新型双齿[NO]、三齿[NNO]配体锆络合物的设计合成、表征及催化烯烃聚合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文共合成了18个未见文献报道的新型钛族金属络合物,其中包括以双齿[NO]苯氧基亚胺类配体合成了8个双(苯氧基亚胺)钛、锆络合物、1个单(苯氧基亚胺)钛络合物和1个酚氧基单齿配位的锆络合物,以及以三齿[NNO]酚氧亚胺(或酚胺)类配体合成了6个八配位锆络合物和2个钛异丙氧基络合物。所得络合物均通过了1H NMR和EA的分析鉴定,其中部分通过了13C NMR的分析鉴定,并对其中4个具有典型结构的锆络合物(Zrl, Zr6, Zr12和Zr16)进行了X-ray单晶衍射分析,进一步确定了分子结构。在助催化剂MMAO活化下,详细研究了所得钛、锆络合物催化烯烃聚合反应的催化性能。此外,还详细研究了系列单噻吩基取代二茂钛络合物(C1-C4)和锆络合物(C5-C8)催化烯烃聚合反应,并通过X-ray单晶衍射分析测定了此类钛络合物(C2和C4)的分子结构。主要研究工作如下:
     1.通过在芳胺邻位引入二芳基甲基(CHAr2),合成了10个芳胺邻位大位阻取代的苯氧基亚胺配体,进而合成了8个新型锆络合物,其中,对于芳胺邻位单边大位阻(CHAr2)取代的苯氧基亚胺配体而言,均得到了具有典型结构的双(苯氧基亚胺)锆络合物Zr4-Zr10,当芳胺邻位双边均含有大位阻取代基(CHAr2)时,制得了酚氧基单齿配位的锆络合物Zr1。在MMAO活化下,此类锆络合物均能高活性的催化乙烯聚合,其中,芳胺邻位只有单边取代的锆络合物Zr4不仅具有最高的催化活性84.90×106gPE (mol of Zr)-1h-1,还具有较好的热稳定性,即使在聚合温度为90℃的条件下仍能保持很高的催化活性34.32×106g PE (mol of Zr)-1h-1。所有锆络合物Zr1和Zr4-Zr10均得到了低分子量的聚乙烯(Mv1.4-38.9×103g/mol),1H NMR分析表明所得聚乙烯的链端不存在饱和双键,这说明在芳胺邻位引入取代基的空间位阻过大时,能显著提高聚合增长链向助催化剂转移的速率,因此,在聚合过程中生成了低分子量以铝为端基的聚乙烯(Al-PE)。
     2.通过此类苯氧基亚胺配体合成了2个新型钛络合物,当芳胺邻位单边大位阻(CHPh2)取代时,得到了双(苯氧基亚胺)钛络合物Ti5,当芳胺邻位双边大位阻(CHPh2)取代时,得到了单(苯氧基亚胺)钛络合物Ti3。在MMAO活化下,钛络合物Ti3和Ti5在催化乙烯聚合时均表现出中等程度的催化活性,其中钛络合物Ti5的催化活性略高,最高为3.8×105g PE(mol of Ti)-1h-1。与锆络合物Zr1和Zr4-Zr10相比,钛络合物Ti3得到了高分子量聚乙烯(Mv42.2-160.5×104g/mol),而钛络合物Ti5所得聚乙烯的分子量更高,在测定粘均分子量的条件下均不能完全溶解,选择部分聚乙烯样品进行高温GPC测定其分子量(Mw)为298.8×104g/mol,表明得到了超高分子量聚乙烯。
     3.通过合成的取代邻氨基酚与取代吡啶醛经缩合反应得到了5个三齿酚氧亚胺配体(L11H-L14H和L17H),三齿酚氧亚胺配体L12H和L13H经硼氢化钠还原得到了2个三齿酚胺配体(L15H, L16H),在此类三齿配体的基础上,成功的合成了6个三齿配体配位的八配位锆络合物,其中锆络合物Zrll-Zr14含有三齿酚氧亚胺配体,而络合物Zr15和Zr16含有三齿酚胺配体。锆络合物Zr12和Zr16的单晶结构表明,中心金属锆原子同时与两个三齿配体和两个氯原子配位,所形成的八配位锆络合物为扭曲四方反棱柱构型。在MMAO活化下,此类锆络合物Zr11-Zrl6可以高活性的催化乙烯聚合获得高分子量聚乙烯(Mv7.2-52.7×104g/mol),在研究聚合温度对催化活性的影响时发现,在70-140℃的温度范围,此类锆络合物的催化活性随着温度的升高而显著增加,均在140℃时表现出更高的催化活性,其中锆络合物Zr15的催化活性最高为1.04×106g PE (mol of Zr)-1h-1,与此同时,即使在此高温条件下还表现出长达5h的催化寿命,这表明催化活性中心具有很好的热稳定性,可以在温度高达到140℃的条件下长时间保持催化活性而不失活。
     4.以上述三齿配体(L12H和L17H)与等当量的Ci(OiPr)4反应合成了2个钛异丙氧基络合物Ti12和Ti17。在MMAO活化下,此类钛络合物在催化乙烯聚合时表现出中等程度的催化活性,得到了高分子量聚乙烯(Mv19.5-35.9×104g/mol),在80℃的聚合条件下,钛络合物Ti17具有相对较高的催化活性1.17×105g PE(mol of Ti)-1h-1。
     5.此外,还研究了系列单噻吩基取代二茂钛络合物(C1-C4)和锆络合物(C5-C8)催化乙烯聚合反应。在MAO活化下,此类钛络合物C1-C4表现出中等程度的催化活性,与Cp2TiCl2的催化活性相近,但是却得到了高分子量至超高分子量的聚乙烯(Mv最高为227.1×104g/mol),在室温条件下,钛络合物C3表现出长达9h的催化寿命,远高于同条件下的Cp2TiCl2。在80℃的聚合条件下,与CP2ZrCl2相比,此类锆络合物C5-C8不仅可以获得分子量更高的聚乙烯(Mv23.2-47.1×104g/mol),而且还具有较Cp2ZrCl2更长的催化寿命,其中锆络合物C8的催化寿命在2h以上。
Totally eighteen novel complexes were synthesized in this dissertation, including ten six-coordinate zirconium or titanium complexes supported by bidentate ligands (seven bis(phenoxy-imine) zirconium complexes, one bis(phenoxy-imine) titanium complex, one mono(phenoxy-imine) titanium complex and one zirconium complex ligated by two monodentate phenoxy ligands), six eight-coordinate zirconium complexes supported by two tridentate ligands (tridentate phenoxy-imine ligands or tridentate phenoxy-amine ligands) and two five-or six-coordinate alkoxide titanium complexes supported by a tridentate ligand. All of them were characterized by1H NMR and EA. Some of them were also characterized by13C NMR. The molecular structures of four representative zirconium complexes Zrl, Zr6, Zr12and Zr16were further confirmed by single-crystal X-ray diffraction studies. Upon activation with modified methylaluminoxane (MMAO), these zirconium and titanium complexes were investigated as catalyst precursors for ethylene polymerization in detail. On the other hand, a series of titanocenes C1-C4and zirconocenes C5-C8bearing a pendant thiophene group on a cyclopentadienyl (Cp) ring were tested as catalyst precursors for ethylene polymerization. The molecular structures of two representative titanocenes C2and C4were firstly confirmed by single-crystal X-ray diffraction studies. Conclusions are summarized as follows:
     1. A series of bidentate phenoxy-imine ligands bearing bulky o-bis(aryl)methyl-substituted aryl groups on the aniline moiety were synthesized. Reactions of ZrCl4·2THF with2equiv of lithium salts of ligands L4H-L10H bearing a bulky bis(aryl)methyl substituent afford the desired sex-coordinate bis(phenoxy-imine) zirconium complexes Zr4-Zr10. Unexpectedly, during the attempt to treat ZrCl4·2THF with2equiv of silylated ligand L1H bearing two bulky bis(phenyl)methyl substituents via trimethylsilyl chloride elimination, a biszwitterionic-type adduct zirconium complex (L1H)2ZrCl4(Zrl) was obtained in which the phenoxy-imine groups function as a monodentate phenoxy ligand. Upon activation with MMAO, all zirconium complexes Zr4-Zr10and Zrl exclusively produce linear aluminium-terminated polyethylene (Al-PE) with high activity, suggesting that chain transfer to aluminum is the predominant termination mechanism. It is noteworthy that the introduction of an excessively bulky o-bis(aryl)methyl substituent adjacent to the imine-N produces low molecular-weight Al-PE (Mv1.4-38.9×103g/mol) due to the enhanced rate of chain transfer to alkylaluminium groups during polymerization. Complex Zr4having a single ortho substituent on the aryl rings (R3=H) is more active with an activity up to84.90×106g PE (mol of Zr)-1h-1. Even at90℃, complex Zr4exhibited good thermal stability and still retains a high activity of34.32×106g PE (mol of Zr)-'h-'for ethylene polymerization.
     2. Reaction of TiCl4with2equiv of the lithium salt of ligand L53H bearing a bulky bis(phenyl)methyl substituent afford the desired sex-coordinate bis(phenoxy-imine) titanium complex Ti5, whereas similar reaction of TiCl4with one equiv of the lithium salt of L3H that bearing two bulky bis(phenyl)methyl substituents gave a sex-coordinate monoligated titanium complex Ti3. In contrast to the case for these zirconium complexes Zr4-Zr10and Zrl, both titanium complexes Ti3and Ti5exhibited moderate catalytic activity and produced much higher molecular weight polyethylene (PE) for ethylene polymerization. For these two complexes, titanium complex Ti5is more active (up to3.8×103g PE (mol of Ti)-1h-1) and produced ultra-high molecular weight polyethylene relative to that of titanium complex Ti3(Mv42.2-160.5×104g/mol). The obtained products are insoluble in decahydronaphthalene at135℃when measured by viscosity method, and selected GPC plot further confirmed the polyethylene product with ultra-high molecular weight (Mw298.8×104g/mol).
     3. Sex novel eight-coordinate dichloride zirconium complexes Zrll-Zr16with the general formula L2ZrCl2supported by two tridentate [NNO] ligands were synthesized by the reactions of ZrCl4·2THF with2equiv of the corresponding ligands (tridentate phenoxy-imine ligands (L11H-L14H) or tridentate phenoxy-amine ligands (L15H and L16H)). The molecular structures of the representative zirconium complexes Zr12and Zr16were confirmed by single-crystal X-ray diffraction and revealed that the metal center is eight-coordinated by two tridentate [NNO] ligands and two chlorides in a distorted-square-antiprismatic geometry. Upon activation with MMAO, all zirconium complexes Zrll-Zr16displayed notable thermal stability toward ethylene polymerization and produced high molecular weight polyethylene (Mv7.2-52.7×104g/mol) with high activities at high temperatures. The catalytic activity increases consistently with increasing polymerization temperature (70-140℃), and the highest activity of1.04×106g PE (mol of Zr)-1h-1) was achieved at140℃. In particular, a catalytic lifetime of nearly5h was observed for the Zr15/MMAO catalyst system at140℃, suggesting that the resultant active metal center are extremely stable and maintain high activity for a long period of polymerization time (nearly5h) at temperatures up to140℃.
     4. Two alkoxide titanium complexes Ti12and Ti17supported by a tridentate [NNO] ligand were synthesized via the reactions of Ti(O'Pr)4with one equiv of the corresponding ligands L12H and L17H. Upon activation with MMAO, both titanium complexes Ti12and T117exhibited moderate catalytic activity for ethylene polymerization and produced high molecular weight polyethylene (Mv19.5-35.9×104g/mol). Titanium complex Ti17is more active and the highest activity of1.17×105g PE (mol of Ti)-1h-1was achieved at80℃.
     5. In addition, a series monopendant thienyl-substituted group4metallocenes (RCp)[Cp-(bridge)-(2-C4H3S)]MCl2[M=Ti (C1-C4); M=Zr (C5-C8)] were tested as catalyst precursors for ethylene polymerization. In the presence of methylaluminoxane (MAO), these titanocenes C1-C4showed long catalytic lifetime (nearly9h) and produced high or ultra-high molecular weight polyethylene (up to227.1×104g/mol) in comparison to that obtained by Cp2TiCl2. At elevated temperature of80℃, these zirconocenes C5-C8showed long catalytic lifetime (at least2h) and produced much higher molecular weight polyethylene (Mv11.2-47.1×104g/mol) in comparison with Cp2ZrCl2.
引文
[1]Nello Pasquini著,胡友良等译,《聚丙烯手册》[M],化学工业出版社,2008,第二版.
    [2]Ziegler K, Holzkamp E, Breil H, Martin H. Das mulheimer normaldruck-polyathylen-verfahren [J]. Angew. Chem.,1955,67,541-547.
    [3]Natta G. Stereospezifische katalysen und isotaktische polymere [J]. Angew. Chem.,1956, 68,393-403.
    [4]Wilkinson G, Birmingham J. Bis-cyclopentadienyl compounds of Ti, Zr, V, Nb and Ta [J]. J. Am. Chem. Soc.,1954,76,4281-4284.
    [5]Natta G, Pino P, Mazzanti G, Giannini U. A crystallizable organometallic complex containing titanium and aluminum [J]. J. Am. Chem. Soc.,1957,79,2945-1976.
    [6]Breslow D, Newburg N. Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminum complexes as catalysts for the polymerization of ethylene [J]. J. Am. Chem. Soc.,1957,79, 5072-5073.
    [7]Sinn H, Kaminsky W, Vollmer H, Woldt R. "Living Polymers" on polymerization with extremely productive ziegler catalysts [J]. Angew. Chem. Int. Ed. Engl.,1980,19, 390-392.
    [8]Koppl A, Helmut G. Effect of the nature of metallocene complexes of group IV metals on their performance in catalytic ethylene and propylene polymerization [J]. Chem. Rev., 2000,100,1205-1222.
    [9]Motta A, Fragala I, Marks T. Stereochemical control mechanisms in propylene polymerization mediated by C1-symmetric CGC titanium catalyst centers [J]. J. Am. Chem. Soc.,2007,129,7327-7338
    [10]Derlin S, Kaminsky W. Chain-walking olefin polymerizations with donor-substituted half-sandwich chromium complexes:Ethylene/propylene copolymer look-alikes by polymerization of propylene [J]. Macromolecules,2008,41,6280-6288.
    [11]Kaminsky W, Funck A, Hahnsen H. New application for metallocene catalysts in olefin polymerization [J]. Dalton Trans.,2009,8803-8810.
    [12]Nomura K. Half-titanocenes containing anionic ancillary donor ligands as promising new catalysts for precise olefin polymerisation [J]. Dalton Trans.,2009,8811-8823.
    [13]Huang Y, Yu W, Jin G. Half-sandwich chromium(Ⅲ) catalysts bearing hydroxyindanimine ligands for ethylene polymerization [J]. Organometallics,2009,28, 4170-4174.
    [14]Wang B, Tang T, Li Y, Cui D. Copolymerization of ethylene with norbornene catalyzed by cationic rare earth metal fluorenyl functionalized N-heterocyclic carbene complexes [J]. Dalton Trans.,2009,8963-8969.
    [15]Lebedev A, Izmer V, Asachenko A, Tzarev A, Uborsky D, Homutova Y, Shperber E, Canich J, Voskoboynikov A. Group 4 metallocenes bearing η5-2-(N-Azolyl)indenyl ligands:Synthesis, structure characterization, and olefin polymerization catalysis [J]. Organometallics,2009,28,1800-1816.
    [16]Litlab(?) R, Enders M, Tornroos K, Anwander R. Bis(tetramethylaluminate) complexes of yttrium and lanthanum supported by a quinolyl-substituted cyclopentadienyl ligand: Synthesis and performance in isoprene polymerization [J]. Organometallics,2010,29, 2588-2593.
    [17]Puranen A, Linnolahti M, Piel T, Elo P, Mutikainen I, Pakkanen T, Lofgren B, Aitola E, Seppala J, Leskela M, Repo T. Rotating benzyl substituent in ansa-bis(indenyl)zirconocenes controls propene polymerization [J]. Organometallics, 2010,29,4018-4024.
    [18]Coates G. Precise control of polyolefin stereochemistry using single-site metal catalysts [J]. Chem. Rev.,2000,100,1223-1252.
    [19]Gibson V, Spitzmesser S. Advances in non-metallocene olefin polymerization catalysis [J]. Chem. Rev.,2003,103,283-316.
    [20]Linden A, Schaverien C, Meijboom N, Ganter C, Guy Orpen A. Polymerization of a-olefins and butadiene and catalytic cyclotrimerization of 1-alkynes by a new class of group IV catalysts. Control of molecular weight and polymer microstructure via ligand tuning in sterically hindered chelating phenoxide titanium and zirconium species [J]. J. Am. Chem. Soc.1995,117,3008-3021.
    [21]Fokken S, Spaniol T, Okuda J. Nine-membered titanacyclic complexes based on an ethylene-bridged bis(phenolato) ligand:Synthesis, structure, and olefin polymerization activity [J]. Organometallics,1997,16,4240-4242.
    [22]Frediani M, Semeril D, Comucci A, Bettucci L, Frediani P, Rosi L, Matt D, Toupet L, Kaminsky W. Ultrahigh-molecular-weight polyethylene by using a titanium calix[4]arene complex with high thermal stability under polymerization conditions [J]. Macromol. Chem. Phys.,2007,208,938-945.
    [23]Espinas J, Darbost U, Pelletier J, Jeanneau E, Duchamp C, Bayard F, Boyron O, Broyer J, Thivolle-Cazat J, Basset J, Taoufik M, Bonnamour I. Titanacalixarenes in homogeneous catalysis:Synthesis, conformation and catalytic activity in ethylene polymerization [J]. Eur. J. Inorg. Chem.,2010,1349-1359.
    [24]Capacchione C, Proto A, Ebeling H, Mulhaupt R, Moller K, Spaniol T, Okuda J, Ancillary ligand effect on single-site styrene polymerization:Isospecificity of group 4 metal bis(phenolate) catalysts [J]. J. Am. Chem. Soc.,2003,125,4964-4965.
    [25]Ishii A, Toda T, Nakata N, Matsuo T. Zirconium complex of an [OSSO]-type diphenolate ligand bearing trans-1,2-cyclooctanediylbis(thio) core:Synthesis, structure, and isospecific 1-hexene polymerization [J]. J. Am. Chem. Soc.,2009,131,13566-13567.
    [26]Nakata N, Toda T, Matsuo T, Ishii A. Controlled isospecific polymerization of α-olefins by hafnium complex incorporating with a trans-cyclooctanediyl-bridged [OSSO]-type bis(phenolate) ligand [J]. Macromolecules,2013,46,6758-6764.
    [27]Lamberti M, Mazzeo M, Pellecchia C. Group 4 bis(chelate) metal complexes of monoanionic bidentate [E,O-] ligands (E= O, S):Synthesis and application as a-olefin polymerization catalysts [J]. Dalton Trans.,2009,8831-8837.
    [28]Gornshtein F, Kapon M, Botoshansky M, Eisen M. Titanium and zirconium complexes for polymerization of propylene and cyclic esters [J]. Organometallics,2007,26, 497-507.
    [29]Kiesewetter E, Randoll S, Radlauer M, Waymouth R. Stereospecific octahedral group 4 bis(phenolate) ether complexes for olefin polymerization [J]. J. Am. Chem. Soc.,2010, 132,5566-5567.
    [30]Kiesewetter E, Waymouth R. Octahedral group IV bis(phenolate) catalysts for 1-hexene homopolymerization and ethylene/1-hexene copolymerization [J]. Macromolecules,2013, 46,2569-2575.
    [31]Volkis V, Shmulinson M, Averbuj C, Lisovskii A, Edelmann F, Eisen M. Pressure modulates stereoregularities in the polymerization of propylene promoted by rac-octahedral heteroallylic complexes [J]. Organometallics,1998,17,3155-3157.
    [32]Volkis V, Nelkenbaum E, Lisovskii A, Hasson G, Semiat R, Kapon M, Botoshansky M, Eishen Y, Eisen M. Group 4 octahedral benzamidinate complexes:Syntheses, structures, and catalytic activities in the polymerization of propylene modulated by pressure [J]. J. Am. Chem. Soc.2003,125,2179-2194.
    [33]Smolensky E, Kapon M, Woollins J, Eisen M. Formation of elastomeric polypropylene promoted by a dynamic octahedral titanium complex [J]. Organometallics,2005,24, 3255-3265.
    [34]Elkin T, Kulkarni N, Tumanskii B, Botoshansky M, Shimon L, Eisen M. Synthesis and structure of group 4 symmetric amidinate complexes and their reactivity in the polymerization of a-olefins [J]. Organometallics,2013,32,6337-6352.
    [35]Matsuo Y, Mashima K, Tani K. Synthesis and characterization of bis(iminopyrrolyl)zirconium complexes [J]. Chem. Lett.,2000,1114-1115.
    [36]Yoshida Y, Matsui S, Takagi Y, Mitani M, Nakano T, Tanaka H, Kashiwa N, Fujita T. New titanium complexes having two pyrrolide-imine chelate ligands:Syntheses, structures, and ethylene polymerization behavior [J]. Organometallics,2001,20, 4793-4799.
    [37]Matsugi T, Matsui S, Kojoh S, Takagi Y, Inoue Y, Nakano T, Fujita T, Kashiwa N. New titanium complexes bearing two indolide-imine chelate ligands for the polymerization of ethylene [J]. Macromolecules,2002,35,4880-4887.
    [38]Deelman B, Hitchcock P, Lappert M, Lee H, Leung W. Novel monoanionic di-N,N'-centred chelating ligands and their C1 and C2 symmetrical zirconium complexes [J]. J. Organomet. Chem.,1996,513,281-285.
    [39]Annunziata L, Pappalardo D, Tedesco C, Pellecchia C. Bis[(amidomethyl)pyridine] zirconium(IV) complexes:Synthesis, characterization, and activity as olefin polymerization catalysts [J]. Organometallics,2009,28,688-697.
    [40]Boussie R, Diamond M, Goh C, Hall K, LaPointe A, Leclerc M, Murphy V, Shoemaker J, Turner H, Rosen R, Stevens J, Alfano F, Busico V, Cipullo R, Talarico G. Nonconventional catalysts for isotactic propene polymerization in solution developed by using high-throughput-screening technologies [J]. Angew. Chem. Int. Ed.,2006,45, 3278-3283.
    [41]Frazier K, Froese R, He Y, Klosin J, Theriault C, Vosejpka P, Zhou Z. Pyridylamido hafnium and zirconium complexes:Synthesis, dynamic behavior, and ethylene/1-octene and propylene polymerization reactions [J]. Organometallics,2011,30,3318-3329.
    [42]Domski G, Lobkovsky, Coates G. Polymerization of a-olefins with pyridylamidohafnium catalysts:Living behavior and unexpected isoselectivity from a Cs-symmetric catalyst precursor [J]. Macromolecules,2007,40,3510-3513.
    [43]Annunziata L, Pappalardo D, Tedesco C, Pellecchia C. Isotactic-specific polymerization of propene by a Cs-symmetric zirconium(IV) complex bearing a dianionic tridentate [NNN] amidomethylpyrrolidepyridine ligand [J]. Macromolecules,2009,42, 5572-5578.
    [44]Li G, Lamberti M, D'Amora S, Pellecchia C. C1-Symmetric pentacoordinate anilidopyridylpyrrolide zirconium(IV) complexes as highly isospecific olefin polymerization catalysts [J]. Macromolecules,2010,43,8887-8891.
    [45]Li G, Lamberti M, Roviello G, Pellecchia C. New titanium and hafnium complexes bearing [-NNN-] pyrrolylpyridylamido ligands as olefin polymerization catalysts [J]. Organometallics,2012,31,6772-6778.
    [46]Sharma M, Yameen H, Tumanskii B, Filimon S, Tamm M, Eisen M. Bis(l,3-di-tert-butylimidazolin-2-iminato) titanium complexes as effective catalysts for the monodisperse polymerization of propylene [J]. J. Am. Chem. Soc.,2012,134, 17234-17244.
    [47]Shoken D, Sharma M, Botoshansky M, Tamm M, Eisen M. Mono(imidazolin-2-iminato) titanium complexes for ethylene polymerization at low amounts of methylaluminoxane [J]. J. Am. Chem. Soc.,2013,135,12592-12595.
    [48]Scollard J, McConville D. Living polymerization of a-olefins by chelating diamide complexes of titanium [J]. J. Am. Chem. Soc.,1996,118,10008-10009.
    [49]Hagimoto H, Shiono T, Ikeda T. Living polymerization of propene with a chelating diamide complex of titanium using dried methylaluminoxane [J]. Macromol. Rapid Commun.,2002,23,73-76.
    [50]Nomura K, Naga N, Takaoki L. Ethylene homopolymerization and ethylene/1-butene copolymerization catalyzed by a [1,8-C10H6(NR)2]TiCl2-cocatalyst system [J]. Macromolecules,1998,31,8009-8015.
    [51]Ziniuk Z, Goldberg I, Kol M. Zirconium complexes of chelating dianionic bis(pentafluorophenylamido) ligands:Synthesis, structure and ethylene polymerisation activity [J]. Inorg. Chem. Commun.,1999,2,549-551.
    [52]Gauvin R, Lorber C, Choukroun R, Donnadieu B, Kress J. Synthesis, characterization and ethylene polymerization activity of zirconium. Complexes containing nonsymmetric diamido ligands derived from 2-aminobenzylamine [J]. Eur. J. Inorg. Chem.,2001, 2337-2346.
    [53]Liu K, Wu Q, Mu X, Gao W, Mu Y. Binuclear zirconium complexes with bidentate N-(ortho-dimethylaminobenzyl)anilide ligands:Synthesis, characterization, and catalytic properties for ethylene polymerization and copolymerization with 1-hexene [J]. Polyhedron,2013,52,222-226.
    [54]Shaviv E, Botoshansky M, Eisen M. β-Diketiminate complexes of group 4:Active complexes for the isomerization of a-olefins and the polymerization of propylene towards elastomeric polypropylene [J]. J. Organomet. Chem.,2003,683,165-180.
    [55]Tang L, Duan Y, Li X, Li Y. Syntheses, structure and ethylene polymerization behavior of β-diiminato titanium complexes [J].J. Organomet. Chem.,2006,691,2023-2030.
    [56]Xie G, Qian C. Dramatic electronic effect of fluoro substituents on the olefin polymerization activity of mono β-giiminato titanium complexes [J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46,211-217.
    [57]Gong S, Ma H, Huang J. Zirconium and hafnium complexes supported by linked bis(β-diketiminate) ligands:Synthesis, characterization and catalytic application in ethylene polymerization [J]. Dalton Trans.,2009,8237-8247.
    [58]Makio H, Terao H, Iwashita A, Fujita T. FI Catalysts for olefin polymerization-a comprehensive treatment [J]. Chem. Rev.,2011,111,2363-2449.
    [59]Matsui S, Mitani M, Saito J, Tohi Y, Makio H, Matsukawa N, Takagi Y, Tsuru K, Nitabaru M, Nakano T, Tanaka H, Kashiwa N, Fujita T. A family of zirconium complexes having two phenoxy-imine chelate ligands for olefin polymerization [J]. J. Am. Chem. Soc.,2001,123,6847-6856.
    [60]Matoishi K, Nakai K, Nagai N, Terao H, Fujita T. Value-added olefin-based materials originating from FI catalysis:Production of vinyl-and Al-terminated PEs, end-functionalized PEs, and PE/polyethylene glycol hybrid materials [J]. Catal. Today., 2011,164,2-8.
    [61]Saito J, Tohi Y, Matsukawa N, Mitani M, Fujita T. Selective synthesis of Al-terminated polyethylenes using a bis(phenoxy-imine)Zr complex with methylalumoxane [J]. Macromolecules,2005,38,4955-4957.
    [62]Makio H, Kashiwa N, Fujita T. FI Catalysts:A new family of high performance catalysts for olefin polymerization [J]. Adv. Synth. Catal.,2002,344,477-493.
    [63]Inoue Y, Nakano T, Tanaka H, Kashiwa N, Fujita T. Ethylene polymerization behavior of new titanium complexes having two phenoxy-pyridine chelate ligands [J]. Chem. Lett., 2001,1060-1061.
    [64]Suzuki Y, Tanaka H, Oshiki T, Takai K, Fujita T. Titanium and zirconium complexes with non-salicylaldimine-type imine phenoxy chelate ligands:Syntheses, structures, and ethylene polymerization behavior [J]. Chem. Asian J.2006,1,878-887.
    [65]Pennington D, Clegg W, Coles S, Harrington R, Hursthouse M, Hughes D, Light M, Schormann M, Bochmann M, Lancaster S. The synthesis, structure and ethene polymerisation catalysis of mono(salicylaldiminato) titanium and zirconium complexes [J]. Dalton Trans.,2005,561-571.
    [66]Saha T, Mandal M, Chakraborty D, Ramkumar V. Imino phenoxide complexes of group 4 metals:Synthesis, structural characterization and polymerization studies [J]. New J. Chem.,2013,37,949-960.
    [67]Salata M, Marks T. Synthesis, characterization, and marked polymerization selectivity characteristics of binuclear phenoxyiminato organozirconium catalysts [J].J. Am. Chem. Soc.,2008,130,12-13.
    [68]Han S, Yao E, Qin W, Zhang S, Ma Y. Binuclear heteroligated titanium catalyst based on phenoxyimine ligands:Synthesis, characterization, and ethylene (Co)polymerization [J]. Macromolecules,2012,45,4054-4059.
    [69]Li X, Dai K, Ye W, Pan L, Li Y. New titanium complexes with two β-enaminoketonato chelate ligands:Syntheses, structures, and olefin polymerization activities [J]. Organometallics,2004,23,1223-1230.
    [70]Yu S, Mecking S. Extremely narrow-dispersed high molecular weight polyethylene from living polymerization at elevated temperatures with o-F substituted Ti enolatoimines [J]. J. Am. Chem. Soc.,2008,130,13204-13205.
    [71]Hu W, Sun X, Wang C, Gao Y, Tang Y, Shi L, Xia W, Sun J, Dai H, Li X, Yao X, Wang X. Synthesis and characterization of novel tridentate [NOP] titanium complexes and their application to copolymerization and polymerization of ethylene [J]. Organometallics, 2004,23,1684-1688.
    [72]Wan D, Chen Z, Gao Y, Shen Q, Sun X, Tang Y. Synthesis and characterization of tridentate [O-N(H)X] titanium complexes and their applications in olefin polymerization [J]. J. Polym. Sci. Part A:Polym. Chem.,2013,51,2495-2503.
    [73]Wang C, Ma Z, Sun X, Gao Y, Guo Y, Tang Y, Shi L. Synthesis and characterization of titanium(IV) complexes bearing monoanionic [O-NX] (X=O, S, Se) tridentate ligands and their behaviors in ethylene homo- and copolymerizaton with 1-hexene [J]. Organometallics,2006,25,3259-3266.
    [74]Xu T, Liu J, Wu G, Lu X. Highly active ethylene polymerization and regioselective 1-hexene oligomerization using zirconium and titanium catalysts with tridentate [ONO] ligands [J]. Inorg. Chem.,2011,50,10884-10892.
    [75]Zhang L, Luo X, Gao W, Zhang J, Mu Y. Efficient synthesis of titanium complexes bearing tridentate [N-,N,O-] anilido-imine ligands and their catalytic properties for ethylene polymerization [J]. Organometallics,2013,32,6277-6285.
    [76]Tshuva E, Versano M, Goldberg I, Kol M, Weitman H, Goldschmidt Z. Titanium complexes of chelating dianionic amine bis(phenolate)ligands:An extra donor makes a big difference [J]. Inorg. Chem. Commm.,1999,2,371-373.
    [77]Tshuva E, Goldberg L, Kol M, Weitman H, Goldschmidt Z. Novel zirconium complexes of amine bis(phenolate) ligands. Remarkable reactivity in polymerization of 1-hexene due to an extra donor arm [J]. Chem. Commun.,2000,379-380.
    [78]Tshuva E Y, Groysman S, Goldberg I, Kol M. Goldschmidt Z. [ONXO]-Type amine bis(phenolate) zirconium and hafnium complexes as extremely active 1-hexene polymerization catalysts [J]. Organometallics,2002,21,662-670.
    [79]Tshuva Y, Goldberg I, Kol M, Goldschmidt Z. Living polymerization and block copolymerization of olefins by an amine bis(phenolate) titanium catalyst [J]. Chem. Commun.,2001,2120-2121.
    [80]Tshuva E, Goldberg I, Kol, M. Isospecific living polymerization of 1-hexene by a readily available nonmetallocene C2-symmetrical zirconium catalyst [J]. J. Am. Chem. Soc., 2000,122,10706-10707.
    [81]Gendler S, Zelikoff A, Goldberg I, Kol M. Titanium and zirconium complexes of robust salophan ligands. Coordination chemistry and olefin polymerization catalysis [J].J. Am. Chem. Soc.,2008,130,2144-2145.
    [82]Killian C, Tempel D, Johnson L, Brookhart M. Living polymerization of a-olefins using NiⅡ-α-diimine catalysts. Synthesis of new block polymers based on a-olefins [J]. J. Am. Chem. Soc.,1995,118,11664-11665.
    [83]Johnson L, Kjlllan C, Brookhart M. New Pd(II) and Ni(II)-based catalysts for polymerization of ethylene and a-olefins [J]. J. Am. Chem. Soc.,1995,117,6414-6428.
    [84]Johnson L, Mecking S, Brookhart M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts [J]. J. Am.Chem.Soc.,1996, 118,267-268.
    [85]Mecking S, Johnson L, Wang L, Brookhart M. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and a-oleflns with methyl acrylate [J]. J. Am. Chem. Soc.,1998,120,888-899.
    [86]Ittel S, Johnson L, Brookhart M. Late-metal catalysts for ethylene homo-and copolymerization [J]. Chem. Rev.,2000,100,1169-1204.
    [87]Cherian A, Rose J, Lobkovsky E, Coates G A C2-symmetric, living a-diimine Ni(II) catalyst:Regioblock copolymers from propylene [J]. J. Am. Chem. Soc.,2005,127, 13770-13771.
    [88]Rose J, Cherian A, Coates G. Living polymerization of a-olefins with an a-diimine Ni(II) catalyst:Formation of well-defined ethylene-propylene. Copolymers through controlled chain-walking [J]. J. Am. Chem. Soc.,2006,128,4186-4187.
    [89]Popeney C, Camacho D, Guan Z. Efficient incorporation of polar comonomers in copolymerizations with ethylene using a cyclophane-based Pd(II) a-diimine catalyst [J]. J. Am. Chem. Soc.,2007,129,10062-10063.
    [90]Zhang D, Nadres E, Brookhart M, Daugulis O. Synthesis of highly branched polyethylene using "sandwich"(8-p-tolyl naphthyl a-diimine)nickel(II) catalysts [J]. Organometallics,2013,32,5136-5143.
    [91]Camacho D, Salo E, Ziller J, Guan Z. Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization [J]. Angew. Chem. Int. Ed., 2004,43,1821-1825
    [92]Rhinehart J, Brown L, Long B. A robust Ni(II) a-diimine catalyst for high temperature ethylene polymerization [J]. J. Am. Chem. Soc.,2013,135,16316-16319.
    [93]Liu H, Zhao W, Hao X, Redshaw C, Huang W, Sun W.2,6-Dibenzhydryl-N-(2-phenyliminoacenaphthylenylidene)-4-methylbenzenamine nickel dibromides:Synthesis, characterization, and ethylene polymerization [J]. Organometallics,2011,30, 2418-2424.
    [94]Yuan J, Wang F, Xu W, Mei T, Li J, Yuan B, Song F, Jia Z. Chiral naphthyl-a-diimine nickel(II) catalysts bearing sec-phenethyl groups:Chain-walking polymerization of ethylene at high temperature and stereoselective polymerization of methyl methacrylate at low temperature [J]. Organometallics,2013,32,3960-3968.
    [95]Zai S, Gao H, Huang Z, Hu H, Wu H, Wu Q. Substituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerization [J]. ACS Catal.2012,2,433-440.
    [96]Younkin T, Connor E, Henderson J, Friedrich S, Grubbs R, Bansleben D. Neutral single-component nickel(Ⅱ) polyolefin catalysts that tolerate heteroatoms [J]. Science, 2000,287,460-462.
    [97]Wang C, Friedrich S, Younkin T, Li R, Grubbs R, Bansleben D, Day M. Neutral nickel(II)-based catalysts for ethylene polymerization [J]. Organometallics,1998,17, 3149-3151.
    [98]Radlauer M, Day M, Agapie T. Dinickel bisphenoxyiminato complexes for the polymerization of ethylene and a-olefins [J]. Organometallics,2012,31,2231-2243.
    [99]Song D, Wu J, Ye W, Mu H, Li Y. Accessible, highly active single-component β-ketiminato neutral nickel(Ⅱ) catalysts for ethylene polymerization [J]. Organometallics, 2010,29,2306-2314.
    [100]Zwideveld M, Wehrmann P, Rohr C, Mecking S. Controlling catalytic polymerization by very active and robust neutral nickel(Ⅱ) complexes [J]. Angew. Chem. Int. Ed.,2004, 43,869-873.
    [101]Osichow A, Gottker-Schnetmann I, Mecking S. Role of electron-withdrawing remote substituents in neutral nickel(Ⅱ) polymerization catalysts [J]. Organometallics,2013, 32,5239-5242.
    [102]Zhang D, Jin G, Hu N. Novel, Highly active binuclear 2,5-disubstituted amino p-benzoquinone-nickel(Ⅱ) ethylene polymerization catalysts [J]. Organometallics,2003, 2851-2854.
    [103]Hu T, Tang L, Li X, Li Y, Hu N. Synthesis and ethylene polymerization activity of a novel, highly active single-component binuclear neutral nickel(Ⅱ) catalyst [J]. Organometallics,2005,24,2628-2632.
    [104]Mu H, Ye W, Song D, Li Y. Highly active single-component neutral nickel ethylene polymerization catalysts:The influence of electronic effects and spectator ligands [J]. Organometallics,2010,29,6282-6290.
    [105]Small B, Brookhart M, Bennett M. Highly active iron and cobalt catalysts for the polymerization of ethylene [J]. J. Am. Chem. Soc.,1998,120,4049-4058.
    [106]Britovsek G, Gibson V. Novel olefin polymerization catalysts based on iron and cobalt [J]. J. Chem. Soc., Chem. Commun.,1998,13,849-856.
    [107]Small B, Brookhart M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear a-olefins [J]. J. Am. Chem. Soc., 1998,120,7143-7144.
    [108]Zhang W, Chai W, Sun W, Hu X, Redshaw C, Hao X.2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-trihydroquinoline iron(Ⅱ) chloride complexes:Synthesis, characterization, and ethylene polymerization behavior [J]. Organometallics,2012,31, 5039-5048.
    [109]Zhang S, Sun W, Xiao T, Hao X. Ferrous and cobaltous chlorides bearing 2,8-bis(imino)quinolines:Highly active catalysts for ethylene polymerization at high temperature [J]. Organometallics,2010,29,1168-1173.
    [110]Guo L, Gao H, Zhang L, Zhu F, Wu Q. An unsymmetrical iron(Ⅱ) bis(imino)pyridyl catalyst for ethylene polymerization:Effect of a bulky ortho substituent on the thermo stability and molecular weight of polyethylene [J]. Organometallics,2010,29, 2118-2125.
    [111]Xiao T, Zhang S, Kehr G, Hao X, Erker G, Sun W. Bidentate iron(Ⅱ) dichloride complexes bearing substituted 8-(benzimidazol-2-yl)quinolines:Synthesis, characterization, and ethylene polymerization behavior [J]. Organometallics,2011,30, 3658-3665.
    [112]Xiao T, Hao P, Kehr G, Hao X, Erker G, Sun W. Dichlorocobalt(Ⅱ) complexes ligated by bidentate 8-(benzoimidazol-2-yl)quinolines:Synthesis, characterization, and catalytic behavior toward ethylene [J]. Organometallics,2011,30,4847-4853.
    [113]Talebi S, Duchateau R, Rastogi S, Kaschta J, Peters G, Lemstra P. Molar mass and molecular weight distribution determination of UHMWPE synthesized using a living homogeneous catalyst [J]. Macromolecules,2010,43,2780-2788.
    [114]Saito J, Mitani M, Onda M, Mohri J, Ishii S, Yoshida Y, Nakano T, Tanaka H, Matsugi T, Kojoh S, Kashiwa N, Fujita T. Micro structure of highly syndiotactic "living" poly(propylene)s produced from a titanium complex with chelating fluorine-containing phenoxyimine ligands (an FI catalyst) [J]. Macromol. Rapid Commun.,2001,22, 1072-1075.
    [115]Saito J, Onda M, Matsui S, Mitani M, Furuyama R, Tanaka H, Fujita T. Propylene polymerization with bis(phenoxy-imine) group-4 catalysts using 'Bu3Al/Ph3CB(C6F5)4 as a cocatalyst [J]. Macromol. Rapid Commun.,2002,23,1118-1123.
    [116]Edson J, Wang Z, Kramer E, Coates G. Fluorinated bis(phenoxyketimine)titanium complexes for the living, isoselective polymerization of propylene:Multiblock isotactic polypropylene copolymers via sequential monomer addition [J]. J. Am. Chem. Soc., 2008,130,4968-4977.
    [117]Terao H, Iwashita A, Matsukawa N, Ishii S, Mitani M, Tanaka H, Nakano T, Fujita T. Ethylene and ethylene/α-olefin (Co)polymerization behavior of bis(phenoxy-imine)Ti catalysts:Significant substituent effects on activity and comonomer incorporation [J]. ACS Catal.,2011,1,254-265.
    [118]Terao H, Ishii S, Saito J, Matsuura S, Mitani M, Nagai N, Tanaka H, Fujita T. Phenoxycycloalkylimine ligated zirconium complexes for ethylene polymerization: Formation of vinyl-terminated low molecular weight polyethylenes with high efficiency [J]. Macromolecules,2006,39,8584-8593.
    [119]Mogstad A, Waymouth R. Chain transfer to aluminum in the homogeneous cyclopolymerization of 1,5-hexadiene [J]. Macromolecules,1992,25,2282-2284.
    [120]Koo K, Fu P, Marks T. Organolanthanide-mediated silanolytic chain transfer processes. scope and mechanism of single reactor catalytic routes to silapolyolefins [J]. Macromolecules,1999,32,981-988.
    [121]Liou S, Rademacher J, Malaba D, Pallack M, Brittain W. Atom transfer radical polymerization of methyl methacrylate with polyethylene-functionalized ligands [J]. Macromolecules,2000,33,4295-4296.
    [122]Inoue Y, Matsugi T, Kashiwa N, Matyjaszewski K. Graft copolymers from linear polyethylene via atom transfer radical polymerization [J]. Macromolecules,2004,37, 3651-3658.
    [123]Zhang W, Wang Y, Redshaw C, Hao X, Sun W.2-Aldiminophenoxytitanium chloride complexes:Synthesis, characterization, and ethylene (co-)polymerization behavior [J]. J. Organomet. Chem.,2012,715,119-128.
    [124]Pennington D, Clegg W, Coles S, Harrington R, Hursthouse M, Hughes D, Light M, Schormann M, Bochmanna M, Lancaster S. The synthesis, structure and ethene polymerisation catalysis of mono(salicylaldiminato) titanium and zirconium complexes [J]. Dalton Trans.,2005,561-571.
    [125]Chen S, Zhang X, Ma H, Lu Y, Zhang Z, Li H, Lu Z, Cui N, Hu Y. A series of new zirconium complexes bearing bis(phenoxyketimine) ligands:Synthesis, characterization and ethylene polymerization [J]. J. Organomet. Chem.,2005,690, 4184-4191.
    [126]Chen J, Huang Y, Li Z, Zhang Z, Wei C, Lan T, Zhang W. Syntheses of iron, cobalt, chromium, copper and zinc complexes with bulky bis(imino)pyridyl ligands and their catalytic behaviors in ethylene polymerization and vinyl polymerization of norbornene [J]. J. Mol. Catal. A:Chem.,2006,259,133-141.
    [127]Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement. University of Gottingen, G6ttingen, Germany,1997.
    [128]Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Solution. University of Gottingen, G6ttingen, Germany,1997.
    [129]Sheldrick, G. M. SHELXTL-97, Program for the Refinement of Crystal Structures, University of Gottingen, Germany,1997.
    [130]Francis P, Cooke Jr R, Elliott J. Fractionation of polyethylene [J]. J. Polym. Sci.,1958, 31,453-466.
    [131]Vinsova J, Cermakova K, Tomeckova A, Ceckova M, Jampilek J, Cermak P, Kunes J, Dolezale M, Staud F. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles [J]. Bioorg. Med. Chem.,2006,14,5850-5865.
    [132]Prema D, Wiznycia A, Scott B, Hilborn J, Desper J, Levy C. Dinuclear zinc(Ⅱ) complexes of symmetric Schiff-base ligands with extended quinoline sidearms. Dalton Trans.,2007,4788-4796.
    [133]Berthon-Gelloz G, Siegler M, Spek A, Tinant B, Reekc J, Marko I. IPr* an easily accessible highly hindered N-heterocyclic carbene [J]. Dalton Trans.,2010,39, 1444-1446.
    [134]Tohi Y, Makio H, Matsui S, Onda M, Fujita T. Polyethylenes with uni-, bi-, and trimodal molecular weight distributions produced with a single bis(phenoxy-imine)zirconium complex [J]. Macromolecules,2003,36,523-525.
    [135]Cherian A, Lobkovsky E, Coates G. Synthesis of allyl-terminated syndiotactic polypropylene:Macromonomers for the synthesis of branched polyolefins [J]. Macromolecules,2005,38,6259-6268.
    [136]Axenov K, Klinga M, Lehtonen O, Koskela H, Leskelae M, Repo T. Hafnium bis(phenoxyimino) dibenzyl complexes and their activation toward olefin polymerization [J]. Organometallics,2007,26,1444-1460.
    [137]Gong S, Ma H, Huang J. Zirconium complexes with versatile P-diketiminate ligands: Synthesis, structure, and ethylene polymerization Original Research Article [J]. J. Organomet. Chem.,2008,693,3509-3518.
    [138]Niemeyer J, Kehr G, Frohlich R, Erker G. Mastering the third dimension of salicylaldimine-type ligand systems:Development of a convenient route to bis("ferrocene-saliminato")zirconium chemistry [J]. Chem. Eur. J.,2008,14, 9499-9502.
    [139]Agapie T, Henling L, DiPasquale A, Rheingold A, Bercaw J. Zirconium and titanium complexes supported by tridentate LX2 ligands having two phenolates linked to furan, thiophene, and pyridine donors:Precatalysts for propylene polymerization and oligomerization [J]. Organometallics,2008,27,6245-6256.
    [140]Kirillov E, Roisnel T, Razavi A, Carpentier J. Group 4 post-metallocene complexes incorporating tridentate silyl-substituted bis(naphthoxy)pyridine and bis(naphthoxy)thiophene ligands:Probing systems for "oscillating" olefin polymerization catalysis [J]. Organometallics,2009,28,5036-5051.
    [141]Hu P, Wang F, Jin G. Syntheses, characterization, and ethylene polymerization of half-sandwich zirconium complexes with tridentate imino-quinolinol ligands [J]. Organometallics,2011,30,1008-1012.
    [142]Tsukahara T, Swenson D, Jordan R. Neutral and cationic zirconium benzyl complexes containing bidentate pyridine-alkoxide ligands. Synthesis and olefin polymerization chemistry of (pyCR2O)2Zr(CH2Ph)2 and (pyCR2O)2Zr(CH2Ph)+ complexes [J]. Organometallics,1997,16,3303-3313.
    [143]Chan M, Tam K, Zhu N, Chiu P, Matsui S. Synthesis, structures, and olefin polymerization characteristics of group 4 catalysts [Zr{(OAr)2py}Cl2(D)] (D O-donors, C1[HPR3]) supported by tridentate pyridine-2,6-bis(aryloxide) ligands [J]. Organometallics,2006,25,785-792.
    [144]Matsukawa N, Matsui S, Mitani M, Saito J, Tsuru K, Kashiwa N, Fujita T. Ethylene polymerization activity under practical conditions displayed by zirconium complexes having two phenoxy-imine chelate ligands [J]. J. Mol. Catal. A:Chem.,2001,169, 99-104.
    [145]Michiue K, Oshiki T, Takai K, Mitani M, Fujita T. Tantalum complexes incorporating tris(pyrazolyl)borate ligands:Syntheses, structures, and ethylene polymerization behavior [J]. Organometallics,2009,28,6450-6457.
    [146]Saeed I, Katao S, Nomura K. Synthesis and structural analysis of (cyclopentadienyl)(pyrrolide)titanium(IV) complexes and their use in catalysis for olefin polymerization [J]. Organometallics,2009,28,111-122.
    [147]Nomura K, Naga N, Miki M, Yanagi K. Olefin polymerization by (cyclopentadienyl)(aryloxy)titanium(IV) complexes-cocatalyst systems J]. Macromolecules,1998,31,7588-7597.
    [148]Patra A, Dube K, Papaefthymiou G, Conradie J, Ghosh A, Harrop T. Stable eight-coordinate iron(III/II) complexes [J]. Inorg. Chem.,2010,49,2032-2034.
    [149]Sauer A, Buffet J, Spaniol T, Nagae H, Mashima K, Okuda J. Synthesis, characterization, and lactide polymerization activity of group 4 metal complexes containing two bis(phenolate) ligands [J]. Inorg. Chem.,2012,51,5764-5770.
    [150]McKnight A, Waymouth R. Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization [J]. Chem. Rev.,1998,98,2587-2598.
    [151]Resconi L, Cavallo L, Fait A, Piemontesi F. Selectivity in propene polymerization with metallocene catalysts [J]. Chem. Rev.,2000,100,1253-1346.
    [152]Qian Y, Huang J, Bala M, Lian B, Zhang H, Zhang H. Synthesis, structures, and catalytic reactions of ring-substituted titanium(IV) complexes [J]. Chem. Rev.,2003, 103,2633-2690.
    [153]Li H, Li L, Schwartz D, Metz M, Marks T, Liable-Sands L, Rheingold A. Coordination copolymerization of severely encumbered isoalkenes with ethylene:□ Enhanced enchainment mediated by binuclear catalysts and cocatalysts [J]. J. Am. Chem. Soc., 2005,127,14756-14768.
    [154]Li H, Li L, Marks T, Liable-Sands L, Rheingold A. Catalyst/cocatalyst nuclearity effects in single-site olefin polymerization. Significantly enhanced 1-octene and isobutene comonomer enchainment in ethylene polymerizations mediated by binuclear catalysts and cocatalysts [J]. J. Am. Chem. Soc.,2003,125,10788-10789.
    [155]Deckers P, Hessen B, Teuben J. Switching a catalyst system from ethene polymerization to ethene trimerization with a hemilabile ancillary ligand [J]. Angew. Chem., Int. Ed.,2001,40,2516-2519.
    [156]Deckers P, Hessen B, Teuben J. Catalytic trimerization of ethene with highly active cyclopentadienyl-arene titanium catalysts [J]. Organometallics,2002,21,5122-5135.
    [157]Huang J, Wu T, Qian Y. Ethylene trimerization with a half-sandwich titanium complex bearing a pendant thienyl group [J]. Chem. Commun.,2003,22,2816-2817.
    [158]Hessen B, Monocyclopentadienyl titanium catalysts:Ethene polymerisation versus ethene trimerisation. J. Mol. Catal. A:Chem.,2004,213,129-135.
    [159]Wang C, Huang J. Styrene polymerization with half-sandwich titanium complexes bearing pendent cyclo-alkenyl groups [J]. Euro. Polym. J.,2006,42,3032-3040.
    [160]Wang C, Liu R, Huang J, Xiao W. Styrene polymerization with half-sandwich titanium complexes bearing pendent alkenyl groups:From atactic to syndiotactic [J]. J. Mol. Catal. A:Chem.,2006,258,139-145.
    [161]Lian B, Thomas C, Navarro C, Carpentier J. "Constrained geometry" titanium complexes:Exceptionally robust systems for living polymerization of methacrylates at high temperature and model studies toward chain transfer polymerization with thiols [J]. Organometallics,2007,26,187-195.
    [162]Ramos C, Royo P, Lanfranchi M, Pellinghelli M, Tiripicchio A. [(Allylsilyl)(r)-amidosilyl)-η5-cyclopentadienyl] group 4 metal complexes:Synthesis, reactivity, and olefin polymerization [J]. Organometallics.,2007,26,445-454.
    [163]Nabika M, Katayama H, Watanabe T, Kawamura-Kuribayashi H, Yanagi K, Imai A. ansa-Cyclopentadienyl-phenoxy titanium(IV) complexes (PHENICS):Synthesis, characterization, and catalytic behavior in olefin polymerization [J]. Organometallics, 2009,28,3785-3792.
    [164]Suttil J, McGuinness D, Evans S. Arene substituted cyclopentadienyl complexes of Zr and Hf:Preparation and evaluation as catalysts for ethylene trimerisation [J]. Dalton Trans.,2010,39,5278-5285.
    [165]Zhang Y, Ma H, Huang J. Highly selective ethylene trimerization catalyzed by half-sandwich indenyl titanium complexes with pendant arene groups and MAO [J]. J. Mol. Catal. A:Chem.,2013,373,85-95.
    [166]Li X, Zhao X, Zhu B, Lin F, Sun J. Ethylene polymerization using an asymmetric dinuclear titanocene catalyst carrying a novel 3-oxa-pentamethylene bridge [J]. Catal. Commun.,2007,8,2025-2031.
    [167]Xiao X, Zhu B, Zhao X, Wang Y, Sun J. Asymmetric binuclear titanocenes linked by alkyl benzyl ethers:Synthesis, characterization and use as catalysts for ethylene polymerization [J]. Inorg. Chim. Acta.,2007,360,2432-2438.
    [168]肖伟.含噻吩基配位体的不对称二茂钛族金属络合物的合成及苯乙烯聚合反应的研究.[D].华东理工大学,2006.
    [169]Wenzel M, Bertrand B, Eymin M, Comte V, Harvey J, Richard P, Groessl M, Zava O, Amrouche H, Harvey P, Gendre P, Picquet M, Casini A. Multinuclear cytotoxic metallodrugs:Physicochemical characterization and biological properties of novel heteronuclear gold-titanium complexes [J]. Inorg. Chem.,2011,50,9472-9480.
    [170]Deally A, Hackenberg F, Lally G, Muller-Bunz H, Tacke M. Synthesis and cytotoxicity studies of silyl-substituted titanocene dichloride derivatives [J]. Organometallics,2012, 30,5782-5790.
    [171]Thorshaug K, Stovneng J, Rytter E. Ethene polymerization catalyzed by monoalkyl-substituted zirconocenes. possible effects of ligand-metal agostic interaction [J]. Macromolecules,2000,33,8136-8145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700