新型线性及环状多吡咯、多吡啶化合物的合成与离子识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌离子和氰根等离子的检测在生物化学和环境科学等领域具有重要学术价值和应用背景。其中,荧光探针具有成本低、操作简便以及灵敏度高等优点,受到了广泛关注。其分子设计往往基于一些结构简单的五员或六员杂环发色团。毗咯为五员杂环,它可以与醛缩合生成线性二吡咯、三吡咯及多毗咯。这些线性吡咯低聚物广泛用作合成卟啉的中间体。但是在荧光探针方面却没有引起足够重视。考虑到其氮原子的配位性能及吡咯α-位的易修饰性,本文系统性地将其用于设计锌离子和氰根等离子的荧光探针。此外,多吡啶类化合物是良好的金属离子配体,本论文也将其用于荧光探针的设计。
     本论文第一章详细介绍了荧光探针常见的识别机理、研究进展及本文研究思路。
     第二章设计合成了四个meso位为五氟苯基取代的线性二吡咯(D1-D3)和三吡咯(D4),它们对锌离子表现出荧光增强型识别作用,并且荧光波长可在绿光到红光的范围内进行调控。荧光增强可归因于锌离子配位作用导致分子平面性和刚性的增强,分子内旋转所造成的能量损失得到抑制,即存在“螯合荧光增强效应(CHEF)".这些探针可用于含水体系中锌离子的高选择性检测,其灵敏度最高可达4.6×10-8M。此外,D4还可用于细胞内锌离子的荧光成像。
     第三章,通过取代基的改变来进一步调控该类多吡咯探针对锌离子的识别性能。以对甲氧基苯甲酰氯为酰化试剂,酰化5-五氟苯基二吡咯甲烷时,伴随着常规的α-单酰化产物PS1和α-,α'-双酰化产物PS3的生成,意外得到了较高产率的新型α-,β'-双酰化产物PS2。PS1-PS3经过氧化得到次甲基二吡咯S1~S3,可用作荧光增强型锌离子探针。相对于D1~D3,不对称取代的S2具有更高的灵敏度和更长的荧光发射波长。
     第四章,用DDQ氧化含有较多供电子取代基的二吡咯甲烷时,意外地得到了三个meso-位羟基取代的二吡咯甲烷DPMOH1-DPMOH3。由于其meso位碳原子为sp3杂化,整个分子不是共轭结构,溶液既没有颜色也没有荧光。向其溶液中加入锌离子后,DPMOH1-DPMOH3被空气氧化为其对应的次甲基二吡咯并与锌离子配位,导致共轭体系增大、刚性及平面性增强,最终溶液发出较强的橙色荧光。
     第五章,研究了三个α-羰基取代次甲基二吡咯化合物DCN1-DCN3对氰离子的识别性能。在纯有机溶剂中,氟离子能使溶液由浅黄变为橙色,而氰离子的加入则使之变为粉红色。在含水溶剂体系中,氟离子不能引起明显的颜色变化,而氰离子的加入却使溶液颜色由浅黄变为红色。这是由于氟离子与主体的氢键作用在含水体系中被破坏。而氰离子对α-位羰基碳原子的亲核进攻在含水体系中仍能够正常进行。
     第六章,将蒽与2,2'-二吡啶胺通过炔基或者直接相连,合成了ACN1-ACN3,它们具有较高荧光量子产率。其中,ACN1和ACN2的荧光在加入少量铜离子之后几乎完全淬灭,而随后加入氰离子又能够使荧光恢复,并且这一过程对氰离子表现出高选择性和高灵敏度,检测限可达2×10-7M。相比之下,ACN3的荧光较难被铜离子淬灭也因此不能用作氰根的荧光增强型探针。结果表明,蒽与二吡啶胺连接方式的微小差异对离子识别性能有非常显著的影响,这为今后设计相关的氰根荧光探针提供了新的思路。
     第七章为实现分子的多个稳定状态,设计合成了对称性相对较低的新型meso-羰基卟啉化合物DPH22。在低极性溶剂中,它以酚式结构存在,四吡咯大环接近共面。而加入大极性溶剂之后,则立即转变成其醌式异构体,同时大环扭曲为非平面构象。此外,它还可以与酸碱作用,发生可逆的质子化及脱质子作用。基于这些过程,以酸、碱为输入信号,以其氯仿溶液在特定波长的吸光度为输出信号,成功构建了两个半减法器和一个数字比较器。
     第八章对全文工作进行总结并对线性多毗咯化合物在荧光探针方面的应用前景进行了展望
The detection of ions such as Zn2+and CN is a subject of great importance in the areas of biochemistry and environmental science. Fluorescent probes have the advantages of low cost, ease of performance and high sensitivity, thus attracting increasing interests in recent years. The chromophores of fluorescent probes are usually constructed from simple five-or six-membered heterocyclic units. Pyrrole is a five-membered heterocycle, which can react with aldehydes to form dipyrromethanes, tripyrromethanes and other linear oligopyrroles, which have been used as intermediates in porphyrins synthesis. However, their applications as fluorescent probes have not caused much attention. In consideration of their potential emission capacity, coordination ability and ease of modification, this thesis is focused on the systematic investigations of the novel oligopyrroles that can be applied as practical Zn2+and CN-probes. Furthermore, considering the fact that polypyridyl ligands are also widely used in metal chelation, their applications as fluorescent probes were also investigated.
     In Chapter1, common sensing principles of fluorescent probes are briefly introduced and the recent progresses in zinc and cyanide probes are also reviewed.
     In Chapter2, meso-pentafluorophenyl substituted dipyrrins D1-D3and tripyrrin D4were readily synthesized and developed as fluorescence turn on Zn2+probes with emission colors varying from green to red. The fluorescence enhancement can be ascribed to the formation of corresponding zinc complexes, which show the "CHEF" type fluorescence. D1~D4can be applied to selectively detect Zn2+in aqueous systems, with the best detection limits of4.6×10-8M. In addition, D4was also successfully applied to image Zn2+in living KB cells.
     In Chapter3, we tried to improve the sensing behavior of the dipyrrin probes by changing the substituents at the pyrrolic a-position. During the acylation of5-pentafluoro-phenyldipyrromethane by a Friedel-Crafts reaction using p-anisoyl chloride as the acylating agent, an a-, β'-diacylated product PS2was unexpectedly obtained in high yield accompanied with ordinary a-substituted mono-and diacylated products PS1and PS3. After oxidation of PS1-PS3to dipyrrins S1-S3with DDQ, they show fluorescence "turn on" upon addition of Zn2+in water-containing systems. Compared with D1-D3, the novel a-,β'-diacylated dipyrrin S2show a longer emission wavelength and higher sensitivity for Zn2+detection.
     In Chapter4, three novel meso-hydroxyl substituted dipyrromethanes
     DPMOH1-DPMOH3were unexpectedly obtained during the oxidation of dipyrromethanes bearing electron rich substituents at the meso position. Due to the interruption of the conjugated π system by an sp3carbon between the two pyrrolic units, they were found to be colourless and nonfluorescent. Interestingly, upon addition of Zn2+to their solutions, bright orange fluorescence was observed due to the oxidation of DPMOH1-DPMOH3to corresponding dipyrrins followed by the formation of zinc complexes.
     In Chapter5, for the detection of CN-, three dipyrrins DCN1-DCN3were designed and synthesized. In pure organic solvents, the addition CN-induced a color change from light yellow to pink, while the color changed to orange upon addition of F-. In water-containing systems, DCN1-DCN3showed no response to F-, but the addition of CN-changed their solution color from light yellow to red. These observations can be rationalized by the fact that the hydrogen-bonding interactions between F-and the hosts was greatly suppressed in water-containing systems, but the nucleophilic addition of CN-was not obviously affected.
     In Chapter6, three highly fluorescent compounds ACN1-ACN3were synthesized by linking strongly emissive anthracene unit to a Cu2+chelating2.2'-dipyridylamine moiety. The fluorescence of ACN1and ACN2can be easily quenched by the formation of non-fluorescent ACN1-Cu2+and ACN2-Cu2+ensembles, which can be applied as reversible and sensitive fluorescence turn on cyanide probes, with the best detection limit of2×10-1M. In contrast, a large molar excess of Cu2+is required to quench the fluorescence of ACN3. which is unsuitable for the detection of CN-. These results demonstrate that the linking modes between anthracene and2,2'-dipyridylamine have a great influence on their sensing properties, offering a designing strategy for relevant fluorescent CN-probes.
     In Chapter7, with the purpose to realize multilple stable states, a relatively unsymmetrical novel dioxoporphyrin named DPH22was synthesized, which show a phenolic form (DPH22) in CHCl3with a nearly planar arrangement of the macrocyclic moiety, and transformed into the quinoidal form (DPH40) by adding a small amount of DMSO. accompanied with the distortion of the macrocyele to a nonplanar conformation. Besides, the interactions between DPH22and acid/base lead to reversible protonation and deprotonation processes. Based on these transformations, two half subtractors and a comparator were successfully constructed by using the addition of TFA and TBAF as the inputs, and the absorption values at412.510.562and603nm as the outputs.
     Chapter8summarized the utilization of oligopyrroles as ion probes with an outlook on their further applications in related areas.
引文
[1]Tsien R. Y. Constructing and Exploiting the Fluorescent Protein Paintbox (Nobel Lecture). Angew. Chem. Int. Ed.2009,48(31):5612-5626.
    [2]Ueno T., Urano Y., Kojima H., Nagano T. Mechanism-Based Molecular Design of Highly Selective Fluorescence Probes for Nitrative Stress. J. Am. Chem. Soc.2006, 128(33):10640-10641.
    [3]Luo J., Xie Z., Lam J. W. Y, Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y, Zhu D., Tang B. Z. Aggregation-induced emission of 1-methyl-1.2,3,4,5-pentaphenylsilole. Chem. Commun.2001, (18):1740-1741.
    [4]Chen J., Law C. C. W., Lam J. W. Y, Dong Y, Lo S. M. F., Williams I. D., Zhu D., Tang B. Z. Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater.2003,15(7): 1535-1546.
    [5]Cockrell G. M., Zhang G., VanDerveer D. G., Thummel R. P., Hancock R. D. Enhanced Metal Ion Selectivity of 2,9-Di-(pyrid-2-yl)-1,10-phenanthroline and Its Use as a Fluorescent Sensor for Cadmium(II). J. Am. Chem. Soc.2008,130(4):1420-1430.
    [6]Liu B., Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem. Commun.2005, (25):3156-3158.
    [7]Jiang J., Liu W., Cheng J., Yang L., Jiang H., Bai D., Liu W. A sensitive colorimetric and ratiometric fluorescent probe for mercury species in aqueous solution and living cells. Chem. Commun.2012,48(67):8371-8373.
    [8]Xu Z. C., Yoon J., Spring D. R. Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 2010,39(6):1996-2006.
    [9]Jiang P., Guo Z. Fluorescent detection of zinc in biological systems:recent development on the design of chemosensors and biosensors. Coord. Chem. Rev.2004, 248(1-2):205-229.
    [10]Tomat E., Lippard S. J. Imaging mobile zinc in biology. Curr. Opin. Chem. Biol.2010, 14(2):225-230.
    [11]Walkup G. K.. Burdette S. C., Lippard S. J., Tsien R. Y. A New Cell-Permeable Fluorescent Probe for Zn2+. J. Am. Chem. Soc.2000,122(23):5644-5645.
    [12]Hirano T., Kikuchi K., Urano Y., Higuchi T., Nagano T. Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications. J. Am. Chem. Soc. 2000,122(49):12399-12400.
    [13]Hirano T., Kikuchi K., Urano Y., Nagano T. Improvement and Biological Applications of Fluorescent Probes for Zinc, ZnAFs. J. Am. Chem. Soc.2002,124(23):6555-6562.
    [14]Burdette S. C., Frederickson C. J., Bu W., Lippard S. J. ZP4, an Improved Neuronal Zn2+Sensor of the Zinpyr Family. J. Am. Chem. Soc.2003,125(7):1778-1787.
    [15]Nolan E. M., Ryu J. W., Jaworski J., Feazell R. P., Sheng M., Lippard S. J. Zinspy Sensors with Enhanced Dynamic Range for Imaging Neuronal Cell Zinc Uptake and Mobilization. J. Am. Chem. Soc.2006,128(48):15517-15528.
    [16]Zhang X.-a., Hayes D., Smith S. J., Friedle S., Lippard S. J. New Strategy for Quantifying Biological Zinc by a Modified Zinpyr Fluorescence Sensor. J. Am. Chem. Soc.2008,130(47):15788-15789.
    [17]Buccella D., Horowitz J. A., Lippard S. J. Understanding Zinc Quantification with Existing and Advanced Ditopic Fluorescent Zinpyr Sensors. J. Am. Chem. Soc.2011, 133(11):4101-4114.
    [18]Wang J., Xiao Y., Zhang Z., Qian X., Yang Y, Xu Q. A pH-resistant Zn(ii) sensor derived from 4-aminonaphthalimide:design, synthesis and intracellular applications. J. Mater. Chem.2005,15(27-28):2836-2839.
    [19]Tang B.. Huang H., Xu K., Tong L., Yang G, Liu X., An L. Highly sensitive and selective near-infrared fluorescent probe for zinc and its application to macrophage cells. Chem. Commun.2006, (34):3609-3611.
    [20]Maruyama S., Kikuchi K., Hirano T., Urano Y., Nagano T. A Novel, Cell-Permeable, Fluorescent Probe for Ratiometric Imaging of Zinc Ion. J. Am. Chem. Soc.2002, 124(36):10650-10651.
    [21]Kiyose K., Kojima H., Urano Y, Nagano T. Development of a Ratiometric Fluorescent Zinc Ion Probe in Near-Infrared Region, Based on Tricarbocyanine Chromophore. J. Am. Chem. Soc.2006,128(20):6548-6549.
    [22]Komatsu K., Urano Y, Kojima H., Nagano T. Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc. J. Am. Chem. Soc.2007,129(44):13447-13454.
    [23]Atilgan S., Ozdemir T., Akkaya E. U. A Sensitive and Selective Ratiometric Near IR Fluorescent Probe for Zinc Ions Based on the Distyryl-Bodipy Fluorophore. Org. Lett. 2008,10(18):4065-4067.
    [24]Xue L., Liu C, Jiang H. Highly Sensitive and Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions in Aqueous Media. Org. Lett.2009,11(7): 1655-1658.
    [25]Xue L., Liu C., Jiang H. A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells. Chem. Commun.2009, (9):1061-1063.
    [26]Qian F., Zhang C., Zhang Y, He W., Gao X., Hu P., Guo Z. Visible Light Excitable Zn2+Fluorescent Sensor Derived from an Intramolecular Charge Transfer Fluorophore and Its in Vitro and in Vivo Application. J. Am. Chem. Soc.2009,131(4): 1460-1468.
    [27]Xu Z., Kim G.-H., Han S. J., Jou M. J., Lee C., Shin I., Yoon J. An NBD-based colorimetric and fluorescent chemosensor for Zn2+and its use for detection of intracellular zinc ions. Tetrahedron 2009,65(11):2307-2312.
    [28]Zhu J.-F., Yuan H., Chan W.-H., Lee A. W. M. A FRET fluorescent chemosensor SPAQ for Zn2+based on a dyad bearing spiropyran and 8-aminoquinoline unit. Tetrahedron Lett.2010,51(27):3550-3554.
    [29]Sreenath K., Allen J. R., Davidson M. W., Zhu L. A FRET-based indicator for imaging mitochondrial zinc ions. Chem. Commun.2011,47(42):11730-11732.
    [30]Manandhar E., Broome J. H., Myrick J., Lagrone W., Cragg P. J., Wallace K. J. A pyrene-based fluorescent sensor for Zn2+ions:a molecular'butterfly'. Chem. Commun.2011,47(31):8796-8798.
    [31]Sun F., Zhang G, Zhang D., Xue L., Jiang H. Aqueous Fluorescence Turn-on Sensor for Zn2+with a Tetraphenylethylene Compound Org. Lett.2011,13(24):6378-6381.
    [32]Hong Y., Chen S., Leung C. W. T., Lam J. W. Y., Liu J., Tseng N. W., Kwok R. T. K., Yu Y., Wang Z., Tang B. Z. Fluorogenic Zn(II) and Chromogenic Fe(II) Sensors Based on Terpyridine-Substituted Tetraphenylethenes with Aggregation-Induced Emission Characteristics. ACS Appl. Mater. Interfaces 2011,3(9):3411-3418.
    [33]Zhou Y, Li Z. X., Zang S. Q., Zhu Y. Y, Zhang H. Y, Hou H. W., Mak T. C. W. A Novel Sensitive Turn-on Fluorescent Zn2+Chemosensor Based on an Easy To Prepare C3-Symmetric Schiff-Base Derivative in 100% Aqueous Solution. Org. Lett.2012, 14(5):1214-1217.
    [34]Hsieh W. H., Wan C. F., Liao D. J., Wu A. T. A turn-on Schiff base fluorescence sensor for zinc ion. Tetrahedron Lett.2012,53(44):5848-5851.
    [35]Li Y, Shi L., Qin L. X., Qu L. L., Jing C., Lan M., James T. D., Long Y. T. An OFF-ON fluorescent probe for Zn2+based on a GFP-inspired imidazolone derivative attached to a 1,10-phenanthroline moiety. Chem. Commun.2011,47(15):4361-4363.
    [36]Lu C., Xu Z., Cui J., Zhang R., Qian X. Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological pH Range:A New Strategy to Discriminate Cadmium from Zinc. J. Org. Chem.2007,72(9):3554-3557.
    [37]Taki M., Wolford J. L., O'Halloran T. V. Emission Ratiometric Imaging of Intracellular Zinc:Design of a Benzoxazole Fluorescent Sensor and Its Application in Two-Photon Microscopy. J. Am. Chem. Soc.2004,126(3):712-713.
    [38]Xu Z. C., Baek K. H., Kim H. N., Cui J. N., Qian X. H., Spring D. R., Shin I., Yoon J. Zn2+-Triggered Amide Tautomerization Produces a Highly Zn2+-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor. J. Am. Chem. Soc.2010,132(2): 601-610.
    [39]Nolan E. M., Jaworski J., Okamoto K. I., Hayashi Y., Sheng M., Lippard S. J. QZ1 and QZ2:Rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn(II). J. Am. Chem. Soc.2005,127(48):16812-16823.
    [40]Dennis A. E., Smith R. C. "Turn-on" fluorescent sensor for the selective detection of zinc ion by a sterically-encumbered bipyridyl-based receptor. Chem. Commun.2007, 0(44):4641-4643.
    [41]Sclafani J. A., Maranto M. T., Sisk T. M., Van Arman S. A. An aqueous ratiometric fluorescence probe for Zn(Ⅱ). Tetrahedron Lett.1996,37(13):2193-2196.
    [42]Koike T., Watanabe T., Aoki S., Kimura E., Shiro M. A novel biomimetic zinc(II)-fluorophore, dansylamidoethyl-pendant macrocyclic tetraamine 1,4,7,10-tetraazacyclododecane (cyclen). J. Am. Chem. Soc.1996,118(50): 12696-12703.
    [43]Li H.-y., Gao S., Xi Z. A colorimetric and "turn-on" fluorescent chemosensor for Zn(Ⅱ) based on coumarin Shiff-base derivative. Inorg. Chem. Commun.2009.12(4): 300-303.
    [44]Wu J. S., Liu W. M., Zhuang X. Q., Wang F., Wang P. F., Tao S. L., Zhang X. H., Wu S. K., Lee S. T. Fluorescence turn on of coumarin derivatives by metal cations:A new signaling mechanism based on C=N isomerization. Org. Lett.2007,9(1):33-36.
    [45]Tomasulo M., Sortino S., White A. J. P., Raymo F. M. Chromogenic Oxazines for Cyanide Detection. J. Org. Chem.2006,71(2):744-753.
    [46]Guidelines for Drinking-Water Quality, World Health Organization:Geneva,1996.
    [47]Hachiya H., Ito S., Fushinuki Y., Masadome T., Asano Y., Imato T. Continuous monitoring for cyanide in waste water with a galvanic hydrogen cyanide sensor using a purge system. Talanta 1999.48(5):997-1004.
    [48]Baskin S. I., Brewer T. G, In Medical Aspects of Chemical and Biological Warfare: Sidell, F., Takafuji, E. T., Franz, D. R., Eds., TMM publications:Washington,1997.
    [49]Xu Z., Chen X., Kim H. N., Yoon J. Sensors for the optical detection of cyanide ion. Chem. Soc. Rev.2010,39(1):127-137.
    [50]Kim Y., Zhao H., Gabbai F. P. Sulfonium Boranes for the Selective Capture of Cyanide Ions in Water. Angew. Chem. Int. Ed.2009.48(27):4957-4960.
    [51]Lin Y. D., Pen Y. S., Su W., Liau K. L., Wen Y. S., Tu C. H., Sun C. H., Chow T. J. Reaction-Based Colorimetric and Ratiometric Fluorescence Sensor for Detection of Cyanide in Aqueous Media. Chem. Asian J.2012,7(12):2864-2871.
    [52]Li H., Wen Z., Jin L., Kan Y., Yin B. A coumarin-Meldrum's acid conjugate based chemodosimetric probe for cyanide. Chem. Commun.2012,48(95):11659-11661.
    [53]Shiraishi Y., Sumiya S., Hirai T. Highly sensitive cyanide anion detection with a coumarin-spiropyran conjugate as a fluorescent receptor. Chem. Commun.2011, 47(17):4953-4955.
    [54]Gimeno N., Li X., Durrant J. R., Vilar R. Cyanide sensing with organic dyes:Studies in solution and on nanostructured A12O3 surfaces. Chem. Eur. J.2008,14(10): 3006-3012.
    [55]Jiao L., Liu M., Zhang M., Yu C., Wang Z., Hao E. Visual and Colorimetric Detection of Cyanide Anion Based on a“Turn-off” Daylight Fluorescent Molecule. Chem. Lett.2011,40(6):623-625.
    [56]Khatua S., Samanta D., Bats J. W., Schmittel M. Rapid and Highly Sensitive Dual-Channel Detection of Cyanide by Bis-heteroleptic Ruthenium(Ⅱ) Complexes. Inorg. Chem.2012,51(13):7075-7086.
    [57]Cho D. G., Kim J. H., Sessler J. L. The benzil-cyanide reaction and its application to the development of a selective cyanide anion indicator. J. Am. Chem. Soc.2008, 130(36):12163-12167.
    [58]Qian G., Li X. Z., Wang Z. Y. Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide. J. Mater. Chem.2009,19(4):522-530.
    [59]Lv X., Liu J., Liu Y. L., Zhao Y, Chen M. L., Wang P., Guo W. A ratiometric fluorescent probe for cyanide based on FRET. Org. Biomol. Chem.2011,9(13): 4954-4958.
    [60]Guliyev R., Ozturk S., Sahin E., Akkaya E. U. Expanded Bodipy Dyes:Anion Sensing Using a Bodipy Analog with an Additional Difluoroboron Bridge. Org. Lett.2012, 14(6):1528-1531.
    [61]Dong M., Peng Y., Dong Y. M., Tang N., Wang Y W. A Selective, Colorimetric, and Fluorescent Chemodosimeter for Relay Recognition of Fluoride and Cyanide Anions Based on 1,1'-Binaphthyl Scaffold. Org. Lett.2012,14(1):130-133.
    [62]Tomasulo M., Raymo F. M. Colorimetric Detection of Cyanide with a Chromogenic Oxazine. Org. Lett.2005,7(21):4633-4636.
    [63]Kim H. J., Ko K. C., Lee J. H., Lee J. Y, Kim J. S. KCN sensor:unique chromogenic and'turn-on'fluorescent chemodosimeter:rapid response and high selectivity. Chem. Commun.2011,47(10):2886-2888.
    [64]Huang X., Gu X., Zhang G, Zhang D. A highly selective fluorescence turn-on detection of cyanide based on the aggregation of tetraphenylethylene molecules induced by chemical reaction. Chem. Commun.2012,48(100):12195-12197.
    [65]Yoshino J., Kano N., Kawashima T. Fluorescence Properties of Simple N-Substituted Aldimines with a B-N Interaction and Their Fluorescence Quenching by a Cyanide Ion. J. Org. Chem.2009,74(19):7496-7503.
    [66]Sun Y., Liu Y. L., Chen M. L., Guo W. A novel fluorescent and chromogenic probe for cyanide detection in water based on the nucleophilic addition of cyanide to imine group. Talanta 2009,80(2):996-1000.
    [67]Niu H. T., Jiang X. L., He J. Q., Cheng J. P. Cyanine dye-based chromofluorescent probe for highly sensitive and selective detection of cyanide in water. Tetrahedron Lett. 2009.50(48):6668-6671.
    [68]Chung Y. M., Raman B., Kim D.-S., Ahn K. H. Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host-guest adducts. Chem. Commun.2006, (2):186-188.
    [69]Kim D. S., Chung Y. M., Jun M., Ahn K. H. Selective Colorimetric Sensing of Anions in Aqueous Media through Reversible Covalent Bonding. J. Org. Chem.2009,74(13): 4849-4854.
    [70]Lee K. S., Lee J. T., Hong J. I., Kim H. J. Visual detection of cyanide through intramolecular hydrogen bond. Chem. Lett.2007,36(6):816-817.
    [71]Lee K. S., Kim H. J., Kim G. H., Shin I., Hong J. I. Fluorescent chemodosimeter for selective detection of cyanide in water. Org. Lett.2008,10(1):49-51.
    [72]Kwon S. K., Kou S., Kim H. N., Chen X., Hwang H., Nam S. W., Kim S. H., Swamy K. M. K., Park S., Yoon J. Sensing cyanide ion via fluorescent change and its application to the microfluidic system. Tetrahedron Lett.2008,49(26):4102-4105.
    [73]Yu H. B., Zhao Q., Jiang Z. X., Qin J. G., Li Z. A ratiometric fluorescent probe for cyanide:Convenient synthesis and the proposed mechanism. Sens. Actuators. B.2010. 148(1):110-116.
    [74]Lv X., Liu J., Liu Y. Zhao Y. Chen M., Wang P., Guo W. Rhodafluor-based chromo-and fluorogenic probe for cyanide anion. Sens. Actuators. B.2011.158(1):405-410.
    [75]Cheng X., Zhou Y., Qin J., Li Z. Reaction-Based Colorimetric Cyanide Chemosensors: Rapid Naked-Eye Detection and High Selectivity. ACS Appl. Mater. Interfaces 2012. 4(4):2133-2138.
    [76]Lee C. H., Yoon H. J., Shim J. S., Jang W. D. A Boradiazaindacene-Based Turn-On Fluorescent Probe for Cyanide Detection in Aqueous Media. Chem. Eur. J.2012. 18(15):4513-4516.
    [77]Kumari N., Jha S., Bhattacharya S. A Chemodosimetric Probe Based on a Conjugated Oxidized Bis-Indolyl System for Selective Naked-Eye Sensing of Cyanide Ions in Water. Chem. Asian J.2012.7(12):2805-2812.
    [78]Chung S. Y., Nam S. W., Lim J., Park S., Yoon J. A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. Chem. Commun. 2009, (20):2866-2868.
    [79]Liu Y, Lv X., Zhao Y, Liu J., Sun Y.-Q., Wang P., Guo W. A Cu(ii)-based chemosensing ensemble bearing rhodamine B fluorophore for fluorescence turn-on detection of cyanide. J. Mater. Chem.2012,22(5):1747-1750.
    [80]Jung H. S., Han J. H., Kim Z. H., Kang C., Kim J. S. Coumarin-Cu(II) Ensemble-Based Cyanide Sensing Chemodosimeter. Org. Lett.2011,13(19): 5056-5059.
    [81]Chen X., Nam S.-W., Kim G.-H., Song N., Jeong Y, Shin I., Kim S. K., Kim J., Park S., Yoon J. A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. Chem. Commun.2010,46(47): 8953-8955.
    [82]Lou X. D., Qin J. G., Li Z. Colorimetric cyanide detection using an azobenzene acid in aqueous solutions. Analyst 2009,134(10):2071-2075.
    [83]Zeng Q., Cai P., Li Z., Qin J. G, Tang B. Z. An imidazole-functionalized polyacetylene:convenient synthesis and selective chemosensor for metal ions and cyanide. Chem. Commun.2008, (9):1094-1096.
    [84]Lee H. G., Lee J. H., Jang S. P., Hwang I. H., Kim S.-J., Kim Y, Kim C., Harrison R. G Zinc selective chemosensors based on the flexible dipicolylamine and quinoline. Inorganica Chimica Acta 2013,394(0):542-551.
    [85]Wild A., Winter A., Hager M. D., Schubert U. S. Fluorometric sensor based on bisterpyridine metallopolymer:detection of cyanide and phosphates in water. Analyst 2012,137(10):2333-2337.
    [86]Shirinfar B., Ahmed N., Park Y. S., Cho G. S., Youn I. S., Han J. K., Nam H. G, Kim K. S. Selective Fluorescent Detection of RNA in Living Cells by Using Imidazolium-Based Cyclophane. J. Am. Chem. Soc.2013,135(1):90-93.
    [87]Sakabe M., Asanuma D., Kamiya M., Iwatate R. J., Hanaoka K., Terai T., Nagano T., Urano Y. Rational Design of Highly Sensitive Fluorescence Probes for Protease and Glycosidase Based on Precisely Controlled Spirocyclization. J. Am. Chem. Soc.2013, 135(1):409-414.
    [88]Zheng F. Y, Zeng F., Yu C. M., Hou X. F., Wu S. Z. A PEGylated Fluorescent Turn-On Sensor for Detecting Fluoride Ions in Totally Aqueous Media and Its Imaging in Live Cells. Chem. Eur. J.2013,19(3):936-942.
    [89]Niu L. Y., Guan Y. S., Chen Y. Z., Wu L. Z., Tung C. H., Yang Q. Z. A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione. Chem. Commun.2013,49(13):1294-1296.
    [90]Chen X. J., Shen X. Y., Guan E. J., Liu Y, Qin A. J., Sun J. Z., Tang B. Z. A pyridinyl-functionalized tetraphenylethylene fluorogen for specific sensing of trivalent cations. Chem. Commun.2013.49(15):1503-1505.
    [91]Wood T. E., Thompson A. Advances in the chemistry of dipyrrins and their complexes. Chem. Rev.2007,107(5):1831-1861.
    [92]Zhang Y., Thompson A., Rettig S. J., Dolphin D. The Use of Dipyrromethene Ligands in Supramolecular Chemistry. J. Am. Chem. Soc.1998.120(51):13537-13538.
    [93]Maeda H., Hasegawa M., Hashimoto T., Kakimoto T., Nishio S., Nakanishi T. Nanoscale Spherical Architectures Fabricated by Metal Coordination of Multiple Dipyrrin Moieties. J. Am. Chem. Soc.2006,128(31):10024-10025.
    [94]Halper S. R., Do L., Stork J. R., Cohen S. M. Topological Control in Heterometallic Metal-Organic Frameworks by Anion Templating and Metalloligand Design. J. Am. Chem. Soc.2006,128(47):15255-15268.
    [95]Miao Q., Shin J. Y., Patrick B. O., Dolphin D. Self-assembly of oligomeric linear dipyrromethene metal complexes. Chem. Commun.2009, (18):2541-2543.
    [96]Maeda H., Nishimura T., Akuta R., Takaishi K., Uchiyama M., Muranaka A. Two double helical modes of bidipyrrin-Znll complexes. Chem. Sci.2013,4(3): 1204-1211.
    [97]Beziau A., Baudron S. A., Guenet A.. Hosseini M. W. Luminescent Coordination Polymers Based on Self-Assembled Cadmium Dipyrrin Complexes. Chem. Eur. J. 2013,19(9):3215-3223.
    [98]Ulrich G. Ziessel R., Harriman A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angew. Chem. Int. Ed.2008.47(7):1184-1201.
    [99]Loudet A.. Burgess K. BODIPY Dyes and Their Derivatives:Syntheses and Spectroscopic Properties. Chem. Rev.2007.107(11):4891-4932.
    [100]Groves B. R., Crawford S. M., Lundrigan T., Matta C. F., Sowlati-Hashjin S., Thompson A. Synthesis and characterisation of the unsubstituted dipyrrin and 4,4-dichloro-4-bora-3a.4a-diaza-s-indacene:improved synthesis and functionalisation of the simplest BODIPY framework. Chem. Commun.2013,49(8):816-818.
    [101]Rausaria S., Kamadulski A., Rath N. P.. Bryant L., Chen Z., Salvemini D., Neumann W. L. Manganese(Ⅲ) Complexes of Bis(hydroxyphenyl)dipyrromethenes Are Potent Orally Active Peroxynitrite Scavengers. J. Am. Chem. Soc.2011.133(12):4200-4203.
    [102]Hanson K.,Tamayo A., Diev V. V.. Whited M. T., Djurovich P. I., Thompson M. E. Efficient Dipyrrin-Centered Phosphorescence at Room Temperature from Bis-Cyclometalated Iridium(Ⅲ) Dipyrrinato Complexes. Inorg. Chem.2010,49(13): 6077-6084.
    [103]Ikeda C., Ueda S., Nabeshima T. Aluminium complexes of N2O2-type dipyrrins:the first hetero-multinuclear complexes of metallo-dipyrrins with high fluorescencequantum yields. Chem. Commun.2009, (18):2544-2546.
    [104]Teets T. S., Partyka D. V., Esswein A. J., Updegraff J. B., Zeller M., Hunter A. D., Gray T. G. Luminescent, Three-Coordinate Azadipyrromethene Complexes of d10 Copper, Silver, and Gold. Inorg. Chem.2007,46(16):6218-6220.
    [105]Sazanovich I. V., Kirmaier C., Hindin E., Yu L., Bocian D. F., Lindsey J. S., Holten D. Structural Control of the Excited-State Dynamics of Bis(dipyrrinato)zinc Complexes: Self-Assembling Chromophores for Light-Harvesting Architectures. J. Am. Chem. Soc. 2004,126(9):2664-2665.
    [106]Thoi V. S., Stork J. R., Magde D., Cohen S. M. Luminescent dipyrrinato complexes of trivalent group 13 metal ions. Inorg. Chem.2006,45(26):10688-10697.
    [107]Kobayashi J., Kushida T., Kawashima T. Synthesis and Reversible Control of the Fluorescent Properties of a Divalent Tin Dipyrromethene. J, Am. Chem. Soc.2009, 131(31):10836-10837.
    [108]Filatov M. A., Lebedev A. Y., Mukhin S. N., Vinogradov S. A., Cheprakov A. V. π-Extended Dipyrrins Capable of Highly Fluorogenic Complexation with Metal Ions. J. Am. Chem. Soc.2010,132(28):9552-9554.
    [109]Mei Y. J., Bentley P. A. A ratiometric fluorescent sensor for Zn2+based on internal charge transfer (ICT). Bioorg. Med. Chem. Lett.2006,16(12):3131-3134.
    [110]Ka J. W., Lee C. H. Optimizing the synthesis of 5,10-disubstituted tripyrromethanes. Tetrahedron Lett.2000,41(23):4609-4613.
    [111]Shin J. Y., Dolphin D., Patrick B. O. Protonated dipyrromethenes and tetrahalozinc anions as synthons in the solid state. Cryst. Growth Des.2004,4(4):659-661.
    [112]Bruckner C., Posakony J. J., Johnson C. K., Boyle R. W., James B. R., Dolphin D. Novel and improved syntheses of 5,15-diphenylporphyrin and its dipyrrolic precursors. J. Porphyrms Phthalocyanines 1998,2(6):455-465.
    [113]Haranath P., Kumar V. S., Reddy C. S., Raju C. N., Reddy C. D. Syntheses and antimicrobial activity of some novel 6-substituted dibenzo d.f 1,3.2 dioxaphosphepin-6-oxides, sulfides, and selenides. Synth. Commun.2007,37(10): 1697-1708.
    [114]Rao P. D., Dhanalekshmi S., Littler B. J., Lindsey J. S. Rational syntheses of porphyrins bearing up to four different meso substituents. J. Org. Chem.2000,65(22): 7323-7344.
    [115]Shin J. Y., Hepperle S. S., Patrick B. O., Dolphin D. Oxidized forms of a tripyrrane: alpha-tripyrrinone, beta-tripyrrinone and a C-2 symmetric hexapyrrole. Chem. Commun.2009, (17):2323-2325.
    [116]Valeur B., Molecular Fluorescence:Principles and Applications, Wiley, New York. 2002.
    [117]Shortreed M., Kopelman R., Kuhn M., Hoyland B. Fluorescent Fiber-Optic Calcium Sensor for Physiological Measurements. Anal. Chem.1996,68(8):1414-1418.
    [118]Lin W., Long L., Tan W. A highly sensitive fluorescent probe for detection of benzenethiols in environmental samples and living cells. Chem. Commun.2010.46(9): 1503-1505.
    [119]Lin W., Yuan L., Cao Z., Feng Y, Long L. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to a.β-Unsaturated Ketones. Chem. Eur.J.2009.15(20):5096-5103.
    [120]Caballero A., Martinez R., Lloveras V., Ratera I., Vidal-Gancedo J., Wurst K., Tarraga A., Molina P., Veciana J. Highly Selective Chromogenic and Redox or Fluorescent Sensors of Hg2+ in Aqueous Environment Based on 1,4-Disubstituted Azines. J. Am. Chem. Soc.2005,127(45):15666-15667.
    [121]Trofimov B. A., Nedolya N. A., Comprehensive Heterocyclic Chemistry Ⅲ, Elsevier. Oxford,2008.
    [122]Rinkes I. J. Reel. Trav. Chim. Pays-Bas.1934,53:1167-1174.
    [123]Anderson H. J., Hopkins L. C. PYRROLE CHEMISTRY:V. FRIEDEL-CRAFTS ISOPROPYLATIONS OF SOME PYRROLE DERIVATIVES. Can. J. Chem.1966, 44(15):1831-1839.
    [124]Xu R. X.. Anderson H. J., Gogan N. J., Loader C. E., McDonald R. Pyrrole chemistry XXV:A simplified synthesis of some 3-substituted pyrroles. Tetrahedron Lett.1981, 22(49):4899-4900.
    [125]Rokach J., Hamel P.. Kakushima M.. Smith G. M. A simple and efficient route to (3-substituted pyrroles. Tetrahedron Lett.1981,22(49):4901-4904.
    [126]Comprehensive Organic Name Reactions and Reagents, Wiley. New York.2009.
    [127]Beck E. M., Grimster N. P., Hatley R., Gaunt M. J. Mild aerobic oxidative palladium (Ⅱ) catalyzed C-H bond functionalization:Regioselective and switchable C-H alkenylation and annulation of pyrroles. J. Am. Chem. Soc.2006,128(8):2528-2529.
    [128]Billingsley K. L., Anderson K. W., Buchwald S. L. A Highly Active Catalyst for Suzuki-Miyaura Cross-Coupling Reactions of Heteroaryl Compounds. Angew. Chem. Int. Ed.2006,45(21):3484-3488.
    [129]Ayats C. Soley R., Albericio F., Alvarez M. Synthesis of the pyrrolo[2.3-c]carbazole core of the dictyodendrins. Org. Biomol. Chem.2009.7(5):860-862.
    [130]Harman W. D. The Activation of Aromatic Molecules with Pentaammineosmium(II). Chem. Rev.1997,97(6):1953-1978.
    [131]Tsuchimoto T. Selective Synthesis of β-Alkylpyrroles. Chem. Eur. J.2011,17(15): 4064-4075.
    [132]Anand V. G., Saito S., Shimizu S., Osuka A. Internally 1,4-phenylene-bridged meso aryl-substituted expanded porphyrins:The decaphyrin and octaphyrin cases. Angew. Chem. Int. Ed.2005,44(44):7244-7248.
    [133]Gupta I., Srinivasan A., Morimoto T., Toganoh M., Furuta H. N-confused and N-fused meso-aryl sapphyrins. Angew. Chem. Int. Ed.2008,47(24):4563-4567.
    [134]Heinze K., Reinhart A. Structural and photophysical studies of trans-AB(2)C-substituted porphyrin ligands and their zinc and copper complexes. Dalton Trans.2008, (4):469-480.
    [135]Tamaru S., Yu L. H., Youngblood W. J., Muthukumaran K., Taniguchi M., Lindsey J. S. A tin-complexation strategy for use with diverse acylation methods in the preparation of 1,9-diacyldipyrromethanes. J. Org. Chem.2004,69(3):765-777.
    [136]Ptaszek M., McDowell B. E., Lindsey J. S. Synthesis of 1-formyldipyrromethanes. J. Org. Chem.2006,71(11):4328-4331.
    [137]Anderson H. J., Huang C. W. Pyrrole chemistry. X. Friedel-Crafts alkylation of some pyrrole and furan derivatives. Can. J. Chem.1970,48(10):1550-1553.
    [138]Groves J. K., Anderson H. J., Nagy H. Pyrrole Chemistry. Part XIII. New Syntheses of 3-Alkylpyrroles. Can. J. Chem.1971,49(14):2427-2432.
    [139]Kubo Y., Kato M., Misawa Y., Tokita S. A fluorescence-active 1,3-bis(isothiouronium)-derived naphthalene exhibiting versatile binding modes toward oxoanions in aqueous MeCN solution:new methodology for sensing oxoanions. Tetrahedron Lett.2004,45(19):3769-3773.
    [140]Bourson J., Pouget J., Valeur B. Ion-responsive fluorescent compounds.4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza-and diaza-crown ethers. Journal of Physical Chemistry 1993,97(17):4552-4557.
    [141]Yang M. H., Thirupathi P., Lee K. H. Selective and Sensitive Ratiometric Detection of Hg(II) Ions Using a Simple Amino Acid Based Sensor. Org. Lett.2011,13(19): 5028-5031.
    [142]Fischer M., Georges J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem. Phys. Lett.1996, 260(1-2):115-118.
    [143]Hirano T., Kikuchi K., Urano Y., Higuchi T., Nagano T. Novel Zinc Fluorescent Probes Excitable with Visible Light for Biological Applications. Angew. Chem. Int. Ed. 2000,39(6):1052-1054.
    [144]Burdette S. C., Walkup G. K., Spingler B., Tsien R. Y., Lippard S. J. Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform:Synthesis, Properties and Intracellular Distribution. J. Am. Chem. Soc.2001,123(32):7831-7841.
    [145]Hanaoka K., Kikuchi K., Kojima H., Urano Y., Nagano T. Development of a Zinc Ion-Selective Luminescent Lanthanide Chemosensor for Biological Applications. J. Am. Chem. Soc.2004,126(39):12470-12476.
    [146]Kawabata E., Kikuchi K., Urano Y., Kojima H., Odani A., Nagano T. Design and Synthesis of Zinc-Selective Chelators for Extracellular Applications. J. Am. Chem. Soc.2005,127(3):818-819.
    [147]Teolato P., Rampazzo E., Arduini M., Mancin F., Tecilla P., Tonellato U. Silica Nanoparticles for Fluorescence Sensing of ZnⅡ:Exploring the Covalent Strategy. Chem. Eur. J.2007,13(8):2238-2245.
    [148]Wang L., Wei W., Guo Y., Xu J., Shao S. Nitro-substituted 3,3'-bis(indolyl)methane derivatives as anion receptors:Electron-withdrawing effect and tunability of anion binding properties. Spectrochim. Acta, Part A.2011,78(2):726-731.
    [149]Lim N. C., Bruckner C. DPA-substituted coumarins as chemosensors for zinc(ⅱ): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin. Chem. Commun.2004. (9):1094-1095.
    [150]Sessler J. L., Camiolo S., Gale P. A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev.2003,240(1-2):17-55.
    [151]Plitt P., Gross D. E., Lynch V. M., Sessler J. L. Dipyrrolyl-Functionalized Bipyridine-Based Anion Receptors for Emission-Based Selective Detection of Dihydrogen Phosphate. Chem. Eur. J.2007,13(5):1374-1381.
    [152]Beer P. D.. Gale P. A. Anion recognition and sensing:The state of the art and future perspectives. Angew. Chem. Int. Ed.2001,40(3):486-516.
    [153]Mahanta S. P., Kumar B. S., Baskaran S., Sivasankar C., Panda P. K. Colorimetric Sensing of Fluoride Ion by New Expanded Calix[4]pyrrole through Anion-π Interaction. Org. Lett.2011,14(2):548-551.
    [154]Kim S. H., Hong S. J., Yoo J., Kim S. K., Sessler J. L., Lee C. H. Strapped Calix 4 pyrroles Bearing a 1,3-Indanedione at a beta-Pyrrolic Position:Chemodosimeters for the Cyanide Anion. Org. Lett.2009,11(16):3626-3629.
    [155]Wang Q. G., Xie Y. S., Ding Y. B., Li X., Zhu W. H. Colorimetric fluoride sensors based on deprotonation of pyrrole-hemiquinone compounds. Chem. Commun.2010. 46(21):3669-3671.
    [156]Chen C. L., Chen Y.H., Chen C. Y., Sun S. S. Dipyrrole Carboxamide Derived Selective Ratiometric Probes for Cyanide Ion. Org. Lett.2006,8(22):5053-5056.
    [157]Ding Y. B., Xie Y. S., Li X., Hill J. P., Zhang W. B., Zhu W. H. Selective and sensitive "turn-on" fluorescent Zn2+sensors based on di-and tripyrrins with readily modulated emission wavelengths. Chem. Commun.2011,47(19):5431-5433.
    [158]Pati P. B., Zade S. S. Selective Colorimetric and "Turn-on" Fluorimetric Detection of Cyanide Using a Chemodosimeter Comprising Salicylaldehyde and Triphenylamine Groups. Eur. J. Org. Chem.2012,2012(33):6555-6561.
    [159]Hong S. J., Yoo J., Kim S. H., Kim J. S., Yoon J., Lee C. H. beta-Vinyl substituted calix 4 pyrrole as a selective ratiometric sensor for cyanide anion. Chem. Commun. 2009,(2):189-191.
    [160]Lou X., Ou D., Li Q., Li Z. An indirect approach for anion detection:the displacement strategy and its application. Chem. Commun.2012,48(68):8462-8477.
    [161]Li Z. a., Lou X., Yu H., Li Z., Qin J. An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide. Macromolecules 2008,41(20):7433-7439.
    [162]Zeng F. H., Ni J., Wang Q. G, Ding Y. B., Ng S. W., Zhu W. H., Xie Y. S. Synthesis, Structures, and Photoluminescence of Zinc(II), Cadmium(II), and Mercury(II) Coordination Polymers Constructed from Two Novel Tetrapyridyl Ligands. Cryst. Growth Des.2010,10(4):1611-1622.
    [163]Weng Y. Q., Yue F., Zhong Y. R., Ye B. H. A Copper(II) ion-selective on-off-type fluoroionophore based on zinc porphyrin-dipyridylamino. Inorg. Chem.2007,46(19): 7749-7755.
    [164]Weng Y. Q., Teng Y. L., Yue F., Zhong Y. R., Ye B. H. A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino. Inorg. Chem. Commun.2007,10(4):443-446.
    [165]汪成,硕士毕业论文,华东理工大学,2012.
    [166]Parker. C. A., Rees. W. T. Correction of Fluorescence Spectra and Measurement of Fluorescence Quantum Efficiency. Analyst 1960,85:587-600.
    [167]Eaton D. F. Reference Materials for Fluorescence Measurement. Pure Appl. Chem. 1988,60(7):1107-1114.
    [168]Williams A. T. R., Winfield S. A., Miller J. N. Relative Fluorescence Quantum Yields Using a Computer-controlled Luminescence Spectrometer. Analyst 1983,108: 1067-1071
    [169]Ball P. Chemistry meets computing. Nature 2000,406(6792):118-120.
    [170]Credi A. Molecules that make decisions. Angew. Chem. Int. Ed.2007,46(29): 5472-5475.
    [171]de Silva A. P., Uchiyama S. Molecular logic and computing. Nat. Nanotechnol.2007, 2(7):399-410.
    [172]Freeman R., Finder T., Willner I. Multiplexed Analysis of Hg2+and Ag+Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations. Angew. Chem. Int. Ed.2009,48(42):7818-7821.
    [173]Gupta T., van der Boom M. E. Redox-active monolayers as a versatile platform for integrating Boolean logic gates. Angew. Chem. Int. Ed.2008,47(29):5322-5326.
    [174]Raymo F. M., Giordani S. Multichannel Digital Transmission in an Optical Network of Communicating Molecules. J. Am. Chem. Soc.2002,124(9):2004-2007.
    [175]Tian H. Data Processing on a Unimolecular Platform. Angew. Chem. Int. Ed.2010, 49(28):4710-4712.
    [176]Shundo A., Hill J. P., Ariga K. Toward Volatile and Nonvolatile Molecular Memories: Fluorescence Switching Based on Fluoride-Triggered Interconversion of Simple Porphyrin Derivatives. Chem. Eur. J.2009,15(11):2486-2490.
    [177]Guo Z., Zhu W., Shen L., Tian H. A Fluorophore Capable of Crossword Puzzles and Logic Memory. Angew. Chem. Int. Ed.2007.46(29):5549-5553.
    [178]de Silva P. A., Gunaratne N. H. Q., McCoy C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 1993,364(6432):42-44.
    [179]Credi A., Balzani V, Langford S. J., Stoddart J. F. Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine. J. Am. Chem. Soc.1997. 119(11):2679-2681.
    [180]Bozdemir O. A., Guliyev R., Buyukcakir O., Selcuk S., Kolemen S., Gulseren G., Nalbantoglu T., Boyaci H., Akkaya E. U. Selective Manipulation of ICT and PET Processes in Styryl-Bodipy Derivatives:Applications in Molecular Logic and Fluorescence Sensing of Metal Ions. J. Am. Chem. Soc.2010,132(23):8029-8036.
    [181]Guo X., Zhang D., Tao H., Zhu D. Concatenation of Two Molecular Switches via a Fe(II)/Fe(III) Couple. Org. Lett.2004,6(15):2491-2494.
    [182]Li T., Wang E., Dong S. Potassium-Lead-Switched G-Quadruplexes:A New Class of DNA Logic Gates. J. Am. Chem. Soc.2009,131(42):15082-15083.
    [183]Margulies D., Melman G., Felder C. E., Arad-Yellin R., Shanzer A. Chemical Input Multiplicity Facilitates Arithmetical Processing.J. Am. Chem. Soc.2004,126(47): 15400-15401.
    [184]Park K. S., Seo M. W.. Jung C., Lee J. Y., Park H. G. Simple and Universal Platform for Logic Gate Operations Based on Molecular Beacon Probes. Small 2012,8(14): 2203-2212.
    [185]Pina F., Melo M. J., Maestri M., Passaniti P., Balzani V. Artificial Chemical Systems Capable of Mimicking Some Elementary Properties of Neurons. J. Am. Chem. Soc. 2000,122(18):4496-4498.
    [186]Raymo F. M., Alvarado R. J., Giordani S., Cejas M. A. Memory effects based on intermolecular photoinduced proton transfer. J. Am. Chem. Soc.2003,125(8): 2361-2364.
    [187]Straight S. D., Andreasson J., Kodis G., Bandyopadhyay S., Mitchell R. H., Moore T. A., Moore A. L., Gust D. Molecular AND and INHIBIT Gates Based on Control of Porphyrin Fluorescence by Photochromes. J. Am. Chem. Soc.2005,127(26): 9403-9409.
    [188]Uchiyama S., Kawai N., de Silva A. P., Iwai K. Fluorescent polymeric AND logic gate with temperature and pH as inputs. J. Am. Chem. Soc.2004,126(10):3032-3033.
    [189]Qu D. H., Ji F. Y., Wang Q. C., Tian H. A Double INHIBIT Logic Gate Employing Configuration and Fluorescence Changes. Adv. Mater.2006,18(15):2035-2038.
    [190]Silva d. Molecular Photoionic AND Logic Gates with Bright Fluorescence and "Off-On" Digital Action. J. Am. Chem. Soc.1997,119:7891-7892.
    [191]Pischel U. Chemical approaches to molecular logic elements for addition and subtraction. Angew. Chem. Int. Ed.2007,46(22):4026-4040.
    [192]Langford S. J., Yann T. Molecular Logic:A Half-Subtractor Based on Tetraphenylporphyrin. J. Am. Chem. Soc.2003,125(37):11198-11199.
    [193]Andreasson J., Pischel U., Straight S. D., Moore T. A., Moore A. L., Gust D. All-Photonic Multifunctional Molecular Logic Device. J. Am. Chem. Soc.2011, 133(30):11641-11648.
    [194]Andreasson J., Straight S. D., Bandyopadhyay S., Mitchell R. H., Moore T. A., Moore A. L., Gust D. Molecular 2:1 digital multiplexer. Angew. Chem. Int. Ed.2007,46(6): 958-961.
    [195]Fu Y, Hu X., Lu C., Yue S., Yang H., Gong Q. All-Optical Logic Gates Based on Nanoscale Plasmonic Slot Waveguides. Nano Lett.2012,12(11):5784-5790.
    [196]Lederman H., Macdonald J., Stefanovic D., Stojanovic M. N. Deoxyribozyme-Based Three-Input Logic Gates and Construction of a Molecular Full Adder. Biochemistry 2006,45(4):1194-1199.
    [197]Margulies D., Melman G., Shanzer A. A Molecular Full-Adder and Full-Subtractor, an Additional Step toward a Moleculator. J. Am. Chem. Soc.2006,128(14):4865-4871.
    [198]Qu D. H., Wang Q. C., Tian H. A Half Adder Based on a Photochemically Driven [2]Rotaxane. Angew. Chem. Int. Ed.2005,44(33):5296-5299.
    [199]Yang C. N., Hsu C. Y., Chuang Y. C. Molecular beacon-based half-adder and half-subtractor. Chem. Commun.2012,48(1):112-114.
    [200]Kumar S., Luxami V., Saini R., Kaur D. Superimposed molecular keypad lock and half-subtractor implications in a single fluorophore. Chem. Commun.2009, (21): 3044-3046.
    [201]Liu Y., Jiang W., Zhang H.-Y., Li C.-J. A Multifunctional Arithmetical Processor Model Integrated Inside a Single Molecule. J. Phys. Chem. B 2006,110(29): 14231-14235.
    [202]Pischel U., Heller B. Molecular logic devices (half-subtractor, comparator, complementary output circuit) by controlling photoinduced charge transfer processes. New Journal of Chemistry 2008,32(3):395-400.
    [203]Guo Z. Q., Zhao P., Zhu W. H., Huang X. M., Xie Y. S., Tian H. Intramolecular charge-transfer process based on dicyanomethylene-4H-pyran derivative:An integrated operation of half-subtractor and comparator. J. Phys. Chem. C 2008. 112(17):7047-7053.
    [204]Lindsey J. S. Synthetic Routes to meso-Patterned Porphyrins. Ace. Chem. Res.2010, 43(2):300-311.
    [205]Rothemund P. Porphyrin Studies. Ⅲ.1 The Structure of the Porphine2 Ring System. J. Am. Chem. Soc.1939,61(10):2912-2915.
    [206]Rothemund P. A New Porphyrin Synthesis. The Synthesis of Porphin1. J. Am. Chem. Soc.1936.58(4):625-627.
    [207]Adler A. D., Longo F. R., Finarelli J. D., Goldmacher J., Assour J., Korsakoff L. A simplified synthesis for meso-tetraphenylporphine. J. Org. Chem.1967,32(2): 476-476.
    [208]Lindsey J. S., Schreiman I. C, Hsu H. C., Kearney P. C., Marguerettaz A. M. Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions. J. Org. Chem.1987,52(5):827-836.
    [209]Wang Q. G. Zeng F. H., Xie Y. S., Zhu W. H. A Brief Review of Recent Progress in Porphyrinoids. Progress in Chemistry 2009,21(7-8):1523-1533.
    [210]Kamo M., Tsuda A., Nakamura Y., Aratani N., Furukawa K., Kato T., Osuka A. Metal-Dependent Regioselective Oxidative Coupling of 5.10.15-Triarylporphyrins with DDQ-Sc(OTf)3 and Formation of an Oxo-quinoidal Porphyrin. Org. Lett.2003. 5(12):2079-2082.
    [211]Simkhovich L., Goldberg I., Gross Z. Easy Preparation of Cobalt Corrole and Hexaphyrin and Isolation of New Oligopyrroles in the Solvent-Free Condensation of Pyrrole with Pentafluorobenzaldehyde. Org. Lett.2003.5(8):1241-1244.
    [212]Ito T., Hayashi Y. Shimizu S., Shin J.-Y. Kobayashi N., Shinokubo H. Gram-Scale Synthesis of Nickel(Ⅱ) Norcorrole:The Smallest Antiaromatic Porphyrinoid. Angew. Chem. Int. Ed.2012,51(34):8542-8545.
    [213]Kondratuk D. V., Perdigao L. M. A., O'Sullivan M. C., Svatek S., Smith G., O'Shea J. N., Beton P. H., Anderson H. L. Two Vernier-Templated Routes to a 24-Porphyrin Nanoring. Angew. Chem. Int. Ed.2012,51(27):6696-6699.
    [214]Maeda C., Yoneda T., Aratani N., Yoon M.-C., Lim J. M., Kim D., Yoshioka N., Osuka A. Synthesis of Carbazole-Containing Porphyrinoids by a Multiple Annulation Strategy:A Core-Modified and π-Expanded Porphyrin. Angew. Chem. Int. Ed.2011, 50(25):5691-5694.
    [215]Sakida T., Yamaguchi S., Shinokubo H. Metal-Mediated Synthesis of Antiaromatic Porphyrinoids from a BODIPY Precursor. Angew. Chem. Int. Ed.2011,50(10): 2280-2283.
    [216]Arnold L., Baumgarten M., Mullen K. A carbazole-containing porphyrinoid:synthesis and oxidation to the porphyrin-state. Chem. Commun.2012,48(77):9640-9642.
    [217]Toganoh M., Furuta H. Blooming of confused porphyrinoids-fusion, expansion, contraction, and more confusion. Chem. Commun.2012,48(7):937-954.
    [218]Ishida M., Lim J. M., Lee B. S., Tani F., Sessler J. L., Kim D., Naruta Y. Photophysical Analysis of 1,10-Phenanthroline-Embedded Porphyrin Analogues and Their Magnesium(II) Complexes. Chem. Eur. J.2012,18(45):14329-14341.
    [219]Nojman E., Berlicka A., Szterenberg L., Latos-Grazynski L. Nickel(II) and Palladium(II) Thiaethyneporphyrins. Intramolecular Metal(Ⅱ)-η2-CC Interaction inside a Porphyrinoid Frame. Inorg. Chem.2012,51(5):3247-3260.
    [220]Sessler J. L., Seidel D. Synthetic Expanded Porphyrin Chemistry. Angew. Chem. Int. Ed.2003,42(42):5134-5175.
    [221]Jiao C., Huang K.-W., Guan Z., Xu Q.-H., Wu J. N-Annulated Perylene Fused Porphyrins with Enhanced Near-IR Absorption and Emission. Org. Lett.2010,12(18): 4046-4049.
    [222]Toganoh M., Sato A., Furuta H. Double-Decker Ferrocene-Type Complex of N-Fused Porphyrin:A Model of π-Extended Ferrocene? Angew. Chem. Int. Ed.2011,50(12): 2752-2755.
    [223]Hill J. P., Ariga K., Schumacher A. L., Karr P. A., D'Souza F. Pyren-1-ylmethyl N-substituted oxoporphyrinogens. J. Porphyrins Phthalocyanines 2007,11(5-6): 390-396.
    [224]Hill J. P., Hewitt I. J., Anson C. E., Powell A. K., McCarty A. L., Karr P. A., Zandler M. E., D'Souza F. Highly nonplanar, electron deficient, N-substituted tetra-oxocyclohexadienylidene porphyrinogens:Structural, computational, and electrochemical investigations. J. Org. Chem.2004,69(18):5861-5869.
    [225]Shundo A., Labuta J., Hill J. P., Ishihara S., Ariga K. Nuclear Magnetic Resonance Signaling of Molecular Chiral Information Using an Achiral Reagent. J. Am. Chem. Soc.2009,131(27):9494-9495.
    [226]D'Souza F.. Subbaiyan N. K., Xie Y. S., Hill J. P., Ariga K.. Ohkubo K., Fukuzumi S. Anion-Complexation-Induced Stabilization of Charge Separation. J. Am. Chem. Soc. 2009,131(44):16138-16146.
    [227]Xie Y., Hill J. P., Schumacher A. L., Sandanayaka A. S. D., Araki Y., Karr P. A., Labuta J., D'Souza F., Ito O., Anson C. E., Powell A. K., Ariga K. Twisted, Two-Faced Porphyrins as Hosts for Bispyridyl Fullerenes:Construction and Photophysical Properties. J. Phys. Chem. C 2008,112(28):10559-10572.
    [228]Schumacher A. L., Sandanayaka A. S. D.. Hill J. P., Ariga K., Karr P. A., Araki Y, Ito O., D'Souza F. Supramolecular triad and pentad composed of zinc-porphyrin(s), oxoporphyrinogen, and fullerene(s):Design and ellectron-transfer studies. Chem. Eur. J.2007,13(16):4628-4635.
    [229]Hill J. P., El-Khouly M. E., Charvet R., Subbaiyan N. K., Ariga K., Fukuzumi S., D'Souza F. Effect of anion binding on charge stabilization in a bis-fullerene-oxoporphyrinogen conjugate. Chem. Commun.2010,46(42): 7933-7935.
    [230]Ishihara S., Labuta J., Sikorsky T.. Burda J. V., Okamoto N., Abe H.. Ariga K., Hill J. P. Colorimetric detection of trace water in tetrahydrofuran using N,N[prime or minute]-substituted oxoporphyrinogens. Chem. Commun.2012.48(33):3933-3935.
    [231]Xie Y. S., Hill J. P., Schumacher A. L., Karr P. A., D'Souza F., Anson C. E.. Powell A. K., Ariga K. Tautomerism in novel oxocorrologens. Chem. Eur. J.2007,13(35): 9824-9833.
    [232]Lahaye D., Muthukumaran K., Hung C.-H., Gryko D., Reboucas J. S., Spasojevic I.. Batinic-Haberle I., Lindsey J. S. Design and synthesis of manganese porphyrins with tailored lipophilicity:Investigation of redox properties and superoxide dismutase activity. Bioorg. Med. Chem.2007.15(22):7066-7086.
    [233]Shen D. M., Liu C., Chen X. G., Chen Q. Y. meso-oxidation of porphyrins:convenient iron(Ⅲ)-mediated synthesis of dioxoporphyrins. Synlett 2009. (6):945-948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700