold(I) complexes. Tetrahedron 1988,44,5253-5262.
    [24]Hayashi, T.; Uozumi, Y.; Yamazaki, A.; Sawamura, M.; Hamashima, H.; Ito, Y Silver(I)-catalyzed asymmetric Aldol reaction of isocyanoacetate. Tetrahedron Lett.1991,32,2799-2802.
    [25]Hayashi, T.; Kishi, E.; Soloshonok, V. A.; Uozumi, Y. Erythro-selective aldol-type reaction of N-sulfonylaldimines with methyl isocyanoacetate catalyzed by Gold(I). Tetrahedron Lett.1996,37,4969-4972.
    [26](a) Zhou, X.; Lin, Y.; Dai, L.; Sun, J.; Xia, L.; Tang, M. A catalytic enantio selective access to optically active 2-imidazoline from N-sulfonylimines and isocyanoacetates. J. Org. Chem.1999,64,1331-1334. (b) Zhou, X.-Ti.; Lin, Y.-Rui.; Dai, L.-X.; Sun, J. A simple and practical access to enantiopure 2,3-diamino acid derivatives. Tetrahedron:Asymmetry 1999,10,855-862.
    [27]Grigg, R.; Lansdell, M. I.; Thornton-Pett, M. Silver acetate catalysed cycloadditions of isocyanoacetates. Tetrahedron 1999,55,2025-2044.
    [28]Schollkopf, U.; Schroder, R.2-Unsubstituted oxazoles from a-metalated isocyanides and acylating agents. Angew. Chem. Int. Ed.1971,10,333-333.
    [29]Meyer, R.; Schollkopf, U.; Bohme, P. Synthesen mit a-metallierten isocyaniden, ⅩⅩⅩⅠⅩ.2-imidazoline aus α-metallierten isocyaniden und schiff-basen; 1,2-diamine und 2,3-diaminoalkansauren. Liebigs Ann. Chem.1977,1183-1193.
    [30](a) Schollkopf, U.; Hantke, K. Preparation of glutamic acid derivatives from a-metalated ethyl isocyanoacetate and acrylic esters. Angew. Chem. Int. Ed.1970, 9,896-897. (b) Schollkopf, U.; Porsch, P.-H. Ethyl y-cyano-a-isocyanoalkanoates from a-metalated ethyl isocyano-acetates or-propionates and acrylonitriles. Angew. Chem. Int. Ed.1972,11,429-431. (c) Schollkopf, U.; Hantke, K. Synthesen mit a-metallierten isocyaniden, ⅩⅩⅠⅤ. a-isocyanglu-tarsaure-diathylester, glutaminsaure-derivate und pyrrolincarbonsaure-athylester aus a-metalliertem isocyanessigsaure-oder-propionsaure-athylester und acrylsaureestern. Liebigs Ann. Chem.1973,1571-1582.
    [31]Kuwano, R.; Kashiwabara, M.; Ohsumi, M.; Kusano, H. Catalytic asymmetric hydrogenation of 2,3,5-trisubstituted pyrroles, J. Am. Chem. Soc.2008,130, 808-809.
    [32]Bon, R. S.; Hong, C.; Bouma, M. J.; Schmitz, R. F.; Kanter, F.; Lutz, M.; Spek, A.; Orru, L R. Novel multicomponent reaction for the combinatorial synthesis of 2-imidazolines. Org. Lett.2003,5,3759-3762.
    [33]McAnda, A. F.; Roberts, K. D.; Smallridge, A. J.; Ten,A.; Trewhella, M. A. Mechanism of the yeast mediated reduction of nitrostyrenes in light petroleum. J. Chem. Soc. Perkin Trans.11998,501-504.
    [34]Denmark, S. E.; Marcin, L. R. A general method for the preparation of 2,2-disubstituted 1-nitroalkenes. J. Org. Chem.1993,55,3850-3856.
    [1](a) Sardina, F.J.; Rapoport, H. Enantiospecific synthesis of heterocycles from a-amino acids. Chem. Rev.1996,96,1825-1872. (b) Coldham, I.; Hufton, R. Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chem. Rev. 2005,105,2765-2809. (c) Pandey, G.; Banerjee, P.; Gadre, S. R. Construction of enantiopure pyrrolidine ring system via asymmetric [3+2]-cycloaddition of azomethine ylides. Chem. Rev.2006,106,4484-4517.
    [2](a) Allway, P.; Grigg, R. Chiral Co(II) and Mn(II) catalysts for the 1,3-dipolar cycloaddition reactions of azomethine ylides derived from arylidene imines of glycine. Tetrahedron Lett.1991,32,5817-5820. (b) Grigg, R. Asymmetric cascade 1,3-dipolar cycloaddition reactions of imines. Tetrahedron:Asymmetry 1995,6,2475-2486.
    [3]Longmire, J. M.; Wang, B.; Zhang, X. Highly enantioselective Ag(I)-catalyzed [3 +2] cyclo- addition of azomethine ylides. J. Am. Chem. Soc.2002,124, 13400-13401.
    [4]Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; J(?)rgensen, K. Catalytic asymmetric 1,3-dipolar cycloaddition reactions of azomethine ylides—a simple approach to optically active highly functionalized proline derivatives. Angew. Chem. Int. Ed. 2002,41,4236-4238.
    [5]Chen, C.; Li, X.; Schreiber, S. L. Catalytic asymmetric [3+2] cycloaddition of azomethine ylides. development of a versatile stepwise, three-component reaction for diversity-oriented synthesis. J. Am. Chem. Soc.2003,125,10174-10175.
    [6]Knopfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Readily available biaryl P, N ligands for asymmetric catalysis. Angew. Chem. Int. Ed.2004,43,5971-5973.
    [7]Cabrera, S.; Arrayas, R. G.; Carretero, J. C. Highly enantioselective copper(I)-fesulphos-catalyzed 1,3-dipolar cycloaddition of azomethine ylides. J. Am. Chem. Soc.2005,127,16394-16395.
    [8]Yan, X. X.; Peng, Q.; Zhang, Y.; Zhang, K.; Hong, W.; Hou, X. L.; Wu, Y. D. A Highly enantio- and diastereoselective Cu-catalyzed 1,3-dipolar cycloaddition of azomethine ylides with nitroalkenes. Angew. Chem. Int. Ed.2006,45,1979-1983.
    [9]Zeng, W.; Chen, G. Y.; Zhou, Y. G.; Li, Y. X. Hydrogen-bonding directed reversal of enantioselectivity. J. Am. Chem. Soc.2007,129,750-751.
    [10]Wang, C. J.; Liang, G.; Xue, Z. Y.; Gao, F. Highly enantioselective 1,3-dipolar cyclo-addition of azomethine ylides catalyzed by Copper(I)/TF-BiphamPhos complexes. J. Am. Chem. Soc.2008,130,17250-17251.
    [11](a) Vicario, J. L.; Reboredo, S.; Badia, D.; Carrillo, L. Organocatalytic enantioselective [3+2] cycloaddition of azomethine ylides and α,β-unsaturated aldehydes. Angew. Chem. Int. Ed.2007,46,5168-5170. (b) Ibrahem, I.; Rios, R.; Vesely, J.; Cordova, A. Organocatalytic asymmetric multi-component [C+NC+CC] synthesis of highly functionalized pyrrolidine derivatives. Tetrahedron Lett.2007,48,6252-6257.
    [12]Chen, X. H.; Zhang, W. Q.; Gong, L. Z. Asymmetric organocatalytic three-component 1,3-dipolar cycloaddition:control of stereochemistry via a chiral Br(?)nsted acid activated dipole. J. Am. Chem. Soc.2008,130,5652-5653.
    [13]Liu, W. J.; Chen, X. H.; Gong, L. Z. Direct assembly of aldehydes, amino esters, and anilines into chiral imidazolidines via Br(?)nsted acid catalyzed asymmetric 1,3-dipolar cycloadditions. Org. Lett.2008,10,5357-5360.
    [14](a) Xue, M.-X.; Zhang, X.-M.; Gong, L.-Z. The first organocatalytic enantio- and diastereoselective 1,3-diplor cycloaddition of azomethine ylides with nitroalkens, Synlett 2008,691-694. (b)Liu, Y. K.; Liu, H.; Du, W.; Yue, L.; Chen, Y. C. Reaction control in the organocatalytic asymmetric one-pot, three-component reaction of aldehydes, diethyl α-aminomalonate and nitroalkenes:toward diversity-oriented synthesis. Chem. Eur. J.2008,14,9873-9877.
    [15]Chen, X. H.; Wei, Q.; Luo, S. W.; Xiao, H.; Gong, L. Z. Organocatalytic synthesis of spiro [pyrrolidin-3,3'-oxindoles] with high enantiopurity and structural diversity. J. Am. Chem. Soc.2009,131,13819-13825.
    [16](a) Yu, J.; He, L.; Chen, X. H.; Song, J.; Chen, W. J.; Gong, L. Z. Highly enantioselective catalytic 1,3-dipolar cycloaddition involving 2,3-allenoate dipolarophiles. Org Lett.2009,11,4946-4949. (b) Wang,C.; Chen, X. H.; Zhou, S. M.; Gong, L. Z. Asymmetric organocatalytic formal double-arylation of azomethines for the synthesis of highly enantio- merically enriched isoindolines. Chem Commun.2010,46,1275-1277. (c) Shi, F.; Luo, S.-W.; Tao, Z.-L.; He, L.; Yu, J.; Tu, S.-J.; Gong, L.-Z. The catalytic asymmetric 1,3-dipolar cycloaddition of ynones with azomethine ylides. Org. Lett.2011,13,4680-4683.
    [17](a) Kuang, H.; Brown, M. L.; Davies, R. R.; Eva C. Young, E. C.; Distefano, M. D. Enantioselective reductive amination of a-keto acids to α-amino acids by a pyridoxamine cofactor in a protein cavity. J. Am. Chem. Soc.1996,118, 10702-10706. (b) Kuang, H.; Distefano, M. D. Catalytic enantioselective reductive amination in a host-guest system based on a protein cavity. J. Am. Chem. Soc.1998,120,1072-1073. (c) Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Tam, S.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J.; Devine, P. N.; Huisman, G W.; Hughes, G. J. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 2010,329,305-309.
    [18]Yu, J.; Shi, F.; Gong, L.-Z. Bronsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc. Chem. Res.2011,44,1156-1171.
    [19](a) Hjelmencrantz, A.; Berg, U. New approach to biomimetic transamination using bifunctional [1,3]-proton transfer catalysis in thioxanthenyl dioxide imines. J. Org. Chem.2002,67,3585-3594. (b) Knudsen, K. R.; Bachmann, S.; J(?)rgensen, K. A. Catalytic enantioselective transaminiation of α-keto esters:an organic approach to enzymatic reactions. Chem.Commun.2003,2602-2603. (c) Bachmann, S.; Knudsen, K. R.; J(?)rgensen, K. A. Mimicking enzymatic transaminations:attempts to understand and develop a catalytic asymmetric approach to chiral a-amino acids. Org. Biomol. Chem.2004,2044-2049. (d) Xiao, X.; Xie, Y.; Su, C.; Liu, M.; Shi, Y. Organocatalytic asymmetric biomimetic transamination:from a-keto esters to optically active a-amino acid derivatives. J. Am. Chem. Soc.2011,133,12914-12917. (e) Xiao, X.; Liu, M.; Rong, C.; Xue, F.; Li, S.; Xie, Y.; Shi, Y. An efficient asymmetric biomimetic transamination of a-keto esters to chiral α-amino esters. Org. Lett.2012,14,5270-5273. (f) Xue, F.; Xiao, X.; Wang, H.; Shi, Y. The effect of benzyl amine on the efficiency of the base-catalyzed transamination of a-keto esters. Tetrahedron 2012,68,6862-6867. (g) Wu, Y.; Deng, L. Asymmetric synthesis of trifluoromethylated amines via catalytic enantioselective isomerization of imines. J. Am. Chem. Soc. 2012,134, 14334-14337.
    [20](a) Sigman, M. S.; Jacobsen, E. N. Schiff base catalysts for the asymmetric strecker reaction identified and optimized from parallel synthetic libraries. J. Am. Chem. Soc.1998,120,4901-4902. (b) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Hydrogen bonding:single enantiomers from a chiral-alcohol catalyst. Nature 2003,424,146-146. (c) Akiyama, T. Stronger Br(?)nsted acids. Chem. Rev.2007,107,5744-5758. (d) Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon-carbon bond forming reactions. Chem. Commun.2008,4097-4112.
    [21](a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Br(?)nsted acid. Angew. Chem. Int. Ed.2004,43, 1566-1568. (b) Uraguchi, D.; Terada, M. Chiral Bronsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc.2004,126, 5356-5357. (c) Storer, R.I.; Carrera, D.E.; Ni, Y.; MacMillan, D.W.C. Enantioselective organocatalytic reductive amination. J. Am. Chem. Soc.2006, 128,84-86. (d) Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Chiral Br(?)nsted acid catalyzed enantioselective hydrophosphonylation of imines:asymmetric synthesis of a-amino phosphonates. Org. Lett.2005,7,2583-2585.
    [22]Matsunaga, S.; Das, J.; Roels, J.; Vogl, E. M.; Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki, M. Catalytic enantioselective meso-epoxide ring opening reaction with phenolic oxygen nucleophile promoted by gallium heterobimetallic multifunctional complexes. J. Am. Chem. Soc.2000,122,2252-2260.
    [23](a) Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed.2007,46,8748-8758. (b) Marti, C.; Carreira, E. M. Construction of spiro[pyrrolidine-3,3'-oxindoles]-recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem.2003,2209-2219.
    [24]Zhuang, J.; Wang, C.; Xie, F.; Zhang, W. One-pot efficient synthesis of aryl α-keto esters from aryl-ketones. Tetrahedron 2009,65,9797-9800.
    [1](a) Trost, B. M., The atom economy-a search for synthetic efficiency. Science 1991,254,1471-1477; (b) Trost, B. M., Atom economy-a challenge for organic-synthesis-homogeneous catalysis leads the way. Angew. Chem. Int. Ed. 1995,34,259-281.
    [2](a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Palladium(Ⅱ)-catalyzed C-H activation/C-C cross-coupling reactions:versatility and practicality. Angew. Chem. Int. Ed. 2009,48,5094-5115. (b) Davies, H. M. L.; Manning, J. R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 2008,451, 417-424. (c) Lyons, T. W.; Sanford, M. S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev.2010,110,1147-1169. (d) Wencel-Delord, Joanna, Droge, T.; Liu, F.; Glorius, F. Towards mild metal-catalyzed C-H bond activation. Chem. Soc. Rev.2011,40,4740-4761. (e) Li, C.-J. Cross-dehydrogenative coupling (CDC):exploring C-C bond formations beyond functional group transformations. Acc. Chem. Res.2009,42, 335-344.
    [3](a) Murahashi, S. I.; Komiya, N.; Terai, H.; Nakae, T. Aerobic Ruthenium-catalyzed oxidative cyanation of tertiary amines with sodium cyanide. J. Am. Chem. Soc.2003,125,15312-15313. (b) Murahashi, S. I.; Komiya, N.;Terai, H. Ruthenium-Catalyzed Oxidative Cyanation of Tertiary Amines with Hydrogen Peroxide and Sodium Cyanide. Angew. Chem. Int. Ed.2005,44,6931-6933. (c) Murahashi, S. I.; Nakae, T.; Terai, H.; Komiya, N. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide:sp C-H bond activation and carbon-carbon bond formation. J. Am. Chem. Soc.2008,130,11005-11012.
    [4]Li, Z.; Li, C.-J. CuBr-catalyzed efficient alkynylation of sp C-H bonds adjacent to a nitrogen atom. J. Am. Chem. Soc.2004,126,11810-11811.
    [5](a) Li, Z.; Li, C.-J. CuBr-catalyzed direct indolation of tetrahydroisoquinolines via cross-dehydrogenative coupling between sp C-H and sp C-H bonds. J. Am.Chem. Soc.2005,127,6968-6969. (b) Li, Z.; Bohle, D. S.; Li, C.-J. Cu-catalyzed cross-dehydrogenative coupling; a versatile strategy for C-C bond formations via the oxidative activation of sp C-H bonds. Proc. Natl. Acad. Sci. U.S.A.2006,103,8928-8933.
    [6]Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. The oxidative Mannich reaction catalyzed by dirhodium caprolactamate. J. Am. Chem. Soc.2006,128, 5648-5649.
    [7](a) Li, Z.; Li, C.-J. Highly efficient Copper-catalyzed nitro-Mannich type reaction:cross-dehydrogenative-coupling between sp3C-H bond and sp3C-H bond. J. Am. Chem. Soc.2005,127,3672-3673. (b) Li, Z.; Li, C.-J. Highly efficient CuBr-catalyzed cross-dehydrogenative coupling (CDC) between tetrahydroisoquinolines and activated methylene compounds. Eur. J. Org. Chem. 2005,2005,3173-3176.
    [8]Zhao, L.; Li, C.-J. Functionalizing glycine derivatives by direct C-C bond formation. Angew. Chem. Int. Ed,2008,47,7075-7078.
    [9]Ngouansavanh, T.; Zhu, J. IBX-mediated oxidative Ugi-type multicomponent reactions:application to the N and C1 functionalization of tetrahydroisoquinoline. Angew. Chem. Int. Ed.2007,46,5775-5778.
    [10]Zhang, Y.; Li, C.-J. Highly efficient cross-dehydrogenative-coupling between ethers and active methylene compounds. Angew. Chem. Int. Ed.2006,45, 1949-1952.
    [11]Zhang, Y.; Li, C.-J. DDQ-mediated direct cross-dehydrogenative-coupling (CDC) between benzyl ethers and simple ketones. J. Am. Chem. Soc.2006,128, 4242-4243.
    [12]Li, Z.; Li, C.-J. Catalytic allylic alkylation via the cross-dehydrogenative- coupling reaction between allylic sp3 C-H and methylenic sp3 C-H bonds. J. Am. Chem. Soc.2006,128,56-57.
    [13]Li, Z.; Cao, L.; Li, C.-J. FeCl2-catalyzed selective C-C bond formation by oxidative activation of a benzylic C-H bond. Angew. Chem. Int. Ed.2007,46, 6505-6507.
    [14]Cheng, D.; Bao, W. Highly efficient metal-free cross-coupling by C-H activation between allylic and active methylenic compounds promoted by DDQ. Adv. Synth. Catal.2008,350,1263-1266.
    [15]Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Cross dehydrogenative arylation (CDA) of a benzylic C-H bond with arenes by Iron catalysis. Angew. Chem. Int. Ed.2009,48,3817-3820.
    [16]Li, Z.; Li, C.-J. Catalytic enantioselective alkynylation of prochiral sp3 C-H bonds adjacent to a nitrogen atom. Org. Lett.2004,6,4997-4999.
    [17](a) Sasamoto, N.; Dubs, C.; Hamashima, Y.; Sodeoka, M. Pd(II)-catalyzed asymmetric addition of malonates to dihydroisoquinolines. J. Am. Chem. Soc. 2006,128,14010-14011. (b) Dubs, C.; Hamashima, Y.; Sasamoto, N.; Seidel, T. M.; Suzuki, S.; Hashizume, D.; Sodeoka, M. Mechanistic studies on the catalytic asymmetric Mannich-type reaction with dihydroisoquinolines and development of oxidative Mannich-type reactions starting from tetrahydroisoquinolines. J. Org. Chem.2008,73,5859-5871.
    [18]Basle, O.; Li, C.-J. Copper-Catalyzed Oxidative sp C-H Bond Arylation with Aryl Boronic Acids. Org. Lett.2008,10,3661-3663.
    [19]Benfatti, F.; Capdevila, M. G.; Zili, L.; Benedetto, E.; Cozzi, P. G. Catalytic stereoselective benzylic C-H functionalizations by oxidative C-H activation and organocatalysis. Chem. Comm.2009,5919-5921.
    [20](a) Mcmanus, H. A.; Guiry, P. J. Recent developments in the application of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev.2004,104, 4251-5202. (b) Desimoni, G.; Faita, G; J(?)rgensen, K. A. C2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev.2006,106,3561-3651. (c) Hargaden, G C.; Guiry, P. J. Recent applications of oxazoline-containing ligands in asymmetric catalysis. Chem. Rev.2009,109,2505-2550. (d) Desimoni, G.; Faita, G.; Jorgensen, K. A. C2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev.2011,111, PR284-PR437.
    [21](a) Ji, J.; Barnes, D. M.; Zhang, J.; King, S. A.; Wittenberger, S. J. Morton, H. E. Catalytic enantioselective conjugate addition of 1,3-dicarbonyl compounds to nitroalkenes. J. Am. Chem. Soc.1999,121,10215-10216. (b) Barnes, D. M.; Ji, J.; Fickes, M. G.; Fitzgerald, M. A.; King, S. A.; Morton, H. E.; Plagge, F. A.; Preskill, M.; Wagaw, S. H. Wittenberger, S. J. Zhang, J. Development of a catalytic enantioselective conjugate addition of 1,3-dicarbonyl compounds to nitroalkenes for the synthesis of Endothelin-a antagonist ABT-546. scope, mechanism, and further application to the synthesis of the antidepressant rolipram. J. Am. Chem. Soc.2002,124,13097-13105.
    [22](a) Akalay, D.; Durner, G.; Bats, J. W.; Bolte, M.; Gobel, M. W. Synthesis of C2-symmetric bisamidines:a new type of chiral metal-free Lewis acid analogue interacting with carbonyl groups. J. Org. Chem.2007,72,5618-5624. (b) Sibi, M. P.; Ji, J. Practical and efficient enantioselective conjugate radical additions. J. Org. Chem.1997,62,3800-3801.
    [23]Movassaghi, M.; Schmidt, M. A.; Ashenhurst, J. A. Stereoselective oxidative rearrangement of 2-aryl tryptamine derivatives. Org. Lett.2008,10,4009-4012.
    [24](a) Appleton, J. E.; Dack, K. N.; Green, A. D.; Steele, J. A mild and selective C-3 reductive alkylation of indoles. Tetrahedron Lett.1993,34,1529-1532. (b) Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z.-J. Palladium-catalyzed direct arylation of (hetero)arenes with aryl boronic acids. Angew. Chem. Int. Ed. 2008,47,1473-1476.
    [1]Mayr, H.; Kempf, B.; Ofial, A.R.π-Nucleophilicity in carbon-carbon bond-forming reactions. Acc. Chem. Res.2003,36,66-77.
    [2]Gualandi, A.; Cozzi, P. G Stereoselective organocatalytic alkylations with carbenium ions. Synlett 2013,24,281-296.
    [3](a) Cozzi, P. G.; Benfatti, F.; Zoli, Luca. Organocatalytic asymmetric alkylation of aldehydes by SN1-type reaction of alcohols. Angew. Chem. Int. Ed.2009,48, 1313-1316. (b) Benfatti, F.; Benedetto, E.; Cozzi, P. G. Organocatalytic stereoselective alpha-alkylation of aldehydes with stable carbocations. Chem. Asian J.2010,5,2047-2052.
    [4]Bergonzini, G.; Vera, S.; Melchiorre, P. Cooperative organocatalysis for the asymmetric y alkylation of a-branched enals. Angew. Chem. Int. Ed.2010,49, 9685-9688.
    [5]Brown, A. R.; Kuo, W.-H.; Jacobsen, E. N. Enantioselective catalytic α-alkylation of aldehydes via an SN1 pathway. J. Am. Chem. Soc.2010, 132,9286-9288.
    [6](a) Zhang, L.; Cui, L.; Li, X.; Li, J.; Luo, S.; Cheng, J.-P. Asymmetric SN1 a-alkylation of cyclic ketones catalyzed by functionalized chiral ionic liquid (FCIL) organocatalysts. Chem. Eur. J.2010,16,2045-2049. (b) Lee, H. J.; Kang, S. H.; Kim, D. Y. Organocatalytic enantioselective a-alkylation of cyclic ketones by SN1-type reaction of alcohols. Bull. Korean Chem. Soc.2011,32,1125-1126.
    [7]Stiller, J.; Marques-Lopez, E.; Herrera, R. P.; Frohlich, R.; Strohman, C.; Christmann, M. Enantioselective α -and γ-alkylation of α,β-unsaturated aldehydes using dienamine activation. Org. Lett.2011,12,70-73.
    [8]Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M. Asymmetric Br(?)nsted acid catalysis:enantioselective uucleophilic substitutions and 1,4-additions. Angew. Chem. Int. Ed.2008,47,593-596.
    [9]Shaikh, R. R.; Mazzanti, A.; Petrini, M.; Bartoli, G.; Melchiorre, P. Proline-catalyzed asymmetric formal a-alkylation of aldehydes via vinylogous iminium ion intermediates generated from arylsulfonyl indoles. Angew. Chem. Int. Ed.2008,47,8707-8710.
    [10]Guo, Q.-X.; Peng, Y.-G.; Zhang, J.-W.; Song, L.; Feng, Z.; Gong, L.-Z. Highly enantioselective alkylation Reaction of enamides by Br(?)nsted-acid catalysis. Org. Lett.2009,11,4620-4623.
    [11]Li, Y; Shi, F.-Q.; He, Q.-L.; You, S.-L. N-heterocyclic carbene-catalyzed cross-coupling of aldehydes with arylsulfonyl indoles. Org. Lett.2009,11, 3182-3185.
    [12]Sun, F.-L.; Zeng, M.; Gu, Q.; You, S.-L. Enantioselective synthesis offluorene derivatives by chiral phosphoric acid catalyzed tandem double Friedel-Crafts Reaction. Chem. Eur. J.2009,15,8709-8712.
    [13]Zheng, B.-H.; Ding, C.-H.; Hou, X.-L.; Dai, L.-X. Ag-catalyzed diastereo- and enantioselective synthesis of β-substituted tryptophans from sulfonylindoles. Org. Lett.2010,12,1688-1691.
    [14]Liang, T.; Zhang, Z.; Antillan, J. C. Chiral Br(?)nsted acid catalyzed Pinacol rearrangement. Angew. Chem. Int. Ed.2010,49,9734-9736.
    [15]Han, B.; Xiao, Y.-C.; Yao, Y.; Chen, Y.-C. Lewis acid catalyzed intramolecular direct Ene reaction of indoles. Angew. Chem. Int. Ed.2010,49,10189-10191.
    [16]Dobish, M. C.; Johnston, J. N. Chiral Br(?)nsted base-promoted nitroalkane alkylation:enantioselective synthesis of sec-alky1-3-substituted indoles. Org. Lett. 2010,12,5744-5747.
    [17]Jing, L.; Wei, J.; Zhou, L.; Huang, Z.; Li, Z.; Wu, D.; Xiang, H.; Zhou, X. Highly enantioselective Michael addition of malononitrile to vinylogous imine intermediates generated in situ from arylsulfonyl indoles. Chem. Eur. J.2010,16, 10955-10958.
    [18]Wang, D.-S.; Tang, J.; Zhou, Y.-G.; Chen, M.-W.; Yu, C.-B.; Duan, Y.; Jiang, G.-F. Dehydration triggered asymmetric hydrogenation of 3-(a-hydroxyalkyl)indoles. Chem. Sci.2011,2,803-806.
    [19](a)Steven, A.; Overman, L. E. Total synthesis of complex cyclotryptamine alkaloids:stereocontrolled construction of quaternary carbon stereocenters. Angew. Chem. Int. Ed.2007,46,5488-5508. (b) Movassaghi, M.; Schmidt, M. A. Consise total synthesis of (-)-Calycanthine, (+)-Chimonanthine, and (+)-Folicanthine. Angew. Chem. Int. Ed.2007,46,3725-3728. (c) Movassaghi, M.; Schmidt, M. A.; Ashenhurst, J. A. Concise total synthesis of (+)-WIN 64821 and (-)-Ditryptophenaline. Angew. Chem. Int. Ed.2008,47,1485-1487. (d) Iwasa, E.; Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. Total synthesis of (+)-Chaetocin and its analogues:their histone methyltransferase G9a inhibitory activity. J. Am. Chem. Soc.2010,132, 4078-4079. (e) Kim, J.; Movassaghi, M. General approach to Epipolythiodiketopiperazine alkaloids:total synthesis of (+)-Chaetocins A and C and (+)-12,12'-Dideoxychetracin A. J. Am. Chem. Soc.2010,132,14376-14378. (f) Kim, J.; Ashenhurst, J. A.; Movassaghi, M. Total synthesis of (+)-11,11'-Dideoxyverticillin A. Science,2009,324,238-241.
    [20]Ramalingan, C.; Park, Y.-T. Mercury-catalyzed rearrangement of ketoximes into amides and lactams in acetonitrile. J. Org. Chem.2007,72,4536-4538.
    [21]Fang, C.-L.; Home, S.; Taylor, N.; Rodrigo, R. Dimerization of a 3-substituted oxindole at C-3 and its application to the synthesis of (±)-Folicanthine. J. Am. Chem. Soc.1994,116,9480-9586.
    [22]Eiter, K.; Svierak, O. Zur konstitution des Folicanthins. Monatsh. Chem.1952,83, 1453-1476.
    [23]Gaussian 03, Revision C.02, M. J. Frisch, G W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT,2004.
    [24]Shanthi, G.; Lakshmi, N. V.; Perumal, P.T. A simple and eco-friendly synthesis of 3-indolyl-3-hydroxy oxindoles and 11-indolyl-11H-indeno[1,2-b]quinoxalin-11-ols in aqueous media. Arkivoc 2009,10,121-130.
    [25](a) Terada, M.; Soga, K.; Momiyama, N. Enantioselective activation of aldehydes by chiral phosphoric acid catalysts in an aza-ene-type reaction between glyoxylate and enecarbamate. Angew. Chem. Int. Ed.2008,47,4122-4125. (b) Kiyohara, H.; Matsubara, R.; Kobayashi, S. High turnover frequency observed in catalytic enantioselective additions of enecarbamates and enamidesto iminophosphonates. Org. Lett.2006,8,5333-5335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700