氟苯尼考在家兔体内的代谢机制及药物间相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟苯尼考是一种新型的动物专用广谱抗菌药,它在治疗家畜、家禽以及鱼类的细菌感染等方面具有良好的疗效。虽然氟苯尼考已被广泛用于治疗和预防畜禽及水产养殖业的疾病,但是对氟苯尼考在家兔体内代谢机制的研究还非常有限。了解氟苯尼考在动物体内的代谢模式和调控机制,对有效地控制食品动物食用组织的药物残留以及避免临床联合用药时的药物间相互作用具有非常重要的临床意义。本文对氟苯尼考在家兔体内的代谢机制和药物间相互作用的研究主要从以下5个方面进行探讨:
     1.氟苯尼考在家免体内的药代动力学特征和口服生物利用度的研究氟苯尼考对治疗家兔的胃肠道和呼吸道感染具有良好的疗效,同时它也是治疗家兔巴氏杆菌病的首选药物。但是关于家兔静脉注射氟苯尼考的药代动力学特征及口服生物利用度的研究资料在国内还未见报道。本试验采用10只健康的雄性新西兰白兔,分为口服给药组和静脉注射给药组。口服给药组动物按25mg/kg体重灌服氟苯尼考,静脉注射给药组动物按25mg/kg体重耳缘静脉注射氟苯尼考。两组动物在给药后12h内收集右侧耳缘静脉血液,用高效液相色谱测定家兔口服和静脉注射氟苯尼考的血药浓度变化,用3P97药代动力学软件处理药时数据。研究结果表明:家兔口服和静脉注射氟苯尼考的药代动力学特征符合一室开放模型。静脉注射氟苯尼考药代动力学参数:零时血药浓度(Co)、消除速率常数(Ke)、中心室分布容积(Vc)、消除半衰期(T1/2Ke).药-时曲线下面积(AUC)、表观清除率(CL/F)的结果分别是22.58±5.53μg/m.0.55±0.07h-1、1.31±0.21L/kg.1.33±0.16h、40.06±6.07μg·mL-1·h、0.68±0.10L/kg/h.家兔口服氟苯尼考后,血浆中药物的消除相与Y轴的截距(A)、Ke、吸收速率常数(Ko)、滞留时间(Lag time).吸收半衰期(T1/2Ka)、T1/2Ke、达峰时间(Tmax)、达峰浓度(Cmax)、AUC、CL/F和表观分布容积(V/F)分别为10.21±4.13μg/mL,0.37±0.08h-1,1.17±0.23h-1,0.09±0.04h,0.71±0.16h,2.20±0.42h,1.62±0.24h,2.45±0.46μg/mL,12.26±2.21μg·mL-1·h,2.25±0.30L/kg/h,7.41±2.06L/Kg.家兔口服氟苯尼考的生物利用度(F)为(46.83±4.92)%。此结果提示,氟苯尼考的口服生物利用度较低,静脉注射途径能达到较好的治疗效果。
     2.比较研究GYP450酶对氟苯尼考在家兔和大鼠上代谢特征的差异15只雄性大鼠,分为氟苯尼考单剂量组、氟伏沙明处理组和酮康唑处理组。氟苯尼考单剂量组动物按100mg/kg体重灌服氟苯尼考;氟伏沙明处理组按60mg/kg体重连续3天灌胃氟伏沙明,一天一次,连续三天,在第三天最后一次给药后30min,动物按100mg/kg体重灌服氟苯尼考;酮康唑处理组的动物与氟伏沙明处理组相同,只是按75mg/kg体重连续3天灌服酮康唑。15只健康的雄性新西兰白兔分为氟苯尼考单剂量组、氟伏沙明处理组和酮康唑处理组。氟苯尼考单剂量组动物灌服25mg/kg体重氟苯尼考;氟伏沙明处理组动物每天按25mg/kg体重灌服氟伏沙明,一天一次,连续3天,在最后一次灌胃氟伏沙明后30min,按25mg/kg体重给家兔灌胃氟苯尼考;酮康唑处理组动物与氟伏沙明处理组相同,按60mg/kg体重连续3天灌服酮康唑。每组动物在氟苯尼考灌服后12h内收集静脉血液,用高效液相色谱测定氟苯尼考的血药浓度变化,3P97药代动力学软件处理药时数据。结果表明:大鼠单剂量口服氟苯尼考的药代动力学分布特征符合一室开放动力学模型。大鼠的CYPIA活性:被氟伏沙明特异性抑制后,血浆中氟苯尼考的Cmax、AUC显著升高(P<0.05),CL/F和V/F显著降低(P<0.05)。大鼠体内的CYP3A活性被酮康唑特异性抑制后,氟苯尼考各个药代动力学参数没有发生显著的变化(P>0.05)。家兔的研究结果表明:当体内的CYP3A活性被酮康唑特异性抑制后,血浆中氟苯尼考的AUC值高达对照组的3倍(P<0.05), CL/F显著降低到原来的1/3(P<0.01)。但是,当体内的CYPIA活,性被氟伏沙明特异性抑制后,血浆中氟苯尼考的各个药代动力学参数均未发生显著变化(P>0.05)。这些结果表明氟苯尼考在不同的动物中是经过不同的CYP450亚型代谢的。CYPIA在大鼠的氟苯尼考代谢中发挥了重要作用,而CYP3A在家兔的氟苯尼考代谢中起主要代谢作用。
     3.P-糖蛋白在家兔氟苯尼考口服代谢中的作用用P-糖蛋白的特异性抑制剂维拉帕米研究了P-糖蛋白在家兔氟苯尼考口服代谢中的作用。10只健康的雄性新西兰白兔分为氟苯尼考对照组和维拉帕米处理组。氟苯尼考对照组按25mg/kg体重口服单剂量氟苯尼考。维拉帕米处理组在按9mg/kg体重口服维拉帕米后30min,按25mg/kg体重灌服单剂量的氟苯尼考。用高效液相色谱检测血浆中氟苯尼考的浓度,3P97药代动力学软件处理药时数据。结果表明:氟苯尼考单剂量组动物血浆中氟苯尼考的Ke和T1/2Ke分别为0.37±0.08h-1和2.20±0.42h。维拉帕米特异性抑制了体内的P-糖蛋白后,氟苯尼考的Ke(0.13±0.04h-1)显著降低(P<0.05),T1/2Ke(8.85±2.68h)显著升高(P<0.05),AUC (35.78±5.55μg·mL-1·h)比氟苯尼考单剂量组显著增高了3倍,CL/F(0.75±0.09L/kg/h)是氟苯尼考单剂量组的1/3。这些结果表明:P-糖蛋白在家兔氟苯尼考的口服代谢中发挥了重要作用,抑制P-糖蛋白会导致体内氟苯尼考的生物利用度升高。因此当氟苯尼考与P-糖蛋白的底物、抑制剂或者诱导剂联合用药时,可能会发生药物的相互作用。
     4.恩诺沙星对家免氟苯尼考代谢的药代动力学特征的影响。10只新西兰白兔分为氟苯尼考对照组和恩诺沙星处理组。氟苯尼考对照组动物按25mg/kg体重静脉注射单剂量的氟苯尼考;恩诺沙星处理组动物按10mg/kg体重连续静脉注射恩诺沙星3天,在最后一次恩诺沙星给药后15min,动物按25mg/kg体重静脉注射氟苯尼考。在氟苯尼考给药后12h内收集耳缘静脉的血液,用高效液相色谱分析氟苯尼考的药代动力学变化,3P97药代动力学软件处理药时数据。结果表明:恩诺沙星连续处理家兔后,氟苯尼考的药代动力学参数,如AUC、消除半衰期(T1/2β)和内在清除率(CL)等均没有发生显著的变化。这提示临床上家兔按常规剂量连续使用恩诺沙星不会对氟苯尼考的代谢产生药代学影响,恩诺沙星对药物代谢酶的抑制作用可以忽略。
     5.氟苯尼考和恩诺沙星对家免肝脏、肾脏和十二指肠的CYP3A6mRNA和CYP3A蛋白表达的影响。12只雄性新西兰白兔分为空白对照组、氟苯尼考处理组和恩诺沙星处理组。空白对照组动物不给予任何药物;氟苯尼考处理组动物按25mg/kg体重灌胃氟苯尼考连续3天。恩诺沙星处理组动物按10mg/kg体重连续灌服恩诺沙星3天,第4天在无菌条件下开胸取出动物的肝脏、肾脏以及十二指肠。提取三种组织的RNA和微粒体蛋白进行RT-PCR和Weatern blot试验。RT-PCR的结果表明,氟苯尼考对家兔CYP3A6的nRNA表达的影响具有组织特异性。连续灌服氟苯尼考能显著的诱导家兔肝脏CYP3A6mRNA的表达(P<0.05),抑制肾脏CYP3A6mRNA的表达(P<0.05),对十二指肠的CYP3A6的表达则没有显著影响(P>0.05)。恩诺沙星能显著的抑制家兔肝脏CYP3A6mRNA的表达(P<0.05),对十二指肠和肾脏的CYP3A6表达没有显著的抑制作用(P>0.05)。Western blot结果显示,氟苯尼考对家兔十二指肠的CYP3A蛋白表达具有显著的诱导作用(P<0.05),但对肾脏和肝脏的CYP3A蛋白表达没有显著作用。恩诺沙星对家兔的肝脏、肾脏和十二指肠的CYP3A蛋白表达均缺乏显著的诱导或抑制作用。
Florfenicol (FFC) is a synthetic broad-spectrum antibiotic in animals. Although it has been widely used in livestock, poultry and carp, the primary enzymes that are involved in the FFC metabolism remains to be defined. Understanding of the metabolism mechanism of FFC is important for avoiding the possible adverse drug-drug interactions and reducing the drug residue in the edible tissues. The aim of the present study was to investigate the metabolism mechanism of FFC and drug-drug interaction. The details are divided into five parts as follows:
     To investigate the pharmacological (PK) disposition of FFC, Ten white healthy Newland rabbits were used and randomly allocated into two groups (i.v. or p.o. administration) of five animals each. Aqueous solutions of FFC were administered by i.v. and p.o. route at single doses of25mg/kg b.w. Blood samples were collected in the12h. The plasma concentration of FFC was determined by HPLC system. The pharmacological data analysis was performed by3P97. The results showed that the data of pharmacological parameters were fitted to one-compartment open models follow p.o. and i.v. routes of administration. For the i.v. route, the plasma drug concentration from zero (Co)22.58±5.53μg/mL, elimination rate constant (Ke)0.55±0.07h-1, volume of distribution at steady-state (Vc)1.31±0.21L/kg, half-lives of elimination phase (T1/2Ke)1.33±0.16h, area under curve (AUC)40.06±6.07and apparent body clearance (CLIF)0.68±0.10L/kg/h. For the p.o. route, the intercepts of elimination phases with Y-axis (A)10.21±4.13μg/mL, apparent body clearance (CL/F)0.68±0.10L/kg/h, the elimination rate constant (Ke)0.37±0.08h-1, the absorbtiong rate constant1.17±0.23h-1, lag time0.09±0.04h, half-lives of absorption phase(T1/2Ka)0.71±0.16h, half-lives of elimination phase (T1/2Ke)2.20±0.42h, The maximum plasma concentration (Cmax)2.45±0.46μg/mL, the time of occurrence of Cmax (Tmax)1.62±0.24h, area under curve (AUC)12.26±2.21μg·mL-1·h and apparent distribution of volumn (V/F)7.41±2.06L/kg. The oral bioavailability (F) of FFC was (46.83±4.92)%. Further studies are necessary to identify the range of MIC values for rabbit pathogens and to identify the most appropriate PK-PD parameter needed to predict an effective dose.
     Comparatively little is known about the ability of CYP450in the metabolism of FFC with rabbits and rats. Fifteen SD rats were used and divided into three groups in this study. They are FFC alone group, FFC+fluvoxomine-treatment group and FFC+ketoconazole-treatment group, repeactively. For the FFC alone group, FFC was given at a single p.o. dose of100mg/kg.The other two groups were given after p.o. administration of60mg/kg of fluvoxamine and75mg/kg of ketoconazole, respectively, once a day for three days consecutively. On the third day, the animals were given at a single p.o. dose of100mg/kg of FFC30min after the final administration of fluvoxamine or ketoconazole. Fifteen white male New Zealand rabbits were used in this study. The animals were divided into three groups (n=5, each group). For the FFC alone group, FFC was given at the dose of25mg/kg. The other two groups were given after p.o. administration of25mg/kg of fluvoxamine and60mg/kg of ketoconazole, respectively, once a day for three days consecutively. On the third day, the animals were given at a single p.o. dose of25mg/kg of FFC30min after the final administration of fluvoxamine or ketoconazole. The plasma concentration of FFC was analyzed by HPLC system. The mobile phase consisted of a mixture of acetonitrile-water at a ratio of75:25(v/v) and adjusted to pH of2.8with phosphate buffer. The pharmacokinetic analysis of FFC was performed using3P97. The results in rats showed that plasma concentration-time data of FFC was best described by a one-compartment open model. Inhibition of CYP1A activity significant increased the Cmax and AUC of FFC in rats (P<0.05). At the same time, the CLIF and VIF of FFC was significantly decreased compared with FFC Alone group (P<0.05). However, Inhibition of CYP3A activity did not alter the pharmacological disposition of FFC in rats. In rabbits, we found that the deposition of FFC was best described by a one-compartmental open model. We found that inhibition of CYP3A activity significantly increased the AUC and decreased the CLIF of FFC, respectively, but not in the FFC+fluvoxamine group. These suggested that the adverse drug-drug interaction in the use of FFC may occur if the substrates, inducers or inhibitors of CYP3A of the same metabolism mechanism are co-administrated in rabbits. These results suggested that CYP450enzyme play the different role in the metabolism of FFC in the different animals. For the rats, CYP1A was involved in the metabolism of FFC while CYP3A was involved in the metabolism of FFC of rabbits.
     To evaluate the role of P-gp in the metablism of FFC, here we employed verapamil (P-gp inhibitor) to investigate the role of P-gp in the PK disposition of FFC. Ten white male New Zealand rabbits (-2kg) were used in this study. The animals were divided into two groups (n=5, each group). For the saline control group, FFC was given at a single p.o. dose of25mg/kg b.w. via nasogastric tube. For the verapamil+FFC group, FFC was administrated as described above,30min after a single p.o. administration of9mg/kg of verapamil. The plasma concentration of FFC was analyzed by HPLC system. The results showed that the deposition of FFC was best described by a one-compartmental open model. We found that inhibition of P-gp significantly increased the AUC and decreased the CL/F of FFC, respectively. Furthermore, a significant decrease of Ke was observed, while an evident increase of T1/2Ke was found. These suggested that the adverse drug-drug interaction in the use of FFC may occur if the substrates, inducers or inhibitors (P-gp or/and CYP3A of the same metabolism mechanism are co-administrated.
     To investigat the possible drug-drug interaction between FFC and Enrofloxacin (ENR), ten healthy Newland rabbits weighting~2kg were used and divided to two groups in this study. For the FFC alone group, FFC was given at the intravenous dose of25mg/kg. For the ENR group, the ENR was given at the i.v. dose10mg/kg for three days consecutively. On the third day, the FFC was administrated at the dose of25mg/kg15min after final dose of ENR. Plasma FFC concentration was analysised by HPLC system. The result showed that the PK parameters of FFC, such as A UC, CL and T1/2β, were not changed after administration of ENR in rabbits. This indicated that the inhibitory effect of ENR on disposition of FFC was absent at clinical dosage in vivo in rabbits.
     To evaluate the effect of FFC on CYP3A6mRNA and CYP3A protein expression in rabbits, twelve white male New Zealand rabbits were used in this study. The animals were divided into three groups (n=4, each group). For the control group, the animals were not given any drug. For the FFC group, FFC was given at the oral dose of25mg/kg b.w. via nasogastric tube for consecutive three days. For the ENR group, ENR was administrated at the oral dose of10mg/kg for consecutively three days. All the animals were killed2h after the last dose, and the liver, kidney and duodenum were collected immediately. The results of RT-PCR showed that the expression of FFC were specific in the different tissue of rabbits. We found that the expression of CYP3A6mRNA was induced in the liver (P<0.05) while it was inhibited in the kidney of rabbits (P<0.05) for the FFC group, but not in the duodenum (P>0.05). On the other hands, CYP3A6mRNA was inhibited in the liver of rabbits for the ENR group, but not in the kidney or duodenum (.P>0.05). The results of Western blot showed that the expression of CYP3A protein was induced by the FFC in the duodenum(P<0.05), but not in the liver and kidney. CYP3A protein was not induced or inhibited by ENR in the liver, kidney and duodenum(P>0.05). It may be useful in the veterinary clinics when the substrates, inducers or inhibitors of CYP3A enzymes are co-administrated with FFC.
引文
[1]Guengerich F P, Wu Z, Bartleson C J. Function of human cytochrome P450s:characterisation of the orphans [J]. Biochem Biophys Res Commun,2005,338:465-469
    [2]Wienkers L C, Heath T G Predicting in vivo drug interactions from in vitro drug discovery data [J]. Nat Rev Drug Discov,2005,4:825-833
    [3]Guengerich F P. Cytochrome p450 and chemical toxicology [J]. Chem Res Toxicol,2008,21:70-83
    [4]Ding X, Kaminsky L S. Human extrahepatic cytochromes P450:function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts [J]. Annu Rev Pharmacol Toxicol,2003,43:149-173
    [5]Sutter T R., Tang Y M, Hayes C L, et al. Complete Cdna sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome[J] J Biol Chem,1994,269:13092-13099
    [6]Shimada T, Hayes C L, Yamazaki H, et al. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1 [J]. Cancer Res,1996a,56:2979-2984
    [7]Shimada T, Yamazaki H, Guengerich F P. Ethnic-related differences in coumarin 7-hydroxylation activities catalyzed by cytochrome P4502A6 in liver microsomes of Japanese and Caucasian populations [J], Xenobitica,1996b,26:395-403
    [8]Faber M S, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice:why, how, and when? [J] Basic Clin Pharmacol Toxicol,2005,97:125-134
    [9]Hartter S, Wang X, Weigmann H, et al. Differential effects of fluvoxamine and other antidepressants on the biotransformation of melatonin [J]. J Clin Psychopharmacol,2001,21:167-174
    [10]Faber M S, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice:why, how, and when? [J] Basic Clin Pharmacol Toxicol,2005,97:125-134
    [11]Lewis D F.57 Varieties:the human cytochromes P450[J]. Pharmacogenomics,2004,5:305-318
    [12]Eichelbaum M, Ingelman-Sundberg M, Evans W E. Pharmacogenomics and individualized drug therapy [J]. Annu Rev Med,2006,57:119-137
    [13]Ingelman-Sundberg M, Sim S C, Gomez A, et al. Influence of cytochrome P450 polymorphisms on drug therapies:pharmacogenetic, pharmacoepigenetic and clinical aspects [J]. Pharmacol Ther, 2007,116:496-526
    [14]Zanger U M, Raimundo S, Eichelbaum M. Cytochrome P450 2D6:overview and update on pharmacology, genetics, biochemistry Naunyn Schmiedebergs [J]. Arch Pharmacol,2004,369: 23-37
    [15]Ingelman-Sundberg M, Sim S C, Gomez A, et al. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects [J]. Pharmacol Ther, 2007,116:496-526
    [16]Kessova I, Cederbaum A I. CYP2E1:biochemistry, toxicology, regulation and function in ethanol-induced liver injury [J]. Curr Mol Med,2003,3:509-518
    [17]Lieber C S. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role [J]. Drug Metab Rev,2004,36:511-529
    [18]Raucy J L, Kraner J C, Lasker J M. Bioactivation of halogenated hydrocarbons by cytochrome P4502E1 [J]. Crit Rev Toxicol,1993,23:1-20
    [19]Caro A A, Cederbaum A I. Oxidative stress, toxicology, and pharmacology of CYP2E1 [J]. Annu Rev Pharmacol Toxicol,2004,44:27-42
    [20]Gonzalez F J. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1 [J]. Mutat Res,2005,569:101-110
    [21]Ingelman-Sundberg M. The human genome project and novel aspects of cytochrome P450 research [J]. Toxicol Appl Pharmacol,2005,207(suppl 2):52-56
    [22]Westlind-Johnsson A, Malmebo S, Johansson A, et al. Comparative analysis of CYP3A expression in human liver suggests only a minor role for CYP3A5 in drug metabolism [J]. Drug Metab Dispos, 2003,31:755-761
    [23]Ding X, Kaminsky L S. Human extrahepatic cytochromes P450:function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts [J]. Annu Rev Pharmacol, Toxicol,2003,43:149-173
    [24]Burk O, Koch I, Raucy J, et al. The induction of cytochrome P450 3A5 (CYP3A5) in the human liver and intestine is mediated by the xenobiotic sensors pregnane X receptor (PXR) and constitutively activated receptor (CAR) [J]. J Biol Chem,2004,279:38379-38385
    [25]Wrighton S A, Brian W R, Sari M A, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3) [J]. Mol Pharmacol,1990,38:207-213
    [26]Williams J A, Ring B J, Cantrell V E, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7 [J]. Drug Metab Dispos,2002,30:883-889
    [27]Kitada M, Kamataki T. Cytochrome P450 in human fetal liver:significance and fetal-specific expression [J]. Drug Metab Rev,1994,26:305-323
    [28]Hakkola J, Raunio H, Purkunen R, et al. Cytochrome P450 3A expression in the human fetal liver: evidence that CYP3A5 is expressed in only a limited number of fetal livers [J]. Biol Neonate,2001, 80:193-201
    [29]de Wildt S N, Kearns G L, Leeder J S, et al. Cytochrome P450 3A:ontogeny and drug disposition [J]. Clin Pharmacokinet,1999,37:485-505
    [30]Hines R N, McCarver D G The ontogeny of human drug-metabolizing enzymes:phase I oxidative enzymes [J]. J. Pharmacol Exp Ther,2002,300:355-360
    [31]Schuetz J D, Beach D L, Guzelian P S. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver [J]. Pharmacogenetics,1994,4:11-20
    [32]Kivisto K T, Bookjans G, Fromm M F, et al. Expression of CYP3A4, CYP3A5 and CYP3A7 in human duodenal tissue [J]. Br J Clin Pharmacol,1996,42:387-389
    [33]Von Richter O, Burk O, Fromm M F et al. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepatocytes:a comparative analysis in paired tissue specimens. Clin Pharmacol Ther,2004,75:172-183
    [34]Paine MF, Hart H L, Ludington SS et al. The human intestinal cytochrome P450 "pie"[J]. Drug Metab Dispos,2006,34:880-886
    [35]Rostami-Hodjegan A, Tucker G T. Simulation and prediction of in vivo drug metabolism in human populations from in vitro data, Nat Rev Drug Discov,2007,6:140-148
    [36]Ekins S, Stresser D M, Williams J A. In vitro and pharmacophore insights into CYP3A enzymes [J]. Trends Pharmacol Sci,2003,24:161-166
    [37]Scott E E, Halpert J R. Structures of cytochrome P450 3A4 [J]. Trends Biochem Sci,2005,30:5-7
    [38]Houston J B, Galetin A.. Modelling atypical CYP3A4 kinetics:principles and pragmatism [J]. Arch. Biochem Biophys.,2005,433:351-360
    [39]Waxman D J, Lapenson D P, Aoyama T, et al. Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s [J]. Arch Biochem Biophys,1991,290:160-166
    [40]Patki K. C, Von Moltke L L, Greenblatt D J. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450:role of cyp3a4 and cyp3a5 [J]. Drug Metab Dispos,2003,31:938-944
    [41]Aoyama T, Yamano S, Guzelian P S, et al. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1 [J]. Proc Natl Acad Sci USA,1990,87: 4790-4793
    [42]Hecht S S. DNA adduct formation from tobacco-specific N-nitrosamines [J] Mutat Res,1999, 424:127-142
    [43]Friedman M A, Woodcock J, Lumpkin M M, et al. The safety of newly approved medicines:do recent market removals mean there is a problem? [J] JAMA,1999,281:1728-1734
    [44]Lasser K E, Allen P D, Woolhandler S J, et al. Timing of new black box warnings and withdrawals for prescription medications[J]. JAMA,2002,287:2215-2220
    [45]Wienkers L C., Heath T G. Predicting in vivo drug interactions from in vitro drug discovery data [J]. Nat Rev Drug Discov,2005,4:825-833
    [46]Lin J H, Lu A.Y. Inhibition and induction of cytochrome P450 and the clinical implications [J]. Clin Pharmacokinet,1998,35:361-390
    [47]Hollenberg P F. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes [J]. Drug Metab Rev,2002,34:17-35
    [48]Madan A, Usuki E, Burton LA et al. In vitro approaches for studying the inhibition of drug-metabolizing enzymes responsible for the metabolism of drugs. In:Rodrigues AD (ed) Drug-drug interactions:from basic pharmacokinetic concepts to marketing issues [M]. Marcel-Dekker, London,2002
    [49]Halpert J R. Structural basis of selective cytochrome P450 inhibition [J]. Annu Rev Pharmacol Toxicol,1995,35:29-53
    [50]Ito K, Brown H S, Houston J B. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data [J]. Br J Clin Pharmacol,2004,57:473-486
    [51]Kent U M, Juschyshyn M I, Hollenberg P F. Mechanism-based inactivators as probes of cytochrome P450 structure and function [J]. Curr Drug Metab,2001,2:215-243
    [52]Sesardic D, Pasanen M, Pelkonen O. et al. Differential expression and regulation of members of the cytochrome P450IA gene subfamily in human tissues [J]. Carcinogenesis,1990,11:1183-1188
    [53]Kunze K L, Trager W F. Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline [J]. Chem Res Toxicol,1993,6:649-656
    [54]Back D J, Houlgrave R, Tjia J F, et al. Effect of the progestogens, gestodene,3-keto desogestrel, levonorgestrel, norethisterone and norgestimate on the oxidation of ethinyloestradiol and other substrates by human liver microsomes [J]. J Steroid Biochem Mol Biol,1991,38:219-225
    [55]Guengerich F P. Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene [J]. Chem Res Toxicol,1990,3:363-371
    [56]Lin J H, Lu A Y. Inhibition and induction of cytochrome P450 and the clinical implications [J]. Clin Pharmacokinet,1998,35:361-390
    [57]Hollenberg P F. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes [J]. Drug Metab Rev,2002,34:17-35
    [58]Madan A, Usuki E, Burton L A., et al. In vitro approaches for studying the inhibition of drug-metabolizing enzymes responsible for the metabolism of drugs. In:Rodrigues AD (ed) Drug-drug interactions:from basic pharmacokinetic concepts to marketing issues [M]. London: Marcel-Dekker,2002
    [59]Laine K, Palovaara S, Tapanainen P, et al. Plasma tacrine concentrations are significantly increased by concomitant hormone replacement therapy [J]. Clin Pharmacol Ther,1999,66:602-608
    [60]Pollock B G, Wylie M, Stack J A, et al. Inhibition of caffeine metabolism by estrogen replacement therapy in postmenopausal women[J]. J Clin Pharmacol,1999,39:936-940
    [61]Tarrus E, Cami J, Roberts D J, et al. Accumulation of caffeine in healthy volunteers treated with furafylline [J]. Br J Clin Pharmacol,1987,23:9-18
    [62]He N, Edeki T. The inhibitory effects of herbal components on CYP2C9 and CYP3A4 catalytic activities in human liver microsomes [J]. Am J Ther,2004,11:206-212
    [63]Fujita K. Food-drug interactions via human cytochrome P450 3A (CYP3A) [J]. Drug Metabol Drug Interact,2004,20:195-217
    [64]Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug resistance gene product P-glycoprotein in normal human tissues [J]. Proc Natl Acad Sci USA,1987,84:7735-7738
    [65]Thiebaut F, Tsuruo T, Hamada H, et al. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170:evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein [J]. J Histochem Cytochem 1989,37:159-164
    [66]Tanigawara Y, Okamura N, Hirai M, et al. Transport of digoxine by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1)[J]. J Pharmacol Exp Ther,1992,263: 840-845
    [67]Saeki T, Ueda K, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FK 506 [J]. J Biol Chem,1993,268:6077-6080
    [68]Gottesman M M, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter [J]. Annu Rev Biochem,1993,62:385-427
    [69]Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues [J]. Proc Natl Acad Sci USA,1987,84:7735-7738
    [70]Schinkel A H, Wagenaar E, van Deemter L, et al. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A [J]. J Clin Invest,1995,96:1698-1705
    [71]Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine [J]. Proc Natl Acad Sci USA,1997,94:2031-2035
    [72]Wacher V J, Wu C Y, Benet L Z. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein:implications for drug delivery and activity in cancer chemotherapy [J]. Mol Carcinog 1995,13:129-134
    [73]Gloor S M, Wachtel M, Bolliger M F, et al. Molecular and cellular permeability control at the blood-brain barrier [J]. Brain Res Brain Res Rev,2001,36:258-264
    [74]de Lange E C, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting:Implications of the barriers between blood and brain [J]. Clin Pharmacokin,2002,41:691-703
    [75]Tsuji A, Tamai 11. Carrier-mediated or specialized transport of drugs across the blood-brain barrier [J]. Adv Drug Deliv Rev,1999,36:277-290
    [76]Eytan G D, Kuchel P W. Mechanism of action of P-glycoprotein in relation to passive membrane permeation [J]. Int Rev Cytol,1999,190:175-250
    [77]Choo E F, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes [J]. Drug Metab Dispos, 2000,28:655-660
    [78]Polli J W, Jarrett J L, Studenberg S D, et al. Role of P-glycoprotein on CNS disposition of amprenavir (141 W94), an HIV protease inhibitor [J]. Pharm Res,1999,16:1206-1212
    [79]Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833 [J]. J Clin Invest,1997,100:2430-2436
    [80]Guengerich F P. Cychrome P450; Structure, mechanism, and biochemistry, P.R. Ortiz de Montellano. (ed.), Human cytochrome P450 enzymes[M]. New York: Plenum Press,1995:473-535
    [81]Manrel P. Cytochrome P450: Metabolic and toxicological aspects, C. Ioannides(ed.), The CYP3 family [M]. Boca Raton: CRS Press, Inc.1996:241-270
    [82]Thummel K E, Wilkinson G R. In vitro and in vivo drug interactions involving human CYP3A [J]. Ann Rev Pharmacol Toxicol,1998,38:389-430
    [83]Fromomm M F, Kim R B, Stein C M, et al. Inhibition of P-glycoprotein-mediated drug transport:A unifying mechanism to explain the interaction between digoxin and quinidine [J]. Circulation,1999, 99:552-557
    [84]Gottesman M M, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transport [J]. Ann Rev Biochem,1993,62:385-427
    [85]Leveque D, Jehl F. P-glycoprotein and pharmacokinetics [J]. Anticancer Res,1995,15:331-336
    [86]Leu B L, Huang J D. Inhibition of intestinal P-glycoprotein and effects on etoposide absorption [J]. Cancer Chemother Pharmacol,1995,35:432-436
    [87]Fricker G, Drewe J, Huwyler J, et al. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A:in vitro-in vivo correlation [J]. Br J Pharmacol,1996,118:1841-1847
    [88]Lown K S, Mayo R R, Leichtman A B, et al. Role of intestinal glycoprotein (mdr-1) in interpatient variation in the oral bioavailability of cyclosporine [J]. Clin Pharmacol Ther,1997,62:248-260
    [89]Kim R B, Fromm M F, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HTV-1 protease inhibitors [J]. J Clin Invest,1998,101:289-294
    [90]Salphati L, Benet L Z. Effects of ketoconazole on digoxin absorption and disposition in rat [J]. Pharmacology,1998,56:308-313
    [91]Gan LSL, Moseley M A, Khosla B, et al. CYP3A-Like cytochrome P450-mediated metabolism and polarized efflux of cyclosporin A in Caco-2 cells:interaction between the two biochemical barriers to intestinal transport [J]. Drug Metab Dispos,1996,24:344-349
    [92]Watkins P B. The barrier function of CYP3A4 and P-glycoprotein in the small bowel [J]. Adv Drug Deliv Rev,1997,27:161-170
    [93]Wacher V J, Silverman J A, Zhang Y, et al. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics [J]. J Pharm Sci,1998,87:1322-1330
    [94]Ito K, Kusuhara H, Sugiyama Y. Effects of intestinal CYP3A4 and P glycoprotein on oral drug absorption-theoretical approach [J]. Pharm Res,1999,16:225-231
    [95]Benet LZ, Wu CY, Hebert MF, et al. Intestinal drug metabolism and antitransport processes:a potential paradigm shift in oral drug delivery [J]. J. Control. Release,1996,39:139-143
    [96]Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P4503A and P-glycoprotein:implications for drug delivery and activity in cancer chemotherapy [J]. Mol. Carcinog,1995,13:129-134
    [97]Schuetz EG, Furuya KN, Schuetz JD. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms [J]. J. Pharmacol. Exp.Ther.,1995,275, 1011-1018.
    [98]Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver:identification of a cytochrome P-450Ⅲ gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs [J]. Clin. Pharmacol. Ther.,1988,43:630-635
    [99]Saeki T, Ueda K, Tanigawara Y. Human P-glycoprotein transports cyclosporin A and FK506.J. Biol. Chem [J].1993,268:6077-6080
    [100]Schmiedlin-Ren P, Thummel KE, Fisher JM, et al. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrixcoated permeable supports in the presence of 1a,25-dihydroxyvitamin D [J]. Mol. Pharmacol,1997,51:741-754
    [101]Kolars JC, Lown KS, Schmiedlin-Ren P et al.CYP3A gene expression in human gut epithelium [J]. Pharmacogenetics.1994,4:247-259
    [102]Kolars JC, Schmiedlin-Ren P, Dobbins Ⅲ WO. Et al., Heterogeneity of cytochrome P450IIIA expression in rat gut epithelia [J]. Gastroenterology,1992,102:1186-1198
    [103]Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells [J]. Mol. Pharmacol,1996,49:311-318
    [104]Lown KS, Mayo R, Blake DS, et al.Interpatient variation in intestinal Pgp expression contributes to variable oral kinetics of cyclosporin A [J]. Clin. Pharmacol. Ther., in press,1997,62:1-13
    [105]KS Lown, JC Kolars, M Ghosh, et al. Induction of MDR1 expression in normal rat and human intestine in vivo[J]. Gastroenterology,1996,110:A344
    [106]Lown KS, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test [J] [published erratum appears in Drug Metab. Dispos.,1995,23(3), following the table of contents]. Drug Metab. Dispos, 1994,22:947-955
    [107]Lown KS, Bailey D, Fontana R,et al. Grapefruit juice increases felodipine oral availability in man by decreasing intestinal CYP3A protein expression[J]. J. Clin. Invest,1997,99:2545-2553
    [108]Kolars JC, Stetson PL, Rush BD et al. Cyclosporine metabolism by P450ⅢA in rat enterocytes-another determinant of oral bioavailability [J]? Transplantation,1992,53:596-602
    [109]Gan LS, Moseley A, Khosla B, P. et al. Formation and polarized efflux of cyclosporin A metabolites in the in vitro Caco-2 cell culture system[J]. FASEB J.1995,9, A367
    [110]Papich M G, Riviere J E. Chloramphenicol and derivatives, macrolides, lincosamides and miscellaneous antimicrobials [J]. In:Adams, H.R. (Ed.), Veterinary Pharmacology and Therapeutics [M]. AmesIA, Iowa State University Press,2001:868-897
    [111]Cannon M, Harford S, Davies J. A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives [J]. Antimicrob Chemotherpy,1990,26:307-317
    [112]Paape M J, Miller R H, Ziv G Effects of florfenicol, chloramphenicol and thiamphenicol on phagocytosis, chemiluminescence, and morphology of bovine polymorphonuclear neutrophil leukocytes [J]. J Dairy Sci,1990,73:1734-1744
    [113]Varma K J, Adams P E, Powers T E, et al. Pharmacokinetics of florfenicol in veal calves [J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425
    [114]Adams P E, Varma K J, Powers T E, et al. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses [J]. American Journal of Veterinary Research, 1987,48:1725-1732
    [115]Booker C W, Jim G K, Guichon P T, et al. Evaluation of florfenicol for the treatment of undifferentiated fever in feedlot calves in western Canada [J]. The Canadian Veterinary Journal, 1997,38:555-560
    [116]Soback S, Paape M J, Filep R, et al. Florfenicol pharmacokinetics in lactating cows after intravenous, intramuscular and intramammary administration [J]. Journal of Veterinary Pharmacology and Therapeutics,1995,18:413-417
    [117]McKeller Q A, Varma K J. Pharmacokinetics and tolerance of florfenicol in Equidae [J]. Equine Veterinary Journal,1996,28:209-213
    [118]Liu J, Fung K F, Chen Z, et al. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae [J]. Antimicrobial Agents and Chemotherapy,2003,47:820-823
    [119]Shen J, Hu D, Wu X, et al. Bioavailability and pharmacokinetics of florfenicol in broiler chickens [J]. Journal of Veterinary Pharmacology and Therapeutics,2003,26:337-341
    [120]Shen J, Wu X, Hu D, et al. Pharmacokinetics of florfenicol in healthy and Escherichia coli-infected broiler chickens [J]. Research in Veterinary Science,2002,73:137-140
    [121]Afifi N A, Abo el-Sooud K A. Tissue concentrations and pharmacokinetics of florfenicol in broiler chickens [J]. British Poultry Science,1997,38:425-428
    [122]Zhao H Y, Zhang G H, Bai L, et al. Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration [J]. J Vet Pharmacol Ther,2011, 34:no. doi:10.1111/j.1365-2885.2011.01273.x
    [123]Park B K, Lim J H, Kim M S, et al. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits [J]. J Vet Pharmacol Therap,2007,30:32-36
    [124]毕聪明,苏巧艳,刘国权,等.氟苯尼考长效液对兔巴氏杆菌病的疗效研究[J].中国养兔,2005,1:15-17
    [125]Sarkar M, Polk R E, Guzelian P S, et al. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes [J]. Antimicrobial Agents and Chemotherapy,1990,34: 594-599
    [126]Davis J D, Aarons L, Houston J B. Metabolism of theophylline and its inhibition by fluoroquinolones in rat hepatic microsomes [J]. Xenobiotica,1995,25:563-573
    [127]Regmi N L, Abd El-Aty A M, Kuroha M, et al. Inhibitory effect of several fluoroquinolones on hepatic microsomal cytochrome P-450 1A activities in dogs [J]. Journal of Veterinary Pharmacology and Therapeutics,2005,28:553-557
    [128]Thomson D J, Menkis A H, McKenzie F N. Norfloxacin-cyclosporine A interaction [J]. Transplantation,1988,46:312-313
    [129]McLellan R A, Drobitch R K, Monshouwer M, et al. Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metaboloism in rat and human [J]. Drug Metabolism and Disposition,1996,24:1134-1138
    [130]Vaccaro E, Giorgi M, Longo V, et al. Inhibition of cytochrome P450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax) [J]. Aquatic Toxicology,2003,62:27-33
    [131]Gonzales FJ. The molecular biology of cytochrome P450s [J]. Pharmacol Rev,1988,40:243-288
    [132]Waxman DJ, Interactions of hepatic cytochromes P450 with steroid hormones. Regioselectivity and stereospecificity of steroid metabolism and hormonal regulation of P450 enzyme expression [J]. Biochem Pharmacol,1988,37:71-84
    [133]Ryan DE, Levin W. Purification and characterization of hepatic microsomal P450 [J]. Pharmacol Ther,1990,45:153-239
    [133]Pineau T, Daujat M, Pichard L, et al. Developmental expression of rabbit cytochrome P450 CYP1A1, CYP1A2 and CYP3A6 genes [J]. Eur J Biochem,1991,197:145-151
    [134]Waxman DJ, Attisano C, Guenguerich FP, et al. Human liver microsomal steroid metabolism: Identification of the major microsomal steroid hormone 6b-hydroxylase cytochrome P450 enzyme [J]. Arch Biochem Biophys,1988,263:424-436
    [135]Fang H, Xu J, Mei Q, et al., Involvement of cytochrome P450 3A4 and P-glycoprotein in first-pass intestinal extraction of omeprazole in rabbits [J]. Acta Pharmacol Sin,2009,30:1566-1572
    [136]Shin-Pei Y, Theresa M, Gregory MR. Comparative Biochemistry and Physiology [M]-2003,136: 297-308
    [126]Attar M, Ling KH, Tang-Liu DD, et al. Cytochrome P450 3A expression and activity in the rabbit lacrimal gland:glucocorticoid modulation and the impact on androgen metabolism[J]. vest Ophthalmol Vis Sci,2005,46(12):4697-4706
    [137]Schilter B, Andersen M R, Acharya C, et al. Activation of cytochrome P450 gene expression in the rat brain by phenobarbital-like inducers [J]. Journal of Pharmacology and Experimental Therapeutics,2000,294 (3):916-922
    [138]Schilter B, Omiecinski C J. Regional distribution and expression modulation of cytochrome P450 and epoxide hydrolase mRNA in the rat brain [J]. Molecular Pharmacology,1993,44 (5):990-996
    [1]Varma K J, Adams P E, Powers T E, et al. Pharmacokinetics of florfenicol in veal calves [J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425
    [2]Adams P E, Varma K J, Powers T E, et al. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses [J]. American Journal of Veterinary Research, 1987,48:1725-1732
    [3]Booker C W, Jim G K, Guichon PT, et al. Evaluation of florfenicol for the treatment of undifferentiated fever in feedlot calves in western Canada [J]. The Canadian Veterinary Journal, 1997,38:555-560
    [4]Soback S, Paape M J, Filep R, et al. Florfenicol pharmacokinetics in lactating cows after intravenous, intramuscular and intramammary administration [J]. Journal of Veterinary Pharmacology and Therapeutics,1995,18:413-417
    [5]McKeller Q A, Varma K J. Pharmacokinetics and tolerance of florfenicol in Equidae [J]. Equine Veterinary Journal,1996,28:209-213
    [6]Liu J, Fung K F, Chen Z, et al. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae [J]. Antimicrobial Agents and Chemotherapy,2003,47:820-823
    [7]Shen J, Hu D, Wu X, et al. Bioavailability and pharmacokinetics of florfenicol in broiler chickens [J]. Journal of Veterinary Pharmacology and Therapeutics,2003,26:337-341
    [8]Shen J, Wu X, Hu D, et al. Pharmacokinetics of florfenicol in healthy and Escherichia coli-infected broiler chickens [J]. Research in Veterinary Science,2002,73:137-140
    [9]Afifi N A, Abo el-Sooud K A. Tissue concentrations and pharmacokinetics of florfenicol in broiler chickens [J]. British Poultry Science,1997,38:425-428
    [10]Zhao HY, Zhang GH, Bai L, et al. Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration [J]. Journal of Veterinary Pharmacology and Therapeutics, doi:10.1111/j.1365-2885.2011.01273.x
    [11]Park B K, Lim J H, Kim M S, et al. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits [J]. J Vet Pharmacol Therap,2007,30:32-36
    [12]毕聪明,苏巧艳,刘国权,等.氟苯尼考长效液对兔巴氏杆菌病的疗效研究[J].中国养兔,2005,1:15-17
    [13]Abd El-Aty A M, Goudah A, El-Sooud K, et al. Pharmacokinetics and bioavailiability of florfenicol following intravenous, intramuscular and oral administrations in rabbits [J]. Veterinary Research Communications,2004,28:515-524
    [14]Koc F, Ozturk M, Kadioglu Y, et al. Pharmacokinetics of florfenicol after intravenous and intramuscular administration in New Zealand White rabbits [J]. Res Vet Sci,2009,87:102-105
    [15]Park B K, Lim J H, Kim M S, et al. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits [J]. J Vet Pharmacol Therap,2007,30:32-36
    [16]Kowalski P, Konieczna L, Chmielewska A, et al. Comparative evaluation between capillary electrophoresis and high-performance liquid chromatography for the analysis of florfenicol [J]. J Pharm Biomed Anal,2005,39:983-989
    [17]Yang Y C, Zhang W G, Tang Z M, et al.3P87 Practical Pharmacokinetics Program [J]. Information of the Chinese Pharmacological Society,1988,5:67
    [18]Yamaoka K, Nakagawa T, Uno T. Application of Akaik information criterion (AIC) in the evaluation of linear pharmacokine equations [J]. Journal of Pharmacokinetics and Bio-pharmaceutics,1978,6:165-175
    [19]Park B K, Lim J H, Kim M S, et al. Pharmacokinetics of florfenicol and its metabolite, florfenicol amine, in dogs [J]. Research in Veterinary Science,2008,84:85-89
    [20]Jianzhong S., Xiubo L., Haiyang J, et al. Bioavailability and pharmacokinetics of florfenicol in healthy sheep [J]. J vet Pharmacol Therap,2004,27:163-168
    [21]Varma KJ, Adams PE, Powers TE, et al. Pharmacokinetics of florfenicol in veal calves[J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425
    [22]Adams PE, Varma KJ, Powers TE et al. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses[J]. American Journal of Veterinary Research,1987,12: 1725-1732
    [23]Decraene BA, Deprez P, D Haese E et al., Pharmacokinetics of florfenicol in cerebrospinal fluid and plasma of calves[J]. Antimicrob Agents Chemother,1997,41:1991-1995
    [24]Lobell RD, Varma KJ, Johnson JC, et al., Pharmacokinetics of florfenicol following intravenous and intramuscular doses to cattle[J]. J. Vet. Pharmacol. Ther.,1994,17:253-258
    [25]Switaia M, Hrynyk R, Smutkiewicz A, et al. Pharmacokinetics of florfenicol, thiamphenicol, and chloramphenicol in turkeys[J]. J. Vet Pharmacol. Ther.,2007,30:145-150
    [26]Stamper MA, Papich MG,Lewbart GA, et al. Pharmacokinetics of florfenicol in loggerhead sea turtles (Caretta caretta) after single intravenous and intramuscular injections[J]. J. Zoo Wildlife Med,2003,34:3-8
    [27]Ali, B.H., Al-Qarawi, A A., Hashaad, M., Comparative plasma pharmacokinetics and tolerance of florfenicol following intramuscular and intravenous administration to camels, sheep and goats [J]. Vet. Res. Commun.2003,27:475-483
    [28]Lavy E, Ziv G, Soback S, et al. Clinical pharmacology of florfenicol in lactating goats [J]. Acta Veterinaria Scandinavica (Supplement),1991,87:133-136
    [29]Atef M, El-genda YI, Amer AMM et al. Disposition kinetics of florfenicol in goats by using two analytical methods. Journal of Veterinary Medicine Series A [J]. Physiology Pathology Clinical Medicine,2001,48:129-136
    [30]Jiang H, Feng Q, Zeng Z, Chen Z. Pharmacokinetics of florfenicol in pigs [J]. Chinese Journal of Veterinary Science,2001,21:86-89
    [31]McKellar QA, Varma KJ. Pharmacokinetics and tolerance of florfenicol in equine [J]. Equine Veterinary Journal,1996,28:209-213
    [32]Afifi NA, Abo El-Sooud K, Tissue concentration and pharmacokinetics of florfenicol in broiler chickens[J]. British Poultry science,1997,39:492-496
    [33]El-Banna HA Pharmacokinetics of florfenicol in normal and Pasteurella-infected muscovy ducksfJ]. British Poutry science,1998,39:425-428
    [34]El-Aty A.M., Goudah A., El-Sooud K.A., et al. Pharmacokinetics and bioavailability of florfenicol following intravenous, intramuscular and oral administrations in rabbits [J]. Vet. Res. Commun.,2004,28:515-524
    [35]Mestorino N, Landoni MF, Alt., et al. The pharmacokinetics of thiamphenicol in lactating cows [J]. Vet. Res. Commun.,1993,17:295-303
    [36]Bretzlaff KN, Neff-Davis CA, Ott RS, et al. Florfenicol in non-lactating dairy cows: pharmacokinetics, binding to plasma proteins, and effects on phagocytosis by blood neutrophils [J]. J. Vet. Pharmacol. Ther.,1987,10:233-240
    [37]Toutain PL. Pharmacokinetic/pharmacodynamic integration in drug development and dosage region optimization for veterinary medicine [J]. American Associan of pharmaceutical scientists, 2002,4:38
    [38]Anadon A, Bringas P, Matertena-Larranaga MR, et al. Bioavailability.phaemacokinetics and residue of chloramphenicol in chickens [J]. Journal of veterinary pharmacology and therapeutics, 1994,17:52-58
    [1]Papich M G, Riviere J E. Chloramphenicol and derivatives, macrolides,lincosamides and miscellaneous antimicrobials[J]. In:Adams, H.R. (Ed.), Veterinary Pharmacology and Therapeutics [M]. AmesIA Iowa State University Press,2001:868-897
    [2]Cannon M, Harford S, Davies J. A comparative study on the inhibitory actions of chloramphenicol, thiamphenicol and some fluorinated derivatives [J]. Antimicrob Chemotherpy,1990,26:307-317
    [3]Paape M J, Miller R H, Ziv G Effects of florfenicol, chloramphenicol and thiamphenicol on phagocytosis, chemiluminescence, and morphology of bovine polymorphonuclear neutrophil leukocytes [J]. J Dairy Sci,1990,73:1734-1744
    [4]Varma K J, Adams P E, Powers T E, et al. Pharmacokinetics of florfenicol in veal calves [J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425
    [5]Adams P E, Varma K J, Powers T E, et al. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses [J]. American Journal of Veterinary Research, 1987,48:1725-1732
    [6]Booker C W, Jim G K, Guichon P T, et al. Evaluation of florfenicol for the treatment of undifferentiated fever in feedlot calves in western Canada [J]. The Canadian Veterinary Journal, 1997,38:555-560
    [7]Soback S, Paape M J, Filep R, et al. Florfenicol pharmacokinetics in lactating cows after intravenous, intramuscular and intramammary administration [J]. Journal of Veterinary Pharmacology and Therapeutics,1995,18:413-417
    [8]McKeller Q A, Varma K J. Pharmacokinetics and tolerance of florfenicol in Equidae [J]. Equine Veterinary Journal,1996,28:209-213
    [9]Liu J, Fung K F, Chen Z, et al. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae [J]. Antimicrobial Agents and Chemotherapy,2003,47:820-823
    [10]Shen J, Hu D, Wu X, et al. Bioavailability and pharmacokinetics of florfenicol in broiler chickens [J]. Journal of Veterinary Pharmacology and Therapeutics,2003,26:337-341
    [11]Shen J, Wu X, Hu D, et al. Pharmacokinetics of florfenicol in healthy and Escherichia coli-infectedbroiler chickens [J]. Research in Veterinary Science,2002,73:137-140
    [12]Afifi N A, Abo el-Sooud K A. Tissue concentrations and pharmacokinetics of florfenicol in broiler chickens [J]. British Poultry Science,1997,38:425-428
    [13]Zhao H Y, Zhang G H, Bai L, et al. Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration [J]. J Vet Pharmacol Ther, 2011,34:no. doi:10.1111/j.1365-2885.2011.01273.x
    [14]Decraene, BA, Deprez P, D'Haese E et al. Pharmacokinetics of florfenicol in cerebrospinal fluid and plasma of calves [J]. Antimicrob Agents Chemother,1997,41:1991-1995
    [15]Switala M, Hrynyk R, Smutkiewicz A, et al. Pharmacokinetics of florfenicol, thiamphenicol, and chloramphenicol in turkeys [J]. J Vet Pharmacol Ther 2007,30:145-150
    [16]Shen J, Li X, Jiang H, et al. Bioavailability and pharmacokinetics of florfenicol in healthy sheep [J] J. vet. Pharmacol Therap,2004,27:163-168
    [17]Ali BH, Al-Qarawi AA, Hashaad M. Comparative plasma pharmacokinetics and tolerance of florfenicol following intramuscular and intravenous administration to camels, sheep and goats [J]. Vet. Res. Commun.2003,27:475-483
    [18]Park B K, Lim J H, Kim M S, et al. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits [J]. J Vet Pharmacol Therap,2007,30:32-36
    [19]Jianzhong S, Xianai W, Dingfei H, et al. Pharmacokinetics of florfenicol in healthy arid Escherichia coli-infected broiler chickens [J]. Research in Veterinary Science 2002,73:137-140
    [20]HardmanJ.G, Goodman, Gilman. the Pharmacological Basis of Therapeutics [M]. McGraw-Hill, New York,2001
    [21]Yao M, Dai M, Liu Z, et al. Comparison of the substrate kinetics of pig CYP3A29 with pig liver microsomes and human CYP3A4 [J]. Biosci Rep,2011,31(3):211-220
    [22]Ourlin JC, Baader M, Fraser D, et al. Cloning and functional expression of a first inducible avian cytochrome P450 of the CYP3A subfamily (CYP3A37) [J]. Arch Biochem Biophys,2000,373(2): 375-384
    [23]Weber A, Kaplan M, Chughtai SA, et al., CYP3A inductive potential of the rifamycins, rifabutin and rifampin, in the rabbit [J]. Biopharm Drug Dispos,2001,22(4):157-168
    [24]Khan AA, Chow EC, van Loenen-Weemaes AM, et al. Comparison of effects of VDR versus PXR, FXR and GR ligands on the regulation of CYP3A isozymes in rat and human intestine and liver [J]. Eur J Pharm Sri.,2009,37(2):115-125
    [25] 毕聪明,苏巧艳,刘国权,等.氟苯尼考长效液对兔巴氏杆菌病的疗效研究[J].中国养兔 2005,1:15-17
    [26]Koc F, Ozturk M, Kadioglu Y, et al. Pharmacokinetics of florfenicol after intravenous and intramuscular administration in New Zealand White rabbits [J]. Res Vet Sci,2009,87:102-105
    [27]Abd El-Aty A M, Goudah A, El-Sooud K, et al. Pharmacokinetics and bioavailiability of florfenicol following intravenous, intramuscular and oral administrations in rabbits [J]. Veterinary Research Communications,2004,28:515-524
    [28]Pal D, Mitra AK. MDR-and CYP3A4-mediated drug-drug interactions [J]. Journal of Neuroimmune Pharmacology,2006,1:323-339
    [29]Yao C, Kunze KL, Kharasch ED, et al. Fluvoxamine-theophylline interaction:gap between in vitro and in vivo inhibition constants toward cytochrome P4501A2 [J]. Clinical Pharmacology and Therapeutics,2001,70:415-424
    [29]Regmi N L, Abd El-Aty AM, Kuroha M, et al. Inhibitory effect of several fluoro-quinolones on hepatic microsomal cytochrome P-450 1A activities in dogs [J]. Journal of Veterinary Pharmacology and Therapeutics,2005,28:553-557
    [30]Regmi N L, Abd El-Aty A M, Kubota R, et al. Lack of inhibitory effects of several fluoroquinolones on cytochrome P-450 3A activities at clinical dosage in dogs [J]. Journal of Veterinary Pharmacology and Therapeutics,2007,30:37-42
    [31]Olkkola K T, Isohanni M H, Hamunen K et al. The Effect of Erythromycin and Fluvoxamine on the Pharmacokinetics of Intravenous Lidocaine [J]. Anesth Analg,2005,100:1352-1356
    [32]Koc F, Ozturk M, Kadioglu Y, et al. Pharmacokinetics of florfenicol after intravenous and intramuscular administration in New Zealand White rabbits [J]. Res Vet Sci,2009,87:102-105
    [33]Fang H, Xu J, Mei Q, et al. Involvement of cytochrome P450 3A4 and P-glycoprotein in first-pass intestinal extraction of omeprazole in rabbits [J]. Acta Pharmacol Sin,2009,30: 1566-1572
    [34]Kowalski P, Konieczna L, Chmielewska A, et al. Comparative evaluation between capillary electrophoresis and high-performance liquid chromatography for the analysis of florfenicol [J]. J Pharm Biomed Anal,2005,39:983-989
    [35]Yang Y C, Zhang W G, Tang Z M, et al.3P87 Practical Pharmacokinetics Program [J]. Information of the Chinese Pharmacological Society,1988,5:67
    [36]Yamaoka K, Nakagawa T, Uno T. Application of Akaik information criterion (AIC) in the evaluation of linear pharmacokine equations [J]. Journal of Pharmacokinetics and Bio-pharmaceutics,1978,6:165-175
    [37]Hiroshi K, Mashiro I. Species differences in vitro and in vivo small intestinal metabolism of CYP3A substrates [J]. Journal of Pharmaceutical Sciences,2008,97:1775-1800
    [38]Cortright K A, Craigmil A L. Cytochrome P450-dependent metabolism of midazolam in hepatic microsomes from chickens, turkeys, pheasant and bobwhite quail [J]. J. vet. Pharmacol. Therap., 2006,29:469-476
    [39]Quattrocchi L C, Guzelian P S. CYP3A regulation:from pharmacology to nuclear receptors [J]. Drug Metab Dispos,2001,29:615-622
    [40]Wrighton S A, Shuetz E G, Watkins P B, et al. Demonstration in multiple species of inducible hepatic cytochrome P450 and their. mRNAs related to glucocorticoidinducible cytochrome P450 of the rat [J]. Mol Pharmacol,1995,28:312-321
    [41]Bapiro TE, Andersson TB, Otter C, et al. Cytochrome P450 1A1/2 induction by antiparasitic drugs:dose-dependent increase in ethoxyresorufin O-deethylase activity and mRNA caused by quinine, primaquine and albendazole in HepG2 cells [J]. Eur J Clin Pharmacol,2002,58(8): 537-542.
    [42]Friedman M A, Woodcock J, Lumpkin M M, et al. The safety of newly approved medicines:do recent market removals mean there is a problem [J]? JAMA,1999,281:1728-1734
    [43]Lasser K E, Allen P D, Woolhandler S J, et al. Timing of new black box warnings and withdrawals for prescription medications[J]. JAMA,2002,287:2215-2220
    [44]Rocco O, Pierpaolo P, Sara D M, et al. Effect of the CYP3A4 inhibitor erythromycin on the pharmacokinetics of lignocaine and its pharmacologically active metabolites in subjects with normal and impaired liver function [J] Br J Clin Pharmacol,2002,55:86-93
    [45]Hu X, Li XC, Sun BB et al. Effects of enrofloxacin on cytochromes P4501A and P4503A in Carassius auratus gibelio (crucian carp) [J]. J Vet Pharmacol Ther,2011, doi:10.1111/j. 1365-2885.2011.01318.x.
    [46]Zhou S F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4 [J]. Curr Drug Metab,2008,9:310-322
    [47]Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes [J]. Br J Clin Pharmacol,2004,57: 487-494
    [48]Weiss J, Dormann S M, Martin-Facklam M et al. Inhibition of P-glycoprotein by newer antidepressants [J]. J Pharmacol Exp Ther,2003,305:197-204
    [49]Spigset O, Granberg K, Hagg S, et al. Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur J Clin Pharmacol [J].1997,52:129-133
    [1]Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter, Ann. Rev.Biochem.1993,62:385-427
    [2]Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues, Proc. Natl. Acad. Sci. U.S.A.84,1987,7735-7738
    [3]Hsing S, Gatmaitan Z, Arias IM. The function of Gp170 the multidrug-resistance gene product, in the brush border of rat intestinal mucosa, Gastroenterology 1992,102:879-885
    [4]Cousein E, Barthe'le'my C, Poullain S, et al. P-glycoprotein and cytochrome P450 3A4 involvement in risperidone transport using an in vitro Caco-2/TC7 model and an in vivo model[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2007,31:878-886
    [5]Koc F, Ozturk M, Kadioglu Y, et al. Pharmacokinetics of florfenicol after intravenous and intramuscular administration in New Zealand White rabbits [J]. Res Vet Sci,2009,87:102-105
    [6]Fang H, Xu J, Mei Q, et al., Involvement of cytochrome P450 3A4 and P-glycoprotein in first-pass intestinal extraction of omeprazole in rabbits [J]. Acta Pharmacol Sin,2009,30:1566-1572
    [7]Kowalski P, Konieczna L, Chmielewska A, et al. Comparative evaluation between capillary electrophoresis and high-performance liquid chromatography for the analysis of florfenicol [J]. J Pharm Biomed Anal,2005,39:983-989
    [8]Yang Y C, Zhang W G, Tang Z M, et al.3P87 Practical Pharmacokinetics Program [J]. Information of the Chinese Pharmacological Society,1988,5:67
    [9]Yamaoka K, Nakagawa T, Uno T.Application of Akaik information criterion (AIC) in the evaluation of linear pharmacokine equations [J]. Journal of Pharmacokinetics and Biopharmaceutics,1978,6:165-175
    [10]Schinkel A H,Wagenaar E, van Deemter L, et al. Absence of the mdrla P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A [J]. J Clin Invest,1995,96:1698-1705
    [11][79] Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833 [J]. J Clin Invest,1997,100:2430-2436
    [12]Sparreboom A., van Asperen J., Mayer U., et al., Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine [J]. Proc Natl Acad Sci USA,1997,94:2031-2035
    [13]苏成业.P-糖蛋白在药物代谢动力学中的作用及其临床意义[J].药学学报,2005,40(8):673-679
    [14]杨巧,庄英帜.肿瘤多药耐药治疗策略:P-gp抑制剂研究进展[J].海南医学,2011,22(6):112-116
    [1]Sarkar M, Polk R E, Guzelian P S, et al. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes [J]. Antimicrobial Agents and Chemotherapy,1990,34: 594-599
    [2]Davis J D, Aarons L, Houston J B. Metabolism of theophylline and its inhibition by fluoroquinolones in rat hepatic microsomes [J]. Xenobiotica,1995,25:563-573
    [3]Regmi N L, Abd El-Aty A M, Kuroha M, et al. Inhibitory effect of several fluoroquinolones on hepatic microsomal cytochrome P-450 1A activities in dogs [J]. Journal of Veterinary Pharmacology and Therapeutics,2005,28:553-557
    [4]Thomson D J, Menkis A H, McKenzie F N. Norfloxacin-cyclosporine A interaction [J]. Transplantation,1988,46:312-313
    [5]McLellan R A, Drobitch R K, Monshouwer M, et al. Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metaboloism in rat and human [J]. Drug Metabolism and Disposition,1996,24:1134-1138
    [6]Vaccaro E, Giorgi M, Longo V, et al. Inhibition of cytochrome P450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax) [J]. Aquatic Toxicology,2003,62:27-33
    [7]Varma K J, Adams P E, Powers T E, et al. Pharmacokinetics of florfenicol in veal calves [J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425
    [8]Adams P E, Varma K J, Powers T E, et al. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses [J]. American Journal of Veterinary Research,1987,48: 1725-1732
    [9]Booker C W, Jim G K, Guichon PT, et al. Evaluation of florfenicol for the treatment of undifferentiated fever in feedlot calves in western Canada [J]. The Canadian Veterinary Journal, 1997,38:555-560
    [10]Soback S, Paape M J, Filep R, et al. Florfenicol pharmacokinetics in lactating cows after intravenous, intramuscular and intramammary administration [J]. Journal of Veterinary Pharmacology and Therapeutics,1995,18:413-417
    [11]McKeller Q A, Varma K J. Pharmacokinetics and tolerance of florfenicol in Equidae [J]. Equine Veterinary Journal,1996,28:209-213
    [12]Liu J, Fung K F, Chen Z, et al. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae [J]. Antimicrobial Agents and Chemotherapy,2003,47:820-823
    [13]Shen J, Hu D, Wu X, et al. Bioavailability and pharmacokinetics of florfenicol in broiler chickens [J]. Journal of Veterinary Pharmacology and Therapeutics,2003,26:337-341
    [14]Shen J, Wu X, Hu D, et al. Pharmacokinetics of florfenicol in healthy and Escherichia coli-infected broiler chickens [J]. Research in Veterinary Science,2002,73:137-140
    [15]Afifi N A, Abo el-Sooud K A, Tissue concentrations and pharmacokinetics of florfenicol in broiler chickens [J]. British Poultry Science,1997,38:425-428
    [16]Zhao HY, Zhang GH, Bai L, et al. Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration [J]. Journal of Veterinary Pharmacology and Therapeutics, doi:10.1111/j.1365-2885.2011.01273.x
    [17]Park B K, Lim J H, Kim M S, et al. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits [J]. J Vet Pharmacol Therap,2007,30:32-36
    [18]毕聪明,苏巧艳,刘国权,等.氟苯尼考长效液对兔巴氏杆菌病的疗效研究[J].中国养兔, 2005,1:15-17
    [19]Koc F, Ozturk M, Kadioglu Y, et al. Pharmacokinetics of florfenicol after intravenous and intramuscular administration in New Zealand White rabbits [J]. Res Vet Sci,2009,87:102-105
    [20]Kowalski P, Konieczna L, Chmielewska A, et al. Comparative evaluation between capillary electrophoresis and high-performance liquid chromatography for the analysis of florfenicol [J]. J Pharm Biomed Anal,2005,39:983-989
    [21]Vancutsem P M, Babish J G.In vitro and in vivo study of the effects of enrofloxacin on hepatic cytochrome P-450. Potential for drug interactions [J]. Vet Hum Toxicol,1996,38:254-259
    [22]Mitchell M A. Enrofloxacin [J]. Journal of Exotic Pet Medicine,2006,15:66-69
    [23]Garcia M A, Solans C, Hernandez E, et al. Simultaneous determination of enrofloxacin and its primary metabolite, ciprofloxacin, in chicken tissues [J]. Chromatographia,2001,54:191-194
    [1]Sarkar M, Polk R E, Guzelian P S, et al. In vitro effect of fluoroquinolones on theophylline metabolism in human liver microsomes [J]. Antimicrobial Agents and Chemotherapy,1990,34: 594-599
    [2]Davis J D, Aarons L, Houston J B. Metabolism of theophylline and its inhibition by fluoroquinolones in rat hepatic microsomes [J]. Xenobiotica,1995,25:563-573
    [3]Regmi N L, Abd El-Aty A M, Kuroha M, et al. Inhibitory effect of several fluoroquinolones on hepatic microsomal cytochrome P-450 1A activities in dogs [J]. Journal of Veterinary Pharmacology and Therapeutics,2005,28:553-557
    [4]Thomson D J, Menkis A H, McKenzie F N. Norfloxacin-cyclosporine A interaction [J]. Transplantation,1988,46:312-313
    [5]McLellan R A, Drobitch R K, Monshouwer M, et al. Fluoroquinolone antibiotics inhibit cytochrome P450-mediated microsomal drug metaboloism in rat and human [J]. Drug Metabolism and Disposition,1996,24:1134-1138
    [6]Vaccaro E, Giorgi M, Longo V, et al. Inhibition of cytochrome P450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax) [J]. Aquatic Toxicology,2003,62:27-33
    [7]Varma K J, Adams P E, Powers T E, et al. Pharmacokinetics of florfenicol in veal calves [J]. Journal of Veterinary Pharmacology and Therapeutics,1986,9:412-425
    [8]Adams P E, Varma K J, Powers T E, et al. Tissue concentrations and pharmacokinetics of florfenicol in male veal calves given repeated doses [J]. American Journal of Veterinary Research,1987,48: 1725-1732
    [9]Booker C W, Jim G K, Guichon P T, et al. Evaluation of florfenicol for the treatment of undifferentiated fever in feedlot calves in western Canada [J]. The Canadian Veterinary Journal, 1997,38:555-560
    [10]Soback S, Paape M J, Filep R, et al. Florfenicol pharmacokinetics in lactating cows after intravenous, intramuscular and intramammary administration [J]. Journal of Veterinary Pharmacology and Therapeutics,1995,18:413-417
    [11]McKeller Q A, Varma K J. Pharmacokinetics and tolerance of florfenicol in Equidae [J]. Equine Veterinary Journal,1996,28:209-213
    [12]Liu J, Fung K F, Chen Z, et al. Pharmacokinetics of florfenicol in healthy pigs and in pigs experimentally infected with Actinobacillus pleuropneumoniae [J]. Antimicrobial Agents and Chemotherapy,2003,47:820-823
    [13]Shen J, Hu D, Wu X, et al. Bioavailability and pharmacokinetics of florfenicol in broiler chickens [J]. Journal of Veterinary Pharmacology and Therapeutics,2003,26:337-341
    [14]Shen J, Wu X, Hu D, et al. Pharmacokinetics of florfenicol in healthy and Escherichia coli-infected broiler chickens [J]. Research in Veterinary Science,2002,73:137-140
    [15]Afifi N A, Abo el-Sooud K A. Tissue concentrations and pharmacokinetics of florfenicol in broiler chickens [J]. British Poultry Science,1997,38:425-428
    [16]Zhao H Y, Zhang G H, Bai L, et al. Pharmacokinetics of florfenicol in crucian carp (Carassius auratus cuvieri) after a single intramuscular or oral administration [J]. J Vet Pharmacol Ther,2011, 34:no. doi:10.1111/j.1365-2885.2011.01273.x
    [17]Park B K, Lim J H, Kim M S, et al. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits. Pharmacokinetics of florfenicol and its major metabolite, florfenicol amine, in rabbits [J]. J Vet Pharmacol Therap,2007,30:32-36
    [18]毕聪明,苏巧艳,刘国权,等.氟苯尼考长效液对兔巴氏杆菌病的疗效研究[J].中国养兔,2005,1:15-17
    [19]Hardman, J.G (Ed.) Goodman & Gilman's the Pharmacological Basis of Therapeutics [M]. McGraw-Hill, New York,2001
    [20]Koc F, Ozturk M, Kadioglu Y, et al. Pharmacokinetics of florfenicol after intravenous and intramuscular administration in New Zealand White rabbits [J]. Res Vet Sci,2009,87:102-105
    [21]Hu HF, Gao ZX, Cheng YY. Inhibition of CYP3A mRNA and protein expression, and enzymatic activity, by enrofloxacin in chickens [J]. J. vet. Pharmacol. Therap.,2010,33,546-550
    [22]Hu X, Li XC, Sun BB, et al. Effects of enrofloxacin on cytochromes P4501A and P4503A in Carassius auratus gibelio (crucian carp) [J]. J Vet Pharmacol Ther.,2011,doi: 10.1111/j.1365-2885.2011.01318.x.
    [23]Schilter B, Andersen M R, Acharya C, et al. Activation of cytochrome P450 gene expression in the rat brain by phenobarbital-like inducers [J]. Journal of Pharmacology and Experimental Therapeutics,2000,294 (3):916-922
    [24]Schilter B, Omiecinski C J. Regional distribution and expression modulation of cytochrome P450 and epoxide hydrolase mRNA in the rat brain [J]. Molecular Pharmacology,1993,44 (5):990-996
    [25]Xie W, Barwick J L, Downes M, et al. Humanized xenobiotic response in mice expressing nuclear receptor SXR [J]. Nature,2000,406:435-439
    [26]Watkins R E, Wisely G B, Moore L B, et al. The human nuclear xenobiotic receptor PXR:structural determinants of directed promiscuity [J]. Science 2001,292:2329-2333 [27] Selye H. Hormones and resistance [J]. J Pharm Sci 1971,60(1):1-28
    [28]张丽娜,牛吉山,于玲.用半定量RT—P CR方法分析小麦TaMlo-Alc基因的表达[J].西北植物学报,2005,25(7):1368-1371
    [29]Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature,1970,227:680-685
    [30]杨志敏,蒋立科生物化学北京:高等教育出版社[M],2005,462-468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700