子宫内膜异位症组蛋白修饰异常及血清microRNA表达异常的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分子宫内膜异位症组蛋白修饰异常的研究
     目的研究子宫内膜异位症(endometriosis, EMs)患者异位内膜及在位内膜组蛋白乙酰化和甲基化状态,组蛋白乙酰化酶(HATs),组蛋白去乙酰化酶(HDACs)及组蛋白甲基转移酶(HMTs)在异位内膜及在位内膜中的表达及其与基因组乙酰化和甲基化水平之间的相互关系。
     方法利用EpiQuikTMC H3K4/H3K9甲基化及H3/H4乙酰化)试剂盒对15例EMs患者异位内膜、在位内膜及11例正常对照组内膜进行组蛋白抽提和H3/H4乙酰化,H3K4/H3K9甲基化检测,同时通过Real-time PCR检测HATs(P300,CREBBP和PCAF), HDACs (HDAC1, HDAC2, HDAC4, HDAC5, HDAC7和SIRT1)及HMTs (SUV39H1, SUV39H2和G9a)的mRNA的表达水平。
     结果EMs患者在位内膜及异位内膜组蛋白H4整体乙酰化水平明显低于正常对照组(p=0.005),而组蛋白H3整体乙酰化水平三组之间无明显统计学差异(p>0.05)。在位内膜及异位内膜组蛋白H3K4甲基化总水平明显低于正常对照组(p<0.001),异位内膜H3K9甲基化水平明显低于在位内膜组及正常对照组(p<0.001),另两组间无明显统计学差异(p>0.05)。在HATs中,三组之间p300表达水平均无明显统计学差异(p>0.05),CREBBP在位内膜组表达明显高于异位内膜组(p=0.001),PCAF异位内膜组高于正常对照组及在位内膜组(p=0.047,p=0.005),而另两组间无明显统计学差异(p>0.05)。在HDACs中,HDAC4、HDAC5、HDAC7表达水平三个组之间无明显统计学差异(p>0.05),HDAC1异位内膜组表达水平明显低于正常对照组(p=0.006),在位内膜组与其余两组间均无明显统计学差异(p>0.05),HDAC2在位内膜组表达均明显高于正常对照组及异位内膜组(p<0.001,p<0.001),另两组间无统计学意义,SIRT1在位内膜组表达低于正常对照组及异位内膜组(p=0.037,p=0.039),另两组之间无明显统计学差异(p>0.05)。在HMTs中,SUV39H1异位内膜组表达明显低于正常对照组(p=0.006),其余各组间无明显统计学意义,SUV39H2异位内膜组表达水平明显低于正常对照组及在位内膜组(p=0.002,p=0.012),且另两组间表达水平无统计学差异(p>0.05),G9a异位内膜组表达均低于正常对照组(p<0.001),余各组间无明显统计学差异(p>0.05)。
     结论EMs患者在位和异位内膜组织组蛋白呈低乙酰化和低甲基化状态,组蛋白乙酰化酶,去乙酰化酶和甲基化酶表达异常,提示其可能参与EMs的发病。
     第二部分子宫内膜异位症患者血清microRNA表达的变化
     目的研究子宫内膜异位症患者血清中microRNA (miRNA)表达的变化。
     方法分离9例子宫内膜异位症患者和9例正常对照者血清,用Trizol试剂提取总RNA及1miRNA,应用高通量miRNA测序方法检测血清中异常表达的miRNA,并应用Real-time PCR法对30例子宫内膜异位症患者和20例正常对照者血清扩大样本进行初步验证。
     结果和正常对照组相比较,EMs组中98个miRNAs表达显著下调,1O个miRNAs表达显著上调。挑选EMs组中表达下调的3个miRNAs分子hsa-miR-99b-5p、hsa-miR-127-3p、hsa-miR-30c-5p和表达上调的2个miRNAs分子hsa-miR-424-3p和hsa-miR-185-5p,通过Real-time PCR法进行验证。结果显示:与正常对照组相比较,hsa-miR-99b-5p、hsa-miR-127-3p、hsa-miR-30c-5p表达水平均显著下调,而hsa-miR-424-3p和hsa-miR-185-5p表达均显著上调(p<0.05)。
     结论子宫内膜异位症患者血清中miRNA表达异常。
Part Ⅰ Aberrant histone acetylation and methylation levels in endometriosis
     Objective To investigate the alterations in histone modifications in woman with endometriosis.
     Methods Global histone H3/H4acetylation and H3K4/H3K9methylation in eutopic and ectopic endometrium from15endometriosis patients were assayed using the EpiQuikTM global histone H3/H4acetylation and H3K4/H3K9methylation assay kits. Quantitative real-time RT-PCR (reverse transcriptase-polymerase chain reaction) was applied to measure mRNA levels of12members of histone related chromatin modifier genes.
     Results Histone H4hypoacetylation was detected both in eutopic and ectopic endometrium. There were no difference between patients with endometriosis and controls on global levels of H3acetylation. Furthermore, global histone H3K4hypomethylation and H3K9hypomethylation were detected both in ectopic and eutopic endometrium (p=0.000), and in ectopic endometrium (p=0.000), respectively. SIRT1mRNA level was significantly decreased in eutopic endometrium, while mRNA levels of HDAC1, SUV39H1, SUV39H2and G9a were significantly downregulated in ectopic endometrium. HDAC2mRNA level was significantly increased in eutopic endometrium. PCAF mRNA level was significantly increased in ectopic endometrium.
     Conclusions Global histone acetylation and methylation were decreased and the expression levels of histone acetyltransferases, histone deacetylases and histone methyltransferases were aberrant in endometriosis, suggesting their possible involvement in the pathogenesis of endometriosis.
     Part Ⅱ Abnormal microRNA expression in serum from patients with endometriosis
     Objective To investigate the alterations of microRNA (miRNA) in serum from patient with endometriosis.
     Methods Serum from9patients with endometriosis and9normal controls were extracted. Total RNA including miRNAs was extracted using Trizol reagent. MiRNAs with differential expression were detected by high-throughput miRNA sequencing method and the results were confirmed in30patients with endometriosis and20healthy controls by Real-time PCR.
     Results The results showed that98miRNAs expression was downregulated and10miRNAs expression was significantly upregulated in serum from patients with endometriosis compared to normal controls. Downregulated molecules of miRNAs (hsa-miR-99b-5p, hsa-miR-127-3p, hsa-miR-30c-5p) and upregulated molecules of miRNAs (hsa-miR-424-3p and hsa-miR-185-5p) were seleted to confirmed in30patients and20healthy controls by Real-time PCR. Hsa-miR-99b-5p, hsa-miR-127-3p and hsa-miR-30c-5p expression level was significantly reduced, whereas hsa-miR-424-3p and hsa-miR-185-5p expression level were significantly upregulated in serum from endometriosis patients (p<0.05)
     Conclusions Aberrant miRNA expression may play a role in the pathogenesis of endometriosis.
引文
[1]Giudice L C, Kao L C. Endometriosis[J]. Lancet,2004,364(9447):1789-1799.
    [2]Eskenazi B, Warner M L. Epidemiology of endometriosis[J]. Obstet Gynecol Clin North Am,1997,24(2):235-258.
    [3]郎景和.子宫内膜异位症研究的新里程[J].中华妇产科杂志,2005(1):6-7.
    [4]Bulun S E, Yang S, Fang Z, et al. Estrogen production and metabolism in endometriosis[J]. Ann N Y Acad Sci,2002,955:75-85,86-88,396-406.
    [5]Gurates B, Bulun S E. Endometriosis:the ultimate hormonal disease[J]. Semin Reprod Med,2003,21(2):125-134.
    [6]Paul D W, Braun D P. Immunology of endometriosis[J]. Best Pract Res Clin Obstet Gynaecol,2004,18(2):245-263.
    [7]Ulukus M, Arici A. Immunology of endometriosis[J]. Minerva Ginecol,2005,57(3):237-248.
    [8]Simpson J L, Bischoff F Z, Kamat A, et al. Genetics of endometriosis[J]. Obstet Gynecol Clin North Am,2003,30(1):21-40.
    [9]Barlow D H, Kennedy S. Endometriosis:new genetic approaches and therapy[J]. Annu Rev Med,2005,56:345-356.
    [10]Rier S E. The potential role of exposure to environmental toxicants in the pathophysiology of endometriosis [J]. Ann N Y Acad Sci,2002,955:201-212, 230-232,396-406.
    [11]Guo S W. Epigenetics of endometriosis[J], Mol Hum Reprod,2009,15(10):587-607.
    [12]Peltomaki P, Butzow R. Endometriosis as an epigenetic disease[J]. Epigenomics,2011,3(6):690-691.
    [13]Murrell A, Rakyan V K, Beck S. From genome to epigenome[J]. Hum Mol Genet,2005,14 Spec No 1:R3-R10.
    [14]Wu Y, Strawn E, Basir Z, et al. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis[J]. Fertil Steril,2007,87(1):24-32.
    [15]Yang J, Fang X. [Expression of DNMT1, DNMT3a, and DNMT3b in eutopic endometrium][J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2012,37(1):94-99.
    [16]Razin S V. [Chromatin and transcription regulation] [J]. Mol Biol (Mosk),2007,41(3):387-394.
    [17]Vershinin A V. [Epigenetics of specific chromosome regions][J]. Genetika,2006,42(9):1200-1214.
    [18]Kouzarides T. Histone acetylases and deacetylases in cell proliferation[J]. Curr Opin Genet Dev,1999,9(1):40-48.
    [19]Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 [J]. Cell,2004,119(7):941-953.
    [20]Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails[J]. Genes Dev,2001,15(18):2343-2360.
    [21]An W. Histone acetylation and methylation:combinatorial players for transcriptional regulation[J]. Subcell Biochem,2007,41:351-369.
    [22]Martin C, Zhang Y. The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol,2005,6(11):838-849.
    [23]Ebert A, Lein S, Schotta G, et al. Histone modification and the control of heterochromatic gene silencing in Drosophila[J]. Chromosome Res,2006,14(4):377-392.
    [24]Tariq M, Paszkowski J. DNA and histone methylation in plants[J]. Trends Genet,2004,20(6):244-251.
    [25]Shinkai Y. Regulation and function of H3K9 methylation[J]. Subcell Biochem,2007,41:337-350.
    [26]Willis-Martinez D, Richards H W, Timchenko N A, et al. Role of HDAC1 in senescence, aging, and cancer[J]. Exp Gerontol,2010,45(4):279-285.
    [27]Saunders L R, Verdin E. Sirtuins:critical regulators at the crossroads between cancer and aging[J]. Oncogene,2007,26(37):5489-5504.
    [28]Bannister A J, Zegerman P, Partridge J F, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain[J]. Nature,2001,410(6824):120-124.
    [29]Litt M D, Simpson M, Gaszner M, et al. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus[J]. Science,2001,293(5539):2453-2455.
    [30]Sakamoto A, Liu J, Greene A, et al. Tissue-specific imprinting of the G protein Gsalpha is associated with tissue-specific differences in histone methylation[J]. Hum Mol Genet,2004,13(8):819-828.
    [31]Wu Y, Starzinski-Powitz A, Guo S W. Constitutive and tumor necrosis factor-alpha-stimulated activation of nuclear factor-kappaB in immortalized endometriotic cells and their suppression by trichostatin A[J]. Gynecol Obstet Invest,2010,70(1):23-33.
    [32]Kawano Y, Nasu K, Li H, et al. Application of the histone deacetylase inhibitors for the treatment of endometriosis:histone modifications as pathogenesis and novel therapeutic target[J]. Hum Reprod,2011,26(9):2486-2498.
    [33]Lu Y, Nie J, Liu X, et al. Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice[J]. Hum Reprod,2010,25(4):1014-1025.
    [34]Ambros V. The functions of animal micro RNAs[J]. Nature,2004,431(7006):350-355.
    [35]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2):281-297.
    [36]Lewis B P, Shih I H, Jones-Rhoades M W, et al. Prediction of mammalian microRNA targets[J]. Cell,2003,115(7):787-798.
    [37]Krek A, Grun D, Poy M N, et al. Combinatorial microRNA target predictions[J]. Nat Genet,2005,37(5):495-500.
    [38]Laterza O F, Lim L, Garrett-Engele P W, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury [J]. Clin Chem,2009,55(11):1977-1983.
    [39]Wang K, Zhang S, Marzolf B, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury[J]. Proc Natl Acad Sci U S A,2009,106(11):4402-4407.
    [40]Strahl B D, Allis C D. The language of covalent histone modifications [J]. Nature,2000,403(6765):41-45.
    [41]Costa F F. Non-coding RNAs, epigenetics and complexity[J]. Gene,2008,410(1):9-17.
    [42]Li J X, Liu H L. [The relationship of DNA methylation and histone methylation][J]. Yi Chuan,2004,26(2):267-270.
    [43]Bird A. Molecular biology. Methylation talk between histones and DNA[J]. Science,2001,294(5549):2113-2115.
    [44]Wu J, Wang S H, Potter D, et al. Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methyl ation in specifying gene silencing[J]. BMC Genomics,2007,8:131.
    [45]Benevolenskaya E V. Histone H3K4 demethylases are essential in development and differentiation[J]. Biochem Cell Biol,2007,85(4):435-443.
    [46]Ruthenburg A J, Allis C D, Wysocka J. Methylation of lysine 4 on histone H3:intricacy of writing and reading a single epigenetic mark[J]. Mol Cell,2007,25(1):15-30.
    [47]Stancheva I. Caught in conspiracy:cooperation between DNA methylation and histone H3K9 methylation in the establishment and maintenance of heterochromatin[J]. Biochem Cell Biol,2005,83(3):385-395.
    [48]Shi X, Hong T, Walter K L, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression[J]. Nature,2006,442(7098):96-99.
    [49]Kim J J, Taylor H S, Lu Z, et al. Altered expression of HOXA10 in endometriosis:potential role in decidualization[J]. Mol Hum Reprod,2007,13(5):323-332.
    [50]Rice J C, Briggs S D, Ueberheide B, et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains[J]. Mol Cell,2003,12(6):1591-1598.
    [51]Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP[J]. Genes Dev,2011,25(8):781-788.
    [52]Lee D Y, Northrop J P, Kuo M H, et al. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors[J]. J Biol Chem,2006,281 (13):8476-8485.
    [53]El G M, Yoza B K, Chen X, et al. G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance[J]. J Biol Chem,2008,283(47):32198-32208.
    [54]Lehnertz B, Ueda Y, Derijck A A, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin[J]. Curr Biol,2003,13(14):1192-1200.
    [55]Treloar S, Hadfield R, Montgomery G, et al. The International Endogene Study:a collection of families for genetic research in endometriosis [J]. Fertil Steril,2002,78(4):679-685.
    [56]Wu Y, Basir Z, Kajdacsy-Balla A, et al. Resolution of clonal origins for endometriotic lesions using laser capture microdissection and the human androgen receptor (HUMARA) assay[J]. Fertil Steril,2003,79 Suppl 1:710-717.
    [57]Mahlknecht U, Hoelzer D. Histone acetylation modifiers in the pathogenesis of malignant disease[J]. Mol Med,2000,6(8):623-644.
    [58]Vigushin D M, Coombes R C. Histone deacetylase inhibitors in cancer treatment[J]. Anticancer Drugs,2002,13(1):1-13.
    [59]Chen H, Lin R J, Schiltz R L, et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300[J]. Cell,1997,90(3):569-580.
    [60]Janknecht R. The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease[J]. Histol Histopathol,2002,17(2):657-668.
    [61]Kalkhoven E. CBP and p300:HATs for different occasions[J]. Biochem Pharmacol,2004,68(6):1145-1155.
    [62]Colon-Diaz M, Baez-Vega P, Garcia M, et al. HDAC1 and HDAC2 are Differentially Expressed in Endometriosis[J]. Reprod Sci,2012,19(5):483-492.
    [63]Imesch P, Samartzis E P, Schneider M, et al. Inhibition of transcription, expression, and secretion of the vascular epithelial growth factor in human epithelial endometriotic cells by romidepsin[J]. Fertil Steril,2011,95(5):1579-1583.
    [64]Imesch P, Fink D, Fedier A. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells[J]. Fertil Steril,2010,94(7):2838-2842.
    [65]Gonzalez-Ramos R, Van Langendonckt A, Defrere S, et al. Involvement of the nuclear factor-kappaB pathway in the pathogenesis of endometriosis[J]. Fertil Steril,2010,94(6):1985-1994.
    [66]Trapp J, Jung M. The role of NAD+dependent histone deacetylases (sirtuins) in ageing[J]. Curr Drug Targets,2006,7(11):1553-1560.
    [67]Luo J, Nikolaev A Y, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress[J]. Cell,2001,107(2):137-148.
    [68]Yeung F, Hoberg J E, Ramsey C S, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase[J]. EMBO J,2004,23(12):2369-2380.
    [69]Ambros V. The functions of animal micro RNAs[J]. Nature,2004,431(7006):350-355.
    [70]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2):281-297.
    [71]Bulun S E, Yang S, Fang Z, et al. Estrogen production and metabolism in endometriosis[J]. Ann N Y Acad Sci,2002,955:75-85,86-88,396-406.
    [72]Ulukus M, Arici A. Immunology of endometriosis[J]. Minerva Ginecol,2005,57(3):237-248.
    [73]Rier S E. The potential role of exposure to environmental toxicants in the pathophysiology of endometriosis[J]. Ann N Y Acad Sci,2002,955:201-212, 230-232,396-406.
    [74]Barlow D H, Kennedy S. Endometriosis:new genetic approaches and therapy[J]. Annu Rev Med,2005,56:345-356.
    [75]Filigheddu N, Gregnanin I, Porporato P E, et al. Differential expression of microRNAs between eutopic and ectopic endometrium in ovarian endometriosis[J]. J Biomed Biotechnol,2010,2010:369549.
    [76]Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A,2008,105(30):10513-10518.
    [77]Tsai K Y, Tsao H. Primer on the human genome[J]. J Am Acad Dermatol,2007,56(5):719-735.
    [78]Sun B K, Tsao H. Small RNAs in development and disease[J]. J Am Acad Dennatol,2008,59(5):725-737,738-740.
    [79]Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase:tools for microRNA genomics[J]. Nucleic Acids Res,2008,36(Database issue):D154-D158.
    [80]Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell,2005,120(1):15-20.
    [81]Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes[J]. Cell,2005,120(1):21-24.
    [82]Weber J A, Baxter D H, Zhang S, et al. The microRNA spectrum in 12 body fluids[J]. Clin Chem,2010,56(11):1733-1741.
    [83]Wang K, Zhang S, Weber J, et al. Export of microRNAs and microRNA-protective protein by mammalian cells[J]. Nucleic Acids Res,2010,38(20):7248-7259.
    [84]Zubakov D, Boersma A W, Choi Y, et al. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation[J]. Int J Legal Med,2010,124(3):217-226.
    [85]Hanson E K, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs[J]. Anal Biochem,2009,387(2):303-314.
    [86]Weickmann J L, Glitz D G. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations[J]. J Biol Chem,1982,257(15):8705-8710.
    [87]Gibbings D J, Ciaudo C, Erhardt M, et al. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity[J]. Nat Cell Biol,2009,11(9):1143-1149.
    [88]Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol,2007,9(6):654-659.
    [89]Inui M, Martello G, Piccolo S. MicroRNA control of signal transduction[J]. Nat Rev Mol Cell Biol,2010,11(4):252-263.
    [90]Liu J, Zheng M, Tang Y L, et al. MicroRNAs, an active and versatile group in cancers[J]. Int J Oral Sci,2011,3(4):165-175.
    [91]Schoof C R, Botelho E L, Izzotti A, et al. MicroRNAs in cancer treatment and prognosis[J]. Am J Cancer Res,2012,2(4):414-433.
    [92]Wu L, Zhou H, Lin H, et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies[J]. Reproduction,2012,143(3):389-397.
    [93]Li Y Y, Alexandrov P N, Pogue A I, et al. miRNA-155 upregulation and complement factor H deficits in Down's syndrome[J]. Neuroreport,2012,23(3):168-173.
    [94]Da C M P, Leptidis S, Salic K, et al. MicroRNA regulation in cardiovascular disease[J]. Curr Drug Targets,2010,11(8):900-906.
    [95]Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis[J]. Cardiovasc Res,2008,79(4):581-588.
    [96]Gilabert-Estelles J, Braza-Boils A, Ramon L A, et al. Role of microRNAs in gynecological pathology[J]. Curr Med Chem,2012,19(15):2406-2413.
    [97]Hull M L, Escareno C R, Godsland J M, et al. Endometrial-peritoneal interactions during endometriotic lesion establishment[J]. Am J Pathol,2008,173(3):700-715.
    [98]Teague E M, Print C G, Hull M L. The role of microRNAs in endometriosis and associated reproductive conditions[J]. Hum Reprod Update,2010,16(2):142-165.
    [99]Pan Q, Luo X, Toloubeydokhti T, et al. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression[J]. Mol Hum Reprod,2007,13(11):797-806.
    [100]Chen R, Alvero A B, Silasi D A, et al. Regulation of IKKbeta by miR-199a affects NF-kappaB activity in ovarian cancer cells[J]. Oncogene,2008,27(34):4712-4723.
    [101]Ohlsson T E, Van der Hoek K H, Van der Hoek M B, et al. MicroRNA-regulated pathways associated with endometriosis[J]. Mol Endocrinol,2009,23(2):265-275.
    [102]戴岚,顾李颖,祝捷,等.微小RNA-199a对子宫内膜间质细胞黏附、迁移和侵袭能力的调控作用[J].中华妇产科杂志,2011,46(11).
    [103]Fish J E, Santoro M M, Morton S U, et al. miR-126 regulates angiogenic signaling and vascular integrity[J]. Dev Cell,2008,15(2):272-284.
    [104]Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature,2008,456(7224):980-984.
    [105]Lu Y, Xiao J, Lin H, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference[J]. Nucleic Acids Res.2009,37(3):e24.
    [106]Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep,2008,9(6):582-589.
    [107]Pan Q, Chegini N. MicroRNA signature and regulatory functions in the endometrium during normal and disease states[J]. Semin Reprod Med,2008,26(6):479-493.
    [1]Farquhar C M. Extracts from the "clinical evidence". Endometriosis[J]. BMJ,2000,320(7247):1449-1452.
    [2]Jenuwein T, Allis C D. Translating the histone code[J]. Science,2001,293(5532):1074-1080.
    [3]Razin S V. [Chromatin and transcription regulation][J]. Mol Biol (Mosk),2007,41(3):387-394.
    [4]Vershinin A V. [Epigenetics of specific chromosome regions][J]. Genetika,2006,42(9):1200-1214.
    [5]Kouzarides T. Chromatin modifications and their function[J]. Cell,2007,128(4):693-705.
    [6]Jenuwein T, Allis C D. Translating the histone code[J]. Science,2001,293(5532):1074-1080.
    [7]Strahl B D, Allis C D. The language of covalent histone modifications[J]. Nature,2000,403(6765):41-45.
    [8]Grant P A, Berger S L, Workman J L. Identification and analysis of native nucleosomal histone acetyltransferase complex es[J]. Methods Mol Biol,1999,119:311-317.
    [9]Geiman T M, Robertson K D. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? [J]. J Cell Biochem,2002,87(2):117-125.
    [10]Zelko I N, Stepp M W, Vorst A L, et al. Histone acetylation regulates the cell-specific and interferon-gamma-inducible expression of extracellular superoxide dismutase in human pulmonary arteries[J]. Am J Respir Cell Mol Biol,2011,45(5):953-961.
    [11]Ghizzoni M, Haisma H J, Maarsingh H, et al. Histone acetyltransferases are crucial regulators in NF-kappaB mediated inflammation[J]. Drug Discov Today,2011,16(11-12):504-511.
    [12]Wu Y, Starzinski-Powitz A, Guo S W. Constitutive and tumor necrosis factor-alpha-stimulated activation of nuclear factor-kappaB in immortalized endometriotic cells and their suppression by trichostatin A[J]. Gynecol Obstet Invest,2010,70(1):23-33.
    [13]Kawano Y, Nasu K, Li H, et al. Application of the histone deacetylase inhibitors for the treatment of endometriosis:histone modifications as pathogenesis and novel therapeutic target[J]. Hum Reprod,2011,26(9):2486-2498.
    [14]Lu Y, Nie J, Liu X, et al. Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice[J]. Hum Reprod,2010,25(4):1014-1025.
    [15]Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell,2004,119(7):941-953.
    [16]Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails[J]. Genes Dev,2001,15(18):2343-2360.
    [17]Qian C, Zhou M M. SET domain protein lysine methyltransferases: Structure, specificity and catalysis[J], Cell Mol Life Sci,2006,63(23):2755-2763.
    [18]Wysocka J, Swigut T, Xiao H, et al. A PHD finger of NURF couples histone H3 lysine 4 trim ethyl ation with chromatin remodelling[J]. Nature,2006,442(7098):86-90.
    [19]Shi X, Hong T, Walter K L, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression[J]. Nature,2006,442(7098):96-99.
    [20]Shi X, Kachirskaia I, Walter K L, et al. Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36[J]. J Biol Chem,2007,282(4):2450-2455.
    [21]Xiao B, Jing C, Wilson J R, et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9[J]. Nature,2003,421(6923):652-656.
    [22]Zhu Q, Wani A A. Histone modifications:crucial elements for damage response and chromatin restoration[J]. J Cell Physiol,2010,223(2):283-288.
    [23]Islam A B, Richter W F, Jacobs L A, et al. Co-regulation of histone-modifying enzymes in cancer[J]. PLoS One,2011,6(8):e24023.
    [24]Karlic R, Chung H R, Lasserre J, et al. Histone modification levels are predictive for gene expression[J]. Proc Natl Acad Sci U S A,2010,107(7):2926-2931.
    [25]Fischle W, Wang Y, Jacobs S A, et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains[J]. Genes Dev,2003,17(15):1870-1881.
    [26]Pray-Grant M G, Daniel J A, Schieltz D, et al. Chdl chromodomain links histone H3 methylation with SAGA-and SLIK-dependent acetylation[J]. Nature,2005,433(7024):434-438.
    [27]Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnql domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes[J]. Nat Genet,2004,36(12):1296-1300.
    [28]Issa J P. DNA methylation as a therapeutic target in cancer[J]. Clin Cancer Res,2007,13(6):1634-1637.
    [29]Bird A. Molecular biology. Methylation talk between histories and DNA[J]. Science,2001,294(5549):2113-2115.
    [30]Hashimoto H, Vertino P M, Cheng X. Molecular coupling of DNA methylation and histone methylation[J]. Epigenomics,2010,2(5):657-669.
    [31]Banerjee T, Chakravarti D. A peek into the complex realm of histone phosphorylation[J]. Mol Cell Biol.2011.31(24):4858-4873.
    [32]Vermeulen L, Vanden B W, Beck I M, et al. The versatile role of MSKs in transcriptional regulation[J]. Trends Biochem Sci,2009,34(6):311-318.
    [33]Janknecht R. Regulation of the ER81 transcription factor and its coactivators by mitogen-and stress-activated protein kinase 1 (MSK1)[J]. Oncogene,2003.22(5):746-755.
    [34]Krishnamoorthy T, Chen X, Govin J, et al. Phosphorylation of histone H4 Serl regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis[J]. Genes Dev.2006,20(18):2580-2592.
    [35]Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination[J]. Genes Dev,2003,17(22):2733-2740.
    [36]Pickart C M. Mechanisms underlying ubiquitination[J]. Annu Rev Biochem,2001,70:503-533.
    [37]Seigneurin-Berny D, Verdel A, Curtet S, et al. Identification of components of the murine histone deacetylase 6 complex:link between acetylation and ubiquitination signaling pathways[J]. Mol Cell Biol,2001,21(23):8035-8044.
    [38]Wilkinson K A, Henley J M. Mechanisms, regulation and consequences of protein SUMOylation[J]. Biochem J,2010,428(2):133-145.
    [39]Gong L, Li B, Millas S, et al. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex[J]. FEBS Lett,1999,448(1):185-189.
    [40]Sampson D A, Wang M, Matunis M J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification[J]. J Biol Chem,2001,276(24):21664-21669.
    [41]Cheng J, Wang D, Wang Z, et al. SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1[J]. Mol Cell Biol,2004,24(13):6021-6028.
    [42]Shiio Y, Eisenman R N. Histone sumoylation is associated with transcriptional repression[J]. Proc Natl Acad Sci U S A,2003,100(23):13225-13230.
    [43]Izzo A, Schneider R. Chatting histone modifications in mammals[J]. Brief Funct Genomics,2010,9(5-6):429-443.
    [44]Strahl B D, Briggs S D, Brame C J, et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1[J]. Curr Biol,2001,11(12):996-1000.
    [45]Wang H, Huang Z Q, Xia L, et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor[J]. Science,2001,293(5531):853-857.
    [46]Daujat S, Bauer U M, Shah V, et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3[J]. Curr Biol,2002,12(24):2090-2097.
    [47]Pavri R, Zhu B, Li G, et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II[J]. Cell,2006,125(4):703-717.
    [48]Bulun S E, Yang S, Fang Z, et al. Estrogen production and metabolism in endometriosis[J]. Ann N Y Acad Sci,2002,955:75-85,86-88,396-406.
    [49]Ulukus M, Arici A. Immunology of endometriosis[J]. Minerva Ginecol,2005,57(3):237-248.
    [50]Rier S E. The potential role of exposure to environmental toxicants in the pathophysiology of endometriosis[J]. Ann N Y Acad Sci,2002,955:201-212, 230-232,396-406.
    [51]Barlow D H, Kennedy S. Endometriosis:new genetic approaches and therapy[J]. Annu Rev Med,2005,56:345-356.
    [52]Guo S W. Epigenetics of endometriosis [J]. Mol Hum Reprod,2009,15(10):587-607.
    [53]Colon-Diaz M, Baez-Vega P, Garcia M, et al. HDAC1 and HDAC2 are Differentially Expressed in Endometriosis[J]. Reprod Sci,2012,19(5):483-492.
    [54]Imesch P, Samartzis E P, Schneider M, et al. Inhibition of transcription, expression, and secretion of the vascular epithelial growth factor in human epithelial endometriotic cells by romidepsin[J]. Fertil Steril,2011,95(5):1579-1583.
    [55]Imesch P, Fink D, Fedier A. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells[J]. Fertil Steril,2010,94(7):2838-2842.
    [56]Weedon M N, Lango H, Lindgren C M, et al. Genome-wide association analysis identifies 20 loci that influence adult height[J]. Nat Genet,2008,40(5):575-583.
    [57]Guo S W. Recurrence of endometriosis and its control[J]. Hum Reprod Update,2009,15(4):441-461.
    [58]Ceccaroni M, Pontrelli G, Scioscia M, et al. Nerve-sparing laparoscopic radical excision of deep endometriosis with rectal and parametrial resection[J]. J Minim Invasive Gynecol,2010,17(1):14-15.
    [59]Guo S W, Hummelshoj L, Olive D L, et al. A call for more transparency of registered clinical trials on endometriosis[J]. Hum Reprod,2009.24(6):1247-1254.
    [60]Streuli I, de Ziegler D, Borghese B, et al. New treatment strategies and emerging drugs in endometriosis[J]. Expert Opin Emerg Drugs,2012.
    [61]Guo S W. Emerging drugs for endometriosis[J]. Expert Opin Emerg Drugs,2008,13(4):547-571.
    [62]Izawa M, Harada T, Taniguchi F, et al. An epigenetic disorder may cause aberrant expression of aromatase gene in endometriotic stromal cells[J]. Fertil Steril,2008,89(5 Suppl):1390-1396.
    [63]Starzinski-Powitz A, Gaetje R, Zeitvogel A, et al. Tracing cellular and molecular mechanisms involved in endometriosis[J]. Hum Reprod Update,1998,4(5):724-729.
    [64]Starzinski-Powitz A, Zeitvogel A, Schreiner A, et al. In search of pathogenic mechanisms in endometriosis:the challenge for molecular cell biology[J]. Curr Mol Med,2001,1(6):655-664.
    [65]Wu Y, Starzinski-Powitz A, Guo S W. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells[J]. Reprod Sci,2007,14(4):374-382.
    [1]Finishing the euchromatic sequence of the human genome[J]. Nature,2004,431 (7011):931-945.
    [2]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
    [3]Stanczyk J, Pedrioli D M, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis.[J]. Arthritis Rheum,2008,58(4):1001-1009.
    [4]Berezikov E, Guryev V, van de'Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes.[J]. Cell,2005,120(1):21-24.
    [5]Griffiths-Jones S, Saini H K, van Dongen S, et al. miRBase:tools for microRNA genomics.[J]. Nucleic Acids Res,2008,36(Database issue):D154-D 158.
    [6]Ambros V. MicroRNAs and developmental timing.[J]. Curr Opin Genet Dev,2011,21(4):511-517.
    [7]Ambros V. The functions of animal microRNAs.[J]. Nature,2004,431(7006):350-355.
    [8]Macfarlane L A, Murphy P R. MicroRNA:Biogenesis, Function and Role in Cancer.[J]. Curr Genomics,2010,11(7):537-561.
    [9]Kim V N. Small RNAs:classification, biogenesis, and function.[J]. Mol Cells,2005,19(1):1-15.
    [10]Kim V N. MicroRNA biogenesis:coordinated cropping and dicing.[J]. Nat Rev Mol Cell Biol,2005,6(5):376-385.
    [11]Ying S Y, Chang C P, Lin S L. Intron-mediated RNA interference, intronic microRNAs, and applications.[J]. Methods Mol Biol,2010,629:205-237.
    [12]Saini H K, Griffiths-Jones S, Enright A J. Genomic analysis of human microRNA transcripts.[J]. Proc Natl Acad Sci U S A,2007,104(45):17719-17724.
    [13]Cullen B R. Derivation and function of small interfering RNAs and microRNAs.[J]. Virus Res,2004,102(1):3-9.
    [14]Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II.[J]. EMBO J,2004,23(20):4051-4060.
    [15]Goodfellow S J, White R J. Regulation of RNA polymerase III transcription during mammalian cell growth.[J]. Cell Cycle.2007,6(19):2323-2326.
    [16]Borchert G M, Lanier W, Davidson B L. RNA polymerase III transcribes human microRNAs.[J]. Nat Struct Mol Biol,2006,13(12):1097-1101.
    [17]Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output[J]. Nature,2008,455(7209):64-71.
    [18]Pillai R S, Bhattacharyya S N, Filipowicz W. Repression of protein synthesis by miRNAs:how many mechanisms?[J]. Trends Cell Biol,2007,17(3):118-126.
    [19]Davis C D, Ross S A. Evidence for dietary regulation of microRNA expression in cancer cells.[J]. Nutr Rev,2008,66(8):477-482.
    [20]Kulshreshtha R, Ferracin M, Negrini M, et al. Regulation of microRNA expression:the hypoxic component.[J]. Cell Cycle,2007,6(12):1426-1431.
    [21]Davis B N, Hilyard A C, Nguyen P H, et al. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha.[J]. Mol Cell,2010,39(3):373-384.
    [22]Viswanathan S R, Daley G Q. Lin28:A microRNA regulator with a macro role.[J]. Cell,2010,140(4):445-449.
    [23]Han L. Witmer P D, Casey E, et al. DNA methylation regulates MicroRNA expression.[J]. Cancer Biol Ther,2007,6(8):1284-1288.
    [24]Fiedler S D, Carletti M Z, Hong X, et al. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells.[J]. Biol Reprod,2008,79(6):1030-1037.
    [25]Han J, Lee Y, Yeom K H, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex.[J]. Cell,2006,125(5):887-901.
    [26]Denli A M, Tops B B, Plasterk R H, et al. Processing of primary microRNAs by the Microprocessor complex.[J]. Nature,2004,432(7014):231-235.
    [27]Han J, Lee Y, Yeom K H, et al. The Drosha-DGCR8 complex in primary microRNA processing.[J]. Genes Dev,2004,18(24):3016-3027.
    [28]Han J, Pedersen J S, Kwon S C, et al. Posttranscriptional crossregulation between Drosha and DGCR8.[J]. Cell,2009,136(1):75-84.
    [29]Triboulet R, Chang H M, Lapierre R J, et al. Post-transcriptional control of DGCR8 expression by the Microprocessor.[J]. RNA,2009,15(6):1005-1011.
    [30]Michlewski G, Guil S, Caceres J F. Stimulation of pri-miR-18a processing by hnRNP A1.[J]. Adv Exp Med Biol,2010,700:28-35.
    [31]Guil S, Caceres J F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a.[J]. Nat Struct Mol Biol,2007,14(7):591-596.
    [32]Zeng Y, Yi R, Cullen B R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms.[J]. Proc Natl Acad Sci U S A,2003,100(17):9779-9784.
    [33]Rodriguez A, Griffiths-Jones S, Ashurst J L, et al. Identification of mammalian microRNA host genes and transcription units.[J]. Genome Res,2004,14(10A):1902-1910.
    [34]Kim Y K, Kim V N. Processing of intronic microRNAs.[J]. EMBO J,2007,26(3):775-783.
    [35]Ying S Y, Lin S L. Intron-derived microRNAs--fine tuning of gene functions.[J]. Gene,2004,342(1):25-28.
    [36]Rainer J, Ploner C, Jesacher S, et al. Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia.[J]. Leukemia,2009,23(4):746-752.
    [37]Macrae I J, Ma E, Zhou M, et al. In vitro reconstitution of the human RISC-loading complex.[J]. Proc Natl Acad Sci U S A,2008,105(2):512-517.
    [38]Anantharaman V, Koonin E V, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism.[J]. Nucleic Acids Res,2002,30(7):1427-1464.
    [39]Lee Y, Hur I, Park S Y, et al. The role of PACT in the RNA silencing pathway.[J]. EMBO J,2006,25(3):522-532.
    [40]Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA.[J]. Genes Dev,2005,19(24):2979-2990.
    [41]Brennecke J, Stark A, Russell R B, et al. Principles of microRNA-target recognition.[J]. PLoS Biol,2005,3(3):e85.
    [42]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function.[J]. Cell,2004,116(2):281-297.
    [43]Doench J G, Petersen C P, Sharp P A. siRNAs can function as miRNAs.[J]. Genes Dev,2003,17(4):438-442.
    [44]Saxena S, Jonsson Z O, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells.[J]. J Biol Chem,2003,278(45):44312-44319.
    [45]Doench J G, Sharp P A. Specificity of microRNA target selection in translational repression.[J]. Genes Dev,2004,18(5):504-511.
    [46]Stark A, Brennecke J, Russell R B, et al. Identification of Drosophila MicroRNA targets.[J]. PLoS Biol,2003,1(3):E60.
    [47]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function. [J].Cell,2004,116(2):281-297.
    [48]Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies.[J]. Science,2005,310(5747):486-489.
    [49]Coller J, Parker R. General translational repression by activators of mRNA decapping.[J]. Cell,2005,122(6):875-886.
    [50]Valencia-Sanchez M A, Liu J, Hannon G J, et al. Control of translation and mRNA degradation by miRNAs and siRNAs.[J]. Genes Dev,2006,20(5):515-524.
    [51]Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies.[J]. Science,2005,310(5747):486-489.
    [52]Valencia-Sanchez M A, Liu J, Hannon G J, et al. Control of translation and mRNA degradation by miRNAs and siRNAs.[J]. Genes Dev,2006,20(5):515-524.
    [53]Nelson L R, Bulun S E. Estrogen production and action.[J]. J Am Acad Dermatol,2001,45(3 Suppl):S116-S124.
    [54]Jamnongjit M, Gill A, Hammes S R. Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation.[J]. Proc Natl Acad Sci U S A,2005,102(45):16257-16262.
    [55]Hong X, Luense L J, Mcginnis L K, et al. Dicerl is essential for female fertility and normal development of the female reproductive system.[J]. Endocrinology,2008,149(12):6207-6212.
    [56]Nagaraja A K, Andreu-Vieyra C, Franco H L, et al. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility.[J]. Mol Endocrinol,2008,22(10):2336-2352.
    [57]Suh N, Baehner L, Moltzahn F, et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos.[J]. Curr Biol,2010,20(3):271-277.
    [58]Babiarz J E, Ruby J G, Wang Y, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs.[J]. Genes Dev,2008,22(20):2773-2785.
    [59]Berezikov E, Chung W J, Willis J, et al. Mammalian mirtron genes.[J]. Mol Cell,2007,28(2):328-336.
    [60]Baley J, Li J. MicroRNAs and ovarian function.[J]. J Ovarian Res,2012,5:8.
    [61]Fiedler S D, Carletti M Z, Hong X, et al. Hormonal regulation of MicroRNA expression in periovulatory mouse mural granulosa cells.[J]. Biol Reprod,2008,79(6):1030-1037.
    [62]Yao N, Yang B Q, Liu Y, et al. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells.[J]. Endocrine,2010,38(2):158-166.
    [63]Sasson R, Dantes A, Tajima K, et al. Novel genes modulated by FSH in normal and immortalized FSH-responsive cells:new insights into the mechanism of FSH action.[J]. FASEB J,2003,17(10):1256-1266.
    [64]Grieshaber N A, Ko C, Grieshaber S S, et al. Follicle-stimulating hormone-responsive cytoskeletal genes in rat granulosa cells:class I beta-tubulin, tropomyosin-4, and kinesin heavy chain.[J]. Endocrinology,2003,144(1):29-39.
    [65]Otsuka M, Zheng M, Hayashi M, et al. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice.[J], J Clin Invest,2008,118(5):1944-1954.
    [66]Shingara J, Keiger K, Shelton J, et al. An optimized isolation and labeling platform for accurate microRNA expression profiling. [J]. RNA,2005,11(9):1461-1470.
    [67]Chakrabarty A, Tranguch S, Daikoku T, et al. MicroRNA regulation of cyclooxygenase-2 during embryo implantation.[J]. Proc Natl Acad Sci U S A,2007,104(38):15144-15149.
    [68]Hu S J, Ren G, Liu J L, et al. MicroRNA expression and regulation in mouse uterus during embryo implantation. [J]. J Biol Chem,2008,283(34):23473-23484.
    [69]Davis B N, Hilyard A C, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation.[J]. Nature,2008,454(7200):56-61.
    [70]Dammer E B, Sewer M B. Phosphorylation of CtBPl by cAMP-dependent protein kinase modulates induction of CYP17 by stimulating partnering of CtBP1 and 2.[J]. J Biol Chem,2008,283(11):6925-6934.
    [71]Loffler D, Brocke-Heidrich K, Pfeifer G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. [J]. Blood,2007,110(4):1330-1333.
    [72]Cheng J G, Chen J R, Hernandez L, et al. Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation.[J]. Proc Natl Acad Sci U S A,2001,98(15):8680-8685.
    [73]Agarwal N, Subramanian A. Endometriosis-morphology, clinical presentations and molecular pathology.[J]. J Lab Physicians,2010,2(1):1-9.
    [74]Brosens I, Benagiano G. Endometriosis, a modern syndrome.[J]. Indian J Med Res,2011,133:581-593.
    [75]Wu Y, Strawn E, Basir Z, et al. Aberrant expression of deoxyribonucleic acid methyltransferases DNMT1, DNMT3A, and DNMT3B in women with endometriosis.[J]. Fertil Steril,2007,87(1):24-32.
    [76]Yang J, Fang X. [Expression of DNMT1, DNMT3a, and DNMT3b in eutopic endometrium].[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2012.37(1):94-99.
    [77]Nasu K, Kawano Y, Tsukamoto Y, et al. Aberrant DNA methylation status of endometriosis:epigenetics as the pathogenesis. biomarker and therapeutic target.[J]. J Obstet Gynaecol Res,2011.37(7):683-695.
    [78]Szczepanska M, Wirstlein P, Skrzypczak J, et al. Expression of HOXA11 in the mid-luteal endometrium from women with endometriosis-associated infertility.[J]. Reprod Biol Endocrinol,2012,10:1.
    [79]Filigheddu N, Gregnanin I, Porporato P E, et al. Differential expression of microRNAs between eutopic and ectopic endometrium in ovarian endometriosis.[J]. J Biomed Biotechnol,2010,2010:369549.
    [80]Pan Q, Chegini N. MicroRNA signature and regulatory functions in the endometrium during normal and disease states [J]. Sernin Reprod Med,2008,26(6):479-493.
    [81]Pan Q, Luo X, Toloubeydokhti T, et al. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression[J]. Mol Hum Reprod,2007,13(11):797-806.
    [82]Ramon L A, Braza-Boils A, Gilabert-Estelles J, et al. microRNAs expression in endometriosis and their relation to angiogenic factors.[J]. Hum Reprod,2011,26(5):1082-1090.
    [83]Zhao Z Z, Croft L, Nyholt D R, et al. Evaluation of polymorphisms in predicted target sites for micro RNAs differentially expressed in endometriosis.[J]. Mol Hum Reprod,2011,17(2):92-103.
    [84]Burney R O, Hamilton A E, Aghajanova L, et al. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis.[J]. Mol Hum Reprod,2009,15(10):625-631.
    [85]Grechukhina O, Petracco R, Popkhadze S, et al. A polymorphism in a let-7 microRNA binding site of KRAS in women with endometriosis.[J]. EMBO Mol Med,2012,4(3):206-217.
    [86]Mahutte N G, Arici A. New advances in the understanding of endometriosis related infertility.[J]. J Reprod Immunol,2002,55(1-2):73-83.
    [87]Gupta S, Goldberg J M, Aziz N, et al. Pathogenic mechanisms in endometriosis-associated infertility.[J]. Fertil Steril,2008,90(2):247-257.
    [88]Shingara J, Keiger K, Shelton J, et al. An optimized isolation and labeling platform for accurate microRNA expression profiling.[J]. RNA,2005,11(9): 1461-1470.
    [89]Chakrabarty A, Tranguch S, Daikoku T, et al. MicroRNA regulation of cyclooxygenase-2 during embryo implantation.[J]. Proc Natl Acad Sci U S A,2007,104(38):15144-15149.
    [90]Oskowitz A Z, Lu J, Penfornis P, et al. Human multipotent stromal cells from bone marrow and microRNA:regulation of differentiation and leukemia inhibitory factor expression. [J]. Proc Natl Acad Sci U S A,2008,105(47):18372-18377.
    [91]Laterza O F, Lim L, Garrett-Engele P W, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury[J]. Clin Chem,2009,55(11):1977-1983.
    [92]Zhu W, Qin W, Atasoy U, et al. Circulating microRNAs in breast cancer and healthy subjects[J]. BMC Res Notes,2009,2:89.
    [93]Mitchell P S, Parkin R K, Kroh E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci U S A,2008,105(30):10513-10518.
    [94]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases[J]. Cell Res,2008,18(10):997-1006.
    [95]Kennedy S, Bergqvist A, Chapron C, et al. ESHRE guideline for the diagnosis and treatment of endometriosis.[J]. Hum Reprod,2005,20(10):2698-2704.
    [96]Hughes E, Brown J, Collins J J, et al. Ovulation suppression for endometriosis.[J]. Cochrane Database Syst Rev,2007(3):D155.
    [97]Esau C C, Monia B P. Therapeutic potential for microRNAs.[J]. Adv Drug Deliv Rev,2007,59(2-3):101-114.
    [98]Esau C C. Inhibition of microRNA with antisense oligonucleotides.[J]. Methods,2008,44(1):55-60.
    [99]Stenvang J, Lindow M, Kauppinen S. Targeting of microRNAs for therapeutics.[J]. Biochem Soc Trans,2008,36(Pt 6):1197-1200.
    [100]Ebert M S, Neilson J R, Sharp P A. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells.[J]. Nat Methods,2007,4(9):721-726.
    [101]Teague E M, Print C G, Hull M L. The role of microRNAs in endometriosis and associated reproductive conditions. [J]. Hum Reprod Update,2010,16(2):142-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700