促红细胞生成素及其衍生物抗癫痫大鼠心肌细胞凋亡及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑心综合征是指因脑部疾病(癫痫、脑出血、脑缺血、蛛网膜下腔出血、急性颅脑损伤、脑肿瘤、颅内炎症等)引发的神经-体液调节功能紊乱所导致的类似心肌缺血、心律失常、心肌梗塞或心力衰竭的一组症状。Janus激酶/信号转导子和转录激活子(JAK/STAT)通路在多种疾病病理过程中发挥重要作用,参与了癫痫、缺血等脑部疾病的病理过程。促红细胞生成素(EPO)是一种多功能性的细胞因子,除了具有造血活性外,还具有广泛的组织保护活性,可通过激活JAK2/STAT5通路抗细胞凋亡。但大剂量或长期使用EPO可能导致红细胞增多症、高血压、血栓形成等不良作用。近年来的研究发现促红细胞生成素衍生物-氨甲酰化促红细胞生成素(CEPO),有与EPO相当的组织保护作用,而不表现促红细胞生成等不良作用。
     本研究应用杏仁核内注射海仁藻酸制备大鼠癫痫动物模型,建模前分别给予大鼠EPO、CEPO、AG490(JAK2抑制剂)尾静脉注射干预,观察大鼠癫痫发作后的行为学改变,及不同时间点心肌细胞凋亡、JAK2/STAT5 mRNA和caspase3、bcl-xl蛋白表达情况。研究结果显示,大鼠癫痫发作后可引起血压增高、心率增快,心肌细胞凋亡增多,JAK2、STAT5a、caspase3、bcl-xl表达增强,细胞凋亡率及JAK2 mRNA、STAT5a mRNA、caspase3、bcl-xl蛋白表达随癫痫时程延长而增高。EPO可通过进一步激活JAK2/STAT5信号通路上调bcl-xl、下调caspase3抗心肌细胞凋亡。CEPO也可通过上调bcl-xl、下调caspase3抗心肌细胞凋亡,且保护作用与EPO相当,但不激活JAK2/STAT5信号通路。
     探讨EPO、CEPO抗癫痫大鼠心肌细胞凋亡的作用及机制,可以为EPO、CEPO应用于临床提供理论基础。
Carbamylated EPO(CEPO) is a derivative of erythropoietin(EPO) by subjecting it to carbamylation.Unlike EPO,it does not stimulate erythropoiesis,but effectively protects tissue from injury. A number of signaling pathways,such as Jak2/STAT5 signaling,PI3K signaling,protein kinase C and MAPK,have been implicated in EPO-induced cardioprotection. Since CEPO signals only through EPOR-βcR,the mechanism of CEPO-induced cardiorotection may be different from that of EPO. As an important signal transducing pathway,the Janus kinase/signal transducer and activator of transcription(JAK/STAT) pathway is activated by various cytokines and growth factors.The JAK/STAT pathway plays an important role in growth,proliferation,differentiation,inflammation and apoptosis of cells.More and more studies have shown that the JAK/STAT pathway have important role in pathogenesis of cardiac disease.EPO can activate the STAT family members STAT1, STAT3, and STAT5 rapidly. Although STAT1, STAT3,and STAT5 have been implicated in the regulation of apoptosis, only STAT5 so far has been demonstrated in the anti-apoptotic signaling of EPO.
     Epilepsy is a common chronic disease in nervous system,which is often accompanied with complications in course.In the complications,arrhythmia and cardiac arrest are the most harmful,many patients’sudden cardiac death has no reason.In this situation,more and more scholars are carrying out the research on brain-heart syndrome. Whether epilepsy can cause definite changes in cardiovascular function is unclear,and which way such changes is mediated in is also unclear.So the effort to identify such mechanism and to give effective intervention to cerebrocardiac syndrome will have significant meaning. The apoptosis of cardiomyocyte was detected with terminal deoxynucleotidyl transferase-mediated dUDP-nick end labeling (TUNEL) method. Immunohistochemistry was used to detect caspase-3 and bcl-xl. The mRNA expression of JAK2 and STAT5 was detected by in situ hybridization.The study applied epilepsy rat model.At time of 0h,2h,6h,12h,24h after epilepsy,rats were put to death and heart tissues were obtained.To esplore the following questions: First, What is the effect of epilepsy on cardiovascular activity?if epilepsy can increase the apoptosis of cardiac myocyte,lead to myocardial injury ?Second, if CEPO and EPO can decrease the apoptosis rate of cardiac myocyte, lessen myocardial injury with epilepsy ?Third, if CEPO and EPO can affect the expression of caspase3 and bcl-xl?Forth,what is the mechanism of cardioprotection ?And if cardioprotection by the activation of JAK2/STAT5 pathway ?
     The main results were as followed:
     1.The increase of blood pressure and heart rate in epilepsy-group is more significant than control group(P<0.05).
     2.Apoptosis of all rats at different time after epilepsy:There were positive cells in epilepsy 0h group by chance.After 2 hours apoptosis cells began increasing,and nucleus of TUNEL positive apoptosis cells were brown.Then they increased gradually,and at 24 hours it reach the peak(P<0.01).The rate of apoptosis reduced gradually in EPO and CEPO group,and the difference is much significant at 24 hours compared with epilepsy group(P<0.01). The rate of apoptosis increased in AG490 group, and the difference is significant at 24 hours compared with ethanol group(P<0.01).
     3.Caspase-3 bcl-xl protein expression:There was weakly positive expression of caspase-3 in cardiomyocyte of epilepsy 0h group. After 2 hours the expression began increasing.Then they increased gradually,and at 24 hours it reach the peak(P<0.01).The expression reduced gradually in EPO and CEPO group,and the difference is much significant at 24 hours compared with epilepsy group(P<0.01). The expression of caspase-3 increased in AG490 group, and the difference is significant at 24 hours compared with ethanol group(P<0.01). The expression of bcl-xl increased gradually in EPO and CEPO group,and the difference is much significant at 24 hours compared with epilepsy group(P<0.01). The expression of bcl-xl reduced in AG490 group, and the difference is significant at 24 hours compared with ethanol group(P<0.05).
     4.JAK2/STAT5 mRNA expression: There was weakly positive expression of JAK2/STAT5a mRNA in cardiomyocyte of epilepsy 0h group. After 2 hours the expression began increasing.Then they increased gradually,and at 24 hours it reach the peak(P<0.01).The expression increased gradually in EPO group,and the difference is much significant at 24 hours compared with epilepsy group(P<0.01,P<0.05).The expression of JAK2/STAT5a mRNA reduced in AG490 group, and the difference is significant at 24 hours compared with ethanol group(P<0.01,P<0.05). There were no significant difference in the JAK2/STAT5a mRNA expression of CEPO group compared with epilepsy group.
     The main conclusions were as followed:
     1.Epilepsy can alter cardiovascular activity acutely,lead to the increase of the apoptosis of cardiac myocyte.
     2.The apoptotic rate increase with the prolongation of epileptic time.
     3.EPO and CEPO can affect the expression of caspase3 and bcl-xl,decrease the apoptotic rate of cardiac myocyte. EPO and CEPO can decrease the apoptosis induced by epilepsy with no significance.
     4.EPO can activate the pathway of JAK2/STAT5.The machanism of anti-apoptosis may be related to the pathway, down-regulating of the expression of caspase3, up-regulating of the expression of bcl-xl. CEPO have no effect on the pathway of JAK2/STAT5.The machanism of anti-apoptosis may be related to other pathway, down-regulating of the expression of caspase3, up-regulating of the expression of bcl-xl.
     Backing up all our datas,we found that EPO and CEPO can reduce the apoptosis rate of cardiac myocyte.They may be an effective drug in the therapy of epilepsy and other heart disease in the future.
引文
[1] Ihle JN, Witthuhn BA, Quelle FW, et al. Signaling through the hematopoietic cytokine receptors[J]. Annu Rev Immunol JT-Annual review of immunology, 1995,13:369-98.
    [2] Bolen JB, Brugge JS. Leukocyte protein tyrosine kinases: potential targets for drug discovery[J]. Annu Rev Immunol JT-Annual review of immunology, 1997,15:371-404.
    [3] Ihle JN. STATs: signal transducers and activators of transcription[J]. Cell JT - Cell, 1996,84(3):331-4.
    [4] Pellegrini S, Dusanter-Fourt I. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs)[J]. Eur J Biochem JT-European journal of biochemistry / FEBS, 1997,248(3):615-33.
    [5] Copeland NG, Gilbert DJ, Schindler C, et al. Distribution of the mammalian Stat gene family in mouse chromosomes[J]. Genomics JT-Genomics, 1995,29(1):225-8.
    [6] Sadoshima J, Xu Y, Slayter HS, et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro[J]. Cell JT - Cell, 1993,75(5):977-84.
    [7] Paz Y, Gurevitch J, Frolkis I, et al. Effects of an angiotensin II antagonist on ischemic and nonischemic isolated rat hearts[J]. Ann Thorac Surg JT-The Annals of thoracic surgery, 1998,65(2):474-9.
    [8] Mascareno E, El-Shafei M, Maulik N, et al. JAK/STAT signaling is associated with cardiac dysfunction during ischemia and reperfusion[J]. Circulation JT- Circulation, 2001,104(3):325-9.
    [9] Mascareno E, Dhar M, Siddiqui MA. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle[J]. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America, 1998,95(10):5590-4.
    [10] Fukuzawa J, Booz GW, Hunt RA, et al. Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3 : an autocrine loop for hypertrophy[J]. Hypertension JT-Hypertension, 2000,35(6):1191-6.
    [11] Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor[J]. Nature JT- Nature, 1996,379(6566):645-8.
    [12] Yamaura G, Turoczi T, Yamamoto F, et al. STAT signaling in ischemic heart: a role of STAT5A in ischemic preconditioning[J]. Am J Physiol Heart Circ Physiol JT-American journal of physiology. Heart and circulatory physiology, 2003,285(2):H476-82.
    [13] Downward J. Mechanisms and consequences of activation of protein kinase B/Akt[J]. Curr Opin Cell Biol JT-Current opinion in cell biology, 1998,10(2):262-7.
    [14] Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery[J]. Cell JT-Cell, 1997,91(2):231-41.
    [15] Heim MH. The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus[J]. J Recept Signal Transduct Res JT-Journal of receptor and signal transduction research, 1999,19(1-4):75-120.
    [16] Xuan YT, Guo Y, Han H, et al. An essential role of the JAK-STAT pathway in ischemic preconditioning[J]. Proc Natl Acad Sci U S A JT-Proceedings ofthe National Academy of Sciences of the United States of America, 2001,98(16):9050-5.
    [17] Omura T, Yoshiyama M, Ishikura F, et al. Myocardial ischemia activates the JAK-STAT pathway through angiotensin II signaling in in vivo myocardium of rats[J]. J Mol Cell Cardiol JT-Journal of molecular and cellular cardiology, 2001,33(2):307-16.
    [18] El-Adawi H, Deng L, Tramontano A, et al. The functional role of the JAK-STAT pathway in post-infarction remodeling[J]. Cardiovasc Res JT- Cardiovascular research, 2003,57(1):129-38.
    [19] Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy[J]. Circulation JT-Circulation, 2000,101(25):2981-8.
    [20] Pan J, Fukuda K, Saito M, et al. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes[J]. Circ Res JT-Circulation research, 1999,84(10):1127-36.
    [21] Huang B, Wang S, Qin D, et al. Diminished basal phosphorylation level of phospholamban in the postinfarction remodeled rat ventricle: role of beta-adrenergic pathway, G(i) protein, phosphodiesterase, and phosphatases[J]. Circ Res JT- Circulation research, 1999,85(9):848-55.
    [22] Palojoki E, Saraste A, Eriksson A, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats[J]. Am J Physiol Heart Circ Physiol JT-American journal of physiology. Heart and circulatory physiology, 2001,280(6):H2726-31.
    [23] Cheng W, Kajstura J, Nitahara JA, et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats[J]. Exp Cell Res JT- Experimental cell research, 1996,226(2):316-27.
    [24] Baumgarten G, Knuefermann P, Mann DL. Cytokines as emerging targets in the treatment of heart failure[J]. Trends Cardiovasc Med JT-Trends in cardiovascular medicine, 2000,10(5):216-23.
    [25] Talwar S, Squire IB, Downie PF, et al. Elevated circulating cardiotrophin-1 in heart failure: relationship with parameters of left ventricular systolic dysfunction[J]. Clin Sci (Lond) JT- Clinical science (London, England : 1979), 2000,99(1):83-8.
    [26] Ng DC, Court NW, dos Remedios CG, et al. Activation of signal transducer and activator of transcription (STAT) pathways in failing human hearts[J]. Cardiovasc Res JT- Cardiovascular research, 2003,57(2):333-46.
    [27] Yoo JY, Huso DL, Nathans D, et al. Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock[J]. Cell JT- Cell, 2002,108(3):331-44.
    [28] Xia Z, Sait SN, Baer MR, et al. Truncated STAT proteins are prevalent at relapse of acute myeloid leukemia[J]. Leuk Res JT-Leukemia research, 2001,25(6):473-82.
    [29] Caldenhoven E, van Dijk TB, Solari R, et al. STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription[J]. J Biol Chem JT-The Journal of biological chemistry, 1996,271(22):13221-7.
    [30] Kunisada K, Tone E, Fujio Y, et al. Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes[J]. Circulation JT- Circulation, 1998,98(4):346-52.
    [31] Plenz G, Song ZF, Tjan TD, et al. Activation of the cardiac interleukin-6 system in advanced heart failure[J]. Eur J Heart Fail JT- European journal of heart failure : journal of the Working Group on Heart Failure of theEuropean Society of Cardiology, 2001,3(4):415-21.
    [32] Tsutamoto T, Wada A, Maeda K, et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy[J]. J Am Coll Cardiol JT- Journal of the American College of Cardiology, 2001,38(5):1485-90.
    [33] Eiken HG, Oie E, Damas JK, et al. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure[J]. Eur J Clin Invest JT- European journal of clinical investigation, 2001,31(5):389-97.
    [34] Stephanou A, Scarabelli TM, Brar BK, et al. Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701[J]. J Biol Chem JT-The Journal of biological chemistry, 2001,276(30):28340-7.
    [35] Sellers LA, Feniuk W, Humphrey PP, et al. Activated G protein-coupled receptor induces tyrosine phosphorylation of STAT3 and agonist-selective serine phosphorylation via sustained stimulation of mitogen-activated protein kinase. Resultant effects on cell proliferation[J]. J Biol Chem JT- The Journal of biological chemistry, 1999,274(23):16423-30.
    [36] Zauberman A, Zipori D, Krupsky M, et al. Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3[J]. Oncogene JT- Oncogene, 1999,18(26):3886-93.
    [37] Funamoto M, Hishinuma S, Fujio Y, et al. Isolation and characterization of the murine cardiotrophin-1 gene: expression and norepinephrine-induced transcriptional activation[J]. J Mol Cell Cardiol JT- Journal of molecular and cellular cardiology, 2000,32(7):1275-84.
    [38] Funamoto M, Fujio Y, Kunisada K, et al. Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes[J]. J Biol Chem JT - The Journal of biological chemistry, 2000,275(14):10561-6.
    [39] Osugi T, Oshima Y, Fujio Y, et al. Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart[J]. J Biol Chem JT-The Journal of biological chemistry, 2002,277(8):6676-81.
    [40] Carmeliet P, Lampugnani MG, Moons L, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis[J]. Cell JT-Cell, 1999,98(2):147-57.
    [41] Silverberg DS, Wexler D, Sheps D, et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study[J]. J Am Coll Cardiol JT-Journal of the American College of Cardiology, 2001,37(7):1775-80.
    [42] Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling[J]. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America, 2003,100(8):4802-6.
    [43] Chattopadhyay A, Choudhury TD, Bandyopadhyay D, et al. Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical[J]. Biochem Pharmacol JT-Biochemical pharmacology, 2000,59(4):419-25.
    [44] Siren AL, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress[J]. Proc Natl Acad Sci U S A JT-Proceedings of the National Academy of Sciences of the United States of America, 2001,98(7):4044-9.
    [45] Ribatti D, Presta M, Vacca A, et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo[J]. Blood JT - Blood, 1999,93(8):2627-36.
    [46] van der Meer P, Lipsic E, Henning RH, et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction[J]. J Am Coll Cardiol JT-Journal of the American College of Cardiology, 2005,46(1):125-33.
    [47] Lipsic E, van der Meer P, Henning RH, et al. Timing of erythropoietin treatment for cardioprotection in ischemia/reperfusion[J]. J Cardiovasc Pharmacol, 2004,44(4):473-9.
    [48] Parsa CJ, Matsumoto A, Kim J, et al. A novel protective effect of erythropoietin in the infarcted heart[J]. J Clin Invest, 2003,112(7):999-1007.
    [49] Parsa CJ, Kim J, Riel RU, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts[J]. J Biol Chem, 2004,279(20):20655-62.
    [50] Moon C, Krawczyk M, Ahn D, et al. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats[J]. Proc Natl Acad Sci U S A, 2003,100(20):11612-7.
    [51] Scarabelli T, Stephanou A, Rayment N, et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury[J]. Circulation, 2001,104(3):253-6.
    [52] van der Meer P, Lipsic E, Henning RH, et al. Erythropoietin improves leftventricular function and coronary flow in an experimental model of ischemia-reperfusion injury[J]. Eur J Heart Fail, 2004,6(7):853-9.
    [53] van der Meer P, Lipsic E, Henning RH, et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction[J]. J Am Coll Cardiol, 2005,46(1):125-33.
    [54] Bahlmann FH, DeGroot K, Duckert T, et al. Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin[J]. Kidney Int, 2003,64(5):1648-52.
    [55] Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization[J]. Blood, 2003,102(4):1340-6.
    [56] Jaquet K, Krause K, Tawakol-Khodai M, et al. Erythropoietin and VEGF exhibit equal angiogenic potential[J]. Microvasc Res, 2002,64(2):326-33.
    [57] Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats[J]. Stroke, 2004,35(7):1732-7.
    [58] De Boer RA, Pinto YM, Van Veldhuisen DJ. The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities[J]. Microcirculation, 2003,10(2):113-26.
    [59] Herron TJ, McDonald KS. Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments[J]. Circ Res, 2002,90(11):1150-2.
    [60] Ruschitzka FT, Wenger RH, Stallmach T, et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin[J]. Proc Natl Acad Sci U S A,2000,97(21):11609-13.
    [61] Wu WC, Rathore SS, Wang Y, et al. Blood transfusion in elderly patients with acute myocardial infarction[J]. N Engl J Med, 2001,345(17):1230-6.
    [62] Namiuchi S, Kagaya Y, Ohta J, et al. High serum erythropoietin level is associated with smaller infarct size in patients with acute myocardial infarction who undergo successful primary percutaneous coronary intervention[J]. J Am Coll Cardiol, 2005,45(9):1406-12.
    [63] Calvillo L, Latini R, Kajstura J, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling[J]. Proc Natl Acad Sci U S A, 2003,100(8):4802-6.
    [64] Etzion S, Battler A, Barbash IM, et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction[J]. J Mol Cell Cardiol, 2001,33(7):1321-30.
    [65] Yao M, Dieterle T, Hale SL, et al. Long-term outcome of fetal cell transplantation on postinfarction ventricular remodeling and function[J]. J Mol Cell Cardiol, 2003,35(6):661-70.
    [66] Miki T, Miura T, Yano T, et al. Alteration in erythropoietin-induced cardioprotective signaling by postinfarct ventricular remodeling[J]. J Pharmacol Exp Ther, 2006,317(1):68-75.
    [67] Jegalian AG, Wu H. Differential roles of SOCS family members in EpoR signal transduction[J]. J Interferon Cytokine Res, 2002,22(8):853-60.
    [68] Tan JC, Rabkin R. Suppressors of cytokine signaling in health and disease[J]. Pediatr Nephrol, 2005,20(5):567-75.
    [69] Berthonneche C, Sulpice T, Boucher F, et al. New insights into the pathological role of TNF-alpha in early cardiac dysfunction and subsequentheart failure after infarction in rats[J]. Am J Physiol Heart Circ Physiol, 2004,287(1):H340-50.
    [70] Schulz R, Aker S, Belosjorow S, et al. TNFalpha in ischemia/reperfusion injury and heart failure[J]. Basic Res Cardiol, 2004,99(1):8-11.
    [71] Krieg T, Philipp S, Cui L, et al. Peptide blockers of PKG inhibit ROS generation by acetylcholine and bradykinin in cardiomyocytes but fail to block protection in the whole heart[J]. Am J Physiol Heart Circ Physiol, 2005,288(4):H1976-81.
    [72] Krieg T, Qin Q, Philipp S, et al. Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS[J]. Am J Physiol Heart Circ Physiol, 2004,287(6):H2606-11.
    [73] Costa AD, Garlid KD, West IC, et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria[J]. Circ Res, 2005,97(4):329-36.
    [74] Hanlon PR, Fu P, Wright GL, et al. Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling[J]. FASEB J, 2005,19(10):1323-5.
    [75] Rafiee P, Shi Y, Su J, et al. Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways[J]. Basic Res Cardiol, 2005,100(3):187-97.
    [76] Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology[J]. Physiol Rev, 2003,83(4):1113-51.
    [77] Miki T, Miura T, Tanno M, et al. Interruption of signal transduction between G protein and PKC-epsilon underlies the impaired myocardial response to ischemic preconditioning in postinfarct remodeled hearts[J]. Mol CellBiochem, 2003,247(1-2):185-93.
    [78] Silverberg DS, Wexler D, Blum M, et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations[J]. J Am Coll Cardiol, 2000,35(7):1737-44.
    [79] Horwich TB, Fonarow GC, Hamilton MA, et al. Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure[J]. J Am Coll Cardiol, 2002,39(11):1780-6.
    [80] Al-Ahmad A, Rand WM, Manjunath G, et al. Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction[J]. J Am Coll Cardiol, 2001,38(4):955-62.
    [81] McClellan WM, Flanders WD, Langston RD, et al. Anemia and renal insufficiency are independent risk factors for death among patients with congestive heart failure admitted to community hospitals: a population- based study[J]. J Am Soc Nephrol, 2002,13(7):1928-36.
    [82] Ezekowitz JA, McAlister FA, Armstrong PW. Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12 065 patients with new-onset heart failure[J]. Circulation, 2003,107(2):223-5.
    [83] Silverberg DS, Wexler D, Iaina A. The importance of anemia and its correction in the management of severe congestive heart failure[J]. Eur J Heart Fail, 2002,4(6):681-6.
    [84] Silverberg DS, Wexler D, Sheps D, et al. The effect of correction of mild anemia in severe, resistant congestive heart failure using subcutaneous erythropoietin and intravenous iron: a randomized controlled study[J]. J AmColl Cardiol, 2001,37(7):1775-80.
    [85] Mancini DM, Katz SD, Lang CC, et al. Effect of erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure[J]. Circulation, 2003,107(2):294-9.
    [86] Silverberg DS, Wexler D, Blum M, et al. The effect of correction of anaemia in diabetics and non-diabetics with severe resistant congestive heart failure and chronic renal failure by subcutaneous erythropoietin and intravenous iron[J]. Nephrol Dial Transplant, 2003,18(1):141-6.
    [87] Asaumi Y, Kagaya Y, Takeda M, et al. Protective role of endogenous erythropoietin system in nonhematopoietic cells against pressure overload- induced left ventricular dysfunction in mice[J]. Circulation, 2007, 115(15): 2022-32.
    [88] Nishida K, Yamaguchi O, Hirotani S, et al. p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload[J]. Mol Cell Biol, 2004,24(24):10611-20.
    [89] Li Z, Ma JY, Kerr I, et al. Selective inhibition of p38alpha MAPK improves cardiac function and reduces myocardial apoptosis in rat model of myocardial injury[J].Am J Physiol Heart Circ Physiol, 2006,291(4): H1972-7.
    [90] See F, Thomas W, Way K, et al. p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat[J]. J Am Coll Cardiol, 2004,44(8):1679-89.
    [91] Hilfiker-Kleiner D, Limbourg A, Drexler H. STAT3-mediated activation of myocardial capillary growth[J]. Trends Cardiovasc Med, 2005,15(4):152-7.
    [92] Izumiya Y, Shiojima I, Sato K, et al. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload[J].Hypertension, 2006,47(5):887-93.
    [93] Hirata A, Minamino T, Asanuma H, et al. Erythropoietin enhances neovascularization of ischemic myocardium and improves left ventricular dysfunction after myocardial infarction in dogs[J]. J Am Coll Cardiol, 2006,48(1):176-84.
    [94] Ribatti D, Vacca A, Roccaro AM, et al. Erythropoietin as an angiogenic factor[J]. Eur J Clin Invest, 2003,33(10):891-6.
    [95] Muller-Ehmsen J, Schmidt A, Krausgrill B, et al. Role of erythropoietin for angiogenesis and vasculogenesis: from embryonic development through adulthood[J]. Am J Physiol Heart Circ Physiol, 2006,290(1):H331-40.
    [96] Leist M, Ghezzi P, Grasso G, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic[J]. Science, 2004,305(5681):239-42.
    [97] Brines M, Grasso G, Fiordaliso F, et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor[J]. Proc Natl Acad Sci U S A, 2004,101(41):14907-12.
    [98]刘勇,董万利.急性脑血管病合并脑心综合征92例分析[J].中华老年心脑血管病杂志, 2006,8(6): 397-400.
    [99]刘学东,唐小凤,王波,等.急性脑出血268例脑心综合征临床特点[J].心脏杂志, 2006,18(3): 351-352,358.
    [100]董其谦.急性脑出血致脑心综合征的动态心电图及心肌酶学的改变[J].中国老年学杂志, 2007,27: 746-748.
    [101] Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia[J]. Cell, 1999,97(2):175-87.
    [102]高卓.脑梗死时脑心综合征发病相关因素研究[J].辽宁医学杂志, 2006,20(4): 224-225.
    [103]龙洁.脑心综合征[J].中国实用内科杂志, 1997,17(11): 648-9.
    [104]杜业亮,王纪佐.脑梗死并发脑心综合征患者血浆ET、NO含量的动态变化及其意义[J].中华神经医学杂志, 2004,3(5): 339-341.
    [105]潘国聘,王玲,孙丽华,等.缝隙连接蛋白43在脑心综合征中的作用研究[J].中国药理学通报, 2008,24(4): 526-30.
    [106] Zhang Y, Yue P, Xiao J, et al. [Integration between M3 muscarinic acetylcholine receptor and connexin 43 as antiarrhythmic targets in rat ventricular myocardium][J]. Yao Xue Xue Bao, 2006,41(5):395-400.
    [107]张高小,潘国聘,孙丽华,等. M3受体在脑心综合征心律失常中的作用[J].药学学报, 2008,43(8): 806-10.
    [108] Ando M, Katare RG, Kakinuma Y, et al. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein[J]. Circulation, 2005,112(2):164-70.
    [109]赵钗,于妍.急性颅脑损伤与脑心综合征[J].中国急救医学, 2001,21(4): 248.
    [110]斯小水,楼明月,洪小飞,等.脑创伤病人心脏应激反应的临床研究[J].中华创伤杂志, 2001,17(8): 466-8.
    [111] Kolin A, Norris JW. Myocardial damage from acute cerebral lesions[J]. Stroke, 1984,15(6):990-3.
    [112] Goodman JH, Homan RW, Crawford IL. Kindled seizures elevate blood pressure and induce cardiac arrhythmias[J]. Epilepsia, 1990,31(5):489-95.
    [113] Tigaran S, Molgaard H, McClelland R, et al. Evidence of cardiac ischemia during seizures in drug refractory epilepsy patients[J]. Neurology, 2003,60(3):492-5.
    [114] Spencer RG, Cox TS, Kaplan PW. Global T-wave inversion associated with nonconvulsive status epilepticus[J]. Ann Intern Med, 1998,129(2): 163-4.
    [115] Sakuragi S, Tokunaga N, Okawa K, et al. A case of takotsubo cardiomyopathy associated with epileptic seizure: reversible left ventricular wall motion abnormality and ST-segment elevation[J]. Heart Vessels, 2007,22(1):59-63.
    [116] Goldstein DS, Nadi NS, Stull R, et al. Levels of catechols in epileptogenic and nonepileptogenic regions of the human brain[J]. J Neurochem, 1988, 50(1):225-9.
    [117] Simon RP, Aminoff MJ, Benowitz NL. Changes in plasma catecholamines after tonic-clonic seizures[J]. Neurology, 1984,34(2):255-7.
    [118]吴绥生,王赞,庞丽,等.坎地沙坦干预KA致痫大鼠心肌细胞ERK1/2的表达及其机制[J].吉林大学学报医学版, 2008,34(3): 446-448.
    [119]姚家庆,戴横茹.人脑立体定位应用解剖[M].山西:科学技术出版社,2005.
    [120] Park KD, Mun KC, Chang EJ, et al. Inhibition of erythropoietin activity by cyanate[J]. Scand J Urol Nephrol, 2004,38(1):69-72.
    [121] Mun KC, Golper TA. Impaired biological activity of erythropoietin by cyanate carbamylation[J]. Blood Purif, 2000,18(1):13-7.
    [122] Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy[J]. Neuroscience, 1985,14(2):375-403.
    [123] Brandt C, Glien M, Potschka H, et al. Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats[J]. Epilepsy Res, 2003,55(1-2):83-103.
    [124] Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis[J]. J Exp Med, 2003,198(6):971-5.
    [125] Quaschning T, Ruschitzka F, Stallmach T, et al. Erythropoietin-induced excessive erythrocytosis activates the tissue endothelin system in mice[J]. FASEB J, 2003,17(2):259-61.
    [126] Double-blind, placebo-controlled study of the therapeutic use of recombinant human erythropoietin for anemia associated with chronic renal failure in predialysis patients. The US Recombinant Human Erythropoietin Predialysis Study Group[J]. Am J Kidney Dis, 1991,18(1):50-9.
    [127] Wagner KF, Katschinski DM, Hasegawa J, et al. Chronic inborn erythrocytosis leads to cardiac dysfunction and premature death in mice overexpressing erythropoietin[J]. Blood, 2001,97(2):536-42.
    [128] Stohlawetz PJ, Dzirlo L, Hergovich N, et al. Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans[J]. Blood, 2000,95(9): 2983-9.
    [129] Fuste B, Serradell M, Escolar G, et al. Erythropoietin triggers a signaling pathway in endothelial cells and increases the thrombogenicity of their extracellular matrices in vitro[J]. Thromb Haemost, 2002,88(4):678-85.
    [130] Fiordaliso F, Chimenti S, Staszewsky L, et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia- reperfusion injury[J]. Proc Natl Acad Sci U S A, 2005,102(6):2046-51.
    [131] Choi JS, Kim SY, Park HJ, et al. Upregulation of gp130 and differential activation of STAT and p42/44 MAPK in the rat hippocampus following kainic acid-induced seizures[J]. Brain Res Mol Brain Res, 2003,119(1):10-8.
    [132] Takagi Y, Harada J, Chiarugi A, et al. STAT1 is activated in neurons afterischemia and contributes to ischemic brain injury[J]. J Cereb Blood Flow Metab, 2002,22(11):1311-8.
    [133] Stephanou A, Brar BK, Scarabelli TM, et al. Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis[J]. J Biol Chem JT-The Journal of biological chemistry, 2000,275(14):10002-8.
    [134] Negoro S, Kunisada K, Tone E, et al. Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction[J]. Cardiovasc Res JT- Cardiovascular research, 2000,47(4):797-805.
    [135] McGaffin KR, Zou B, McTiernan CF, et al. Leptin attenuates cardiac apoptosis after chronic ischaemic injury[J]. Cardiovasc Res, 2009.
    [136] Higuchi T, Yamauchi-Takihara K, Matsumiya G, et al. Granulocyte colony- stimulating factor prevents reperfusion injury after heart preservation[J]. Ann Thorac Surg, 2008,85(4):1367-73.
    [137] Wang M, Zhang W, Crisostomo P, et al. Endothelial STAT3 plays a critical role in generalized myocardial proinflammatory and proapoptotic signaling[J]. Am J Physiol Heart Circ Physiol, 2007,293(4):H2101-8.
    [138] Debierre-Grockiego F. Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies[J].Apoptosis, 2004,9(6): 717-28.
    [139] Yamaura G, Turoczi T, Yamamoto F, et al. STAT signaling in ischemic heart: a role of STAT5A in ischemic preconditioning[J]. Am J Physiol Heart Circ Physiol, 2003,285(2):H476-82.
    [140] Ruscher K, Freyer D, Karsch M, et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model[J]. J Neurosci, 2002,22(23):10291-301.
    [141] Liu J, Narasimhan P, Yu F, et al. Neuroprotection by hypoxicpreconditioning involves oxidative stress-mediated expression of hypoxia- inducible factor and erythropoietin[J]. Stroke, 2005,36(6):1264-9.
    [142] Zhang F, Wang S, Cao G, et al. Signal transducers and activators of transcription 5 contributes to erythropoietin-mediated neuroprotection against hippocampal neuronal death after transient global cerebral ischemia[J]. Neurobiol Dis, 2007,25(1):45-53.
    [143] Neubauer H, Cumano A, Muller M, et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis[J]. Cell, 1998,93(3):397-409.
    [144] Fujitani Y, Hibi M, Fukada T, et al. An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT[J]. Oncogene, 1997,14(7):751-61.
    [145] Silva M, Benito A, Sanz C, et al. Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines[J]. J Biol Chem, 1999,274(32):22165-9.
    [146] Siren AL, Ehrenreich H. Erythropoietin--a novel concept for neuroprotection[J]. Eur Arch Psychiatry Clin Neurosci, 2001,251(4):179-84.
    [147] Lawson AE, Bao H, Wickrema A, et al. Phosphatase inhibition promotes antiapoptotic but not proliferative signaling pathways in erythropoietin- dependent HCD57 cells[J]. Blood, 2000,96(6):2084-92.
    [148] Shi Y, Rafiee P, Su J, et al. Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels[J]. Basic Res Cardiol, 2004,99(3):173-82.
    [149] Miyawaki T, Mashiko T, Ofengeim D, et al. Ischemic preconditioning blocks BAD translocation, Bcl-xL cleavage, and large channel activity in mitochondria of postischemic hippocampal neurons[J]. Proc Natl Acad SciU S A, 2008,105(12):4892-7.
    [150] Hua F, Ha T, Ma J, et al. Protection against myocardial ischemia/ reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism[J].J Immunol, 2007, 178(11):7317-24.
    [151] Zhang KR, Liu HT, Zhang HF, et al. Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism[J]. Apoptosis, 2007,12(9):1579-88.
    [152] Moon C, Krawczyk M, Paik D, et al. Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties[J]. J Pharmacol Exp Ther, 2006,316(3):999-1005.
    [153] Imamura R, Isaka Y, Ichimaru N, et al. Carbamylated erythropoietin protects the kidneys from ischemia-reperfusion injury without stimulating erythropoiesis[J]. Biochem Biophys Res Commun, 2007,353(3):786-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700