仿细胞膜结构聚合物交联纳米胶束的构建及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,两亲性聚合物在选择性溶剂中自组装形成的纳米胶束作为药物传输载体的研究引起了人们的广泛关注。随着这方面研究的进一步深入,人们发现这种在特殊的物理相互作用驱动下形成的自组装聚集体仍存在不稳定的问题,会随着外界环境的变化而发生解缔合。另一方面,一些表面疏水或带有电荷的载药纳米粒子进入体循环后,会很快被体内单核巨噬细胞吞噬系统识别并吞噬,进而被清理出血液循环系统,使药物不能到达病灶部位,大大降低了药物的治疗效果。因此设计稳定性高、且生物相容性良好,对单核巨噬细胞吞噬系统具有隐形效果的长循环纳米药物载体就显得尤为重要。
     本文从细胞膜仿生角度出发,以带有磷酰胆碱基团的可聚合单体2-甲基丙烯酰氧乙基磷酰胆碱(MPC)作为亲水性单体,甲基丙烯酸十八烷基酯(SMA)作为疏水性单体,通过γ-甲基丙烯酰氧丙基三甲氧基硅(TSMA)单体引入可交联基团,采用自由基聚合的方法制备一系列单体比例不同的PC基随机共聚物,对各系列聚合物在水中的自组装胶束化、胶束结构的交联固定、所得聚合物胶束对疏水性药物的负载及释药性能进行研究。主要工作包括以下几个方面:
     (1)参考文献方法合成重要的仿细胞膜结构可聚合单体MPC,通过传统的自由基聚合方法,采用“饥饿法”加料,合成一系列亲/疏水单体比例及可交联基团含量不同的PC基二元及三元随机聚合物,1H-NMR测试结果表明所得聚合物的组成与单体投料比较为接近。
     (2)根据聚合物在水中溶解性能的不同,选择适当方法制备聚合物胶束溶液。芘荧光探针法测得各系列聚合物的临界胶束浓度(CMC)数量级均为10-6 g/mL,远小于小分子表面活性剂的CMC(一般在10-3~104g/mL),且聚合物中疏水性聚合单元含量越多,其CMC越小。含有可交联基团的聚合物胶束溶液在碱性条件下催化交联后,可以使聚合物的CMC减小,且可交联基团含量越高,聚合物CMC降低的程度越大。扫描电镜测试结果表明,此类两亲性PC基随机共聚物在水中可以形成50~300 nm的球形胶束,且交联后的聚合物胶束密度增大,形貌规整,尺寸分布更为均一。
     (3)以抗癌药物阿霉素为疏水性模型药物,通过水包油乳化法制备了载药聚合物胶束溶液,碱性条件下催化三甲氧基硅基团水解缩合,得到负载了阿霉素的交联聚合物胶束。通过紫外分光光度法测定了胶束的载药量和包封率。体外药物释放实验结果表明:与游离阿霉素相比,PC基随机共聚物在水中自组装形成的胶束体系对药物具有明显的缓释效果。另外,通过调节聚合物的组成、药物初始加入量以及胶束的交联程度,可以进一步优化聚合物胶束的载药性能以及体外药物释放速率。这种聚合物胶束可望作为具有广阔应用前景的高稳定性、长循环纳米药物缓释体系。
Recently, amphiphilic polymeric micelles as potential nanometer-sized drug delivery vehicles for enhanced therapeutic efficacy and reduced systemic toxicity have aroused extensive attention. However, the assembled architecture is formed under the driven of certain physical interaction, but no covalent linking. A fundamental limitation facting their intravenous application is the dissociation of core-shell micellar structures in physiological environment, especially upon highly dilution in the bloodstream. On the other hand, most of the hydrophobic or charged materials are rapidly cleared from systemic circulation by the mononuclear phagocyte system (MPS), which is thought to be preceded by the absorption of serum proteinaceous molecules to the surface of polymeric nanoparticles. Therefore, the design of prolonged circulating nanomicellar drug carriers with enhanced stability and good biocompatibility is the current crucial objective.
     In this thesis, by mimicking the chemical functionality as well as the molecular structure of phospholipids in the plasma membrane, a series of random phospholipid copolymers PMS used as a control and crosslinkable terpolymers PMST comprising 2-methacryloyloxyethyl phosphorylcholine (MPC) as a hydrophilic monomer, stearyl methacrylate (SMA) as a hydrophobic part, and trimethoxysilylpropyl methacrylate (TSMA) as a crosslinker were specially designed as drug delivery systems. The micellization behavior of these amphiphilic polymers in aqueous medium and the condition of intramicellar crosslinking were studied. The self-associative property of stearyl group in the polymers ensure that drugs with a hydrophobic character can be easily incorporated into the inner-core by a non-covalent bonding through hydrophobic interactions. The research was mainly concerned with the following aspects.
     (1) Firstly, the most important polymerizable monomer MPC, having the biomimicing structure, was prepared according to the traditional synthetic route. The structure and purity was confirmed by 1H-NMR. Then a series of crosslinkable terpolymers PMST with different compositions and reference copolymers PMS were synthesized using a free radical polymerization through "monomer-starved" approach. The formulation of resulting materials were characterised by 1H-NMR in 1:1 CDCl3:CD3OD, which gives the best resolution of groups within different moieties, and proved that the average polymer compositions approximately correspond to their feed ratios.
     (2) Polymeric micelles were prepared using proper methods according to the solubility of different polymers. Fluorescence technique was used to determine the critical micelle concentration (CMC) using pyrene as probe. The results showed that the CMC value of those crosslinkable phosphllipid polymers were at the level of 10-6g/mL and decreased remarkably after intramicellar crosslinking. Scanning electron microscope (SEM) characterization suggested that these amphiphilic random polymers formed 50-300 nm regularized spherical aggregates in water and the crosslinked micellar shape was more uniform and exhibited a narrow size distribution. Finally, the crosslinked micelle stability against dilution in water and the shell permeability were studied. The results demonstrated that covalent crosslinking technique is an effective way to enhance the stability of the corresponding self-assembled structure and improve temporal control for drug delivery.
     (3) Anti-cancer drug adriamycin (ADR) was chosen as a hydrophobic drug model to be incorporated into the inner-core of micelles by oil-in-water method. Ultraviolet and visible spectrophotometry (UV-Vis) analysis suggested that high ADR loading capacities are obtained. In vitro drug release evaluation was performed using a dialysis method and proved that the drug-loaded crosslinked nano-micelles present a sustained and remarkably slower release behavior without any burst effect while free ADR release very quickly under the same experimental conditions. Moreover, the release rate decreased with the increase of SMA molar ratio in polymer and the amount of the drug entrapped. These experimental results suggested that the crosslinked micelles prepared from PMST random terpolymers with a biomimetic and anti-biofouling shell could be a promising candidate for prolonged circulating drug delivery carriers, especially for intravenous administration.
引文
[1]李玉宝.生物医学材料[M].北京:化学工业出版社,2003:46
    [2]Torres-Lugo M., Garcia M., Record R., et al. pH-sensitive hydrogels as gastrointestinal tract absorption enhancers:transport mechanisms of salmon calcitonin and other model molecules using the caco-2 cell model[J]. Biotechnology Progress,2002,18(3): 612-616.
    [3]Gao T. J., Kousinioris N. A., Wozney J. M., et al. Synthetic thermoreversible polymer are compatible with osteoinductive activity of recombinant human bone morphogenetic protein 2[J]. Tissue Engineering,2002,8(3):429-440.
    [4]Ogura Y., Gurna T., Shahidi M., et al. Feasibility of targeted drug delivery to selective areas of the retina[J]. Investigative Ophthalmology & Visual Science,1991,32(8): 2351-2356.
    [5]傅应华.国内微球剂的最新研究进展[J].药学实践杂志,2001,19(4):284-286
    [6]张宏娟,张灿,平其能,等.聚合物胶束作为药物载体的研究与应用[J].药学进展,2002,26(6):326-329
    [7]颜肖慈,罗明道.界面化学[M].北京:化学工业出版社,2005:83-97
    [8]Hoar T. P., Schulman J. H. Transparent water-in-oil dispersions:the oleopathic hydro-micelle[J]. Nature,1943,152:102-103
    [9]郭慧丽.两性霉素B脂质体的研究[D].安徽:华中科技大学,2008
    [10]张娟,范晓东,刘毅锋,等.大分子前药[J].化学通报,2005,68(9):659-666
    [11]Sinkula A. A. Design of biopharmaceutical properties through prodrugs and analoges[M]. Washington:American Pharmaceutical Association,1977:76-77
    [12]徐文方.新药设计与开发[M].北京:科学出版社,2001:162
    [13]李剑明,杨和平.羟丙基-β-环糊精应用研究进展[J].中国新医药,2004,(3):63-65
    [14]Memisoglu-Bilensoy E., Vural I., Bochot A., et al. Tamoxifen citrate loaded amphiphilic β-cyclodextrin nanoparticales:In vitro characterization and cytotoxicity[J]. Journal of Controlled Release,2005,104(3):489-496
    [15]Sajeesh S., Sharma C. P. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticales for oral insulin delivery [J]. International Journal of Pharmaceutics[J],2006,325(1-2):147-154
    [16]Lundberg B. B. A submicron lipid emulsion coated with amphipathic polyethylene glycol for parenteral administration of paclitaxel (Taxol)[J]. Journal of Pharmmacy and Pharmacology,1997,49(1):16-21
    [17]Shim W. S., Yoo J. S., Bae Y. H., et al. Novel injectable pH and temperature sensitive block copolymer hydrogel[J]. Biomacromolecules,2005,6(6):2930-2934
    [18]Wang B. B., Zhu W., Zhang Y., et al. Synthesis of a chemically crosslinked thermo-sensitive hydrogel film and in situ encapsulation of model protein drugs[J]. Reactive and Functional Polymers,2006,66(5):509-518
    [19]Ankareddi I., Brazel C. S. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release[J]. International Journal of Pharmaceutics,2007,336(2):241-247
    [20]Liu T. Y, Hu S. H., Liu T. Y, et al. Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug[J]. Langmuir,2006,22(14):5974-5978.
    [21]Lu Z. H., Prouty M. D., Guo Z. H., et al. Magnetic switch of permeability for polyelectrolyte microeapsules embedded with Co/Au nanoparticles[J]. Langmuir.2005, 21(5):2042-2050
    [22]Satarkar N. S., Hilt J. Z. Hydrogel nanocomposites as remote-controlled biomaterials[J]. Acta Biomaterialia,2008,4(1):11-16
    [23]Andreopoulos F. M., Persaud I. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds[J]. Biomaterials,2006,27(11):2468-2476
    [24]Sumaru K., Ohi K., Takagi T., et al. Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran[J]. Langmuir,2006,22(9):4353-4356
    [25]Liu Y. Y., Fan X. D., Wei B. R. pH-responsive amphiphilic hydrogel networks with IPN structure:A strategy for controlled drug release [J]. International Journal of Pharmaceutics,2006,308(1-2):205-209
    [26]He H. Y, Guan J. J., Lee J. L. An oral delivery device based on self-folding hydrogels[J]. Journal of Controlled Release,2006,110(2):339-346
    [27]Kim H., Park S. J., Kim S. I., et al. Electroactive polymer hydrogels composed of polyacrylic acid and poly(vinyl sulfonic acid) copolymer for application of biomaterial[J]. Synthetic Metals,2005,155(3):674-676
    [28]Kagatani S., Shinoda T., Konno Y., et al. Electroresponsive pulsatile depot delivery of insulin from poly(dimethylaminopropylacrylamide) gel in rats[J]. Journal of Pharmaceutical Sciences,2000,86(11):1273-1277
    [29]Murdan S. Electro-responsive drug delivery from hydrogels[J]. Journal of Controlled Release,2003,92(1-2):1-17
    [30]Sakata S., Uchida K., Kaetsu I., et al. Programming control of intelligent drug releases in response to single and binary environmental stimulation signals using sensor and electroresponsive hydrogel[J]. Radiation Physics and Chemistry,2007,76(4):733-737
    [31]刘永,崔英德,尹国强,等.药物控释用智能水凝胶研究进展[J].化工进展,2008,27(10):1593-1596
    [32]唐杨,马丽芳,郭丽,等.树状大分子作为药物载体的研究新进展[J].材料导报,2008,22(4):100-103
    [33]Attwood D. Dendrimer-drug interactions [J]. Advanced Drug Delivery Reviews,2005, 57(15):2147-2162
    [34]Kubat P., Kamil L., Zelinger Z. Interaction of porphyrins with PAMAM dendrimers in aqueous solution[J]. Journal of Molecular Liquids,2007,131-132:200-205
    [35]Patri A. K., Jolanta F. Targeted drug delivery with dendrimers:Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex[J]. Advanced Drug Delivery Reviews,2005,57(15):2203-2214
    [36]Chen Y. Y., Qu H. O., Ma M. L., et al. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials:An in vitro study [J]. European Journal of Medicinal Chemistry,2007,42(7):1032-1038
    [37]Dufes C., Uchegbu I. F., Ijeoma F. Dendrimers in gene delivery[J]. Advanced Drug Delivery Reviews,2005,57(15):2177-2202
    [38]Whitesides G. M., Grzybowski B. Self-assembly at all scales[J]. Science,2002, 295(5564):2418-2421
    [39]Liu W. J., Wu T. L. Modification of the initial release of a highly water-soluble drug from ethyl cellulose microspheres[J]. Journal of Microencapsulation,1999,16(5):639-646
    [40]Lin S. Y., Chen K. S., Teng H. H., et al. In vitro degradation and dissolution behaviours of microspheres prepared by three low molecular weight polyesters[J]. Journal of Microencapsulation,2000,17(5):577-586
    [41]Kataoka K., Ishihara A., Harada A., et al. Effect of secondary structure of poly(L-lysine) segments on the micellization of poly(ethylene glycol)-poly(L-lysine) block copolymer partically substituted with hydrocinnamyl group at the Ne-position in aqueous milieu[J]. Macromolrcules,1998,31(18):6071-6076
    [42]Harada A., Suzuki S., Kataoka K., et al. Preparation and characterization of inclusion complexes of poly(propylene glycol) with cyclodextrins[J]. Macromolecules,1995, 28(24):5294-5299
    [43]Harada A., Kataoka K. Chain length recognition:core-shell supramolecular assembly from oppositely charged block copolymers[J]. Science,1999,283(5398):65-67
    [44]Nishiyama N., Yokoyama M., Aoyagi T., et al. Preparation and characterization of self-assembled polymer-metal complex micelle from cis-dichlorodiammineplatinum(II) and poly(ethylene glycol)-poly(α,β-aspartic acid) block copolymer in an aqueous medium[J]. Langmuir,1999,15(2):377-383
    [45]Gao Z. S., Eisenberg A. A model of micellization for block copolymers in solutions[J]. Macromolecules,1993,26(26):7353-7360
    [46]沈一丁.高分子表面活性剂[M].北京:化学工业出版社,2002:8
    [47]Astafieva I., Zhong X. F., Eisenberg A. Critical micelliccation phenomena in block polyelectrolyte solutions [J]. Macromolecules,1993,26(26):7339-7352
    [48]Price C. Micelle formation by block copolymers in organic solvents[J]. Pure and Applied Chemistry,1983,55(10):1563-1572
    [49]Torchilin V. P. Structure and design of polymeric surfactant-based drug delivery systems[J]. Journal of Controlled Release,2001,73(2-3):137-172
    [50]Halperin A., Tirrel M., Lodge T. P. Tethered chains in polymer microstructures[J]. Advanced Polymer Science,1992,100:31-71
    [51]Burke S. E., Eisenberg A. Kinetics and mechanisms of the sphere-to-rod and rod-to-sphere transitions in the sernary system PS310-b-RAA52/dioxane/water[J]. Langmuir,2001,17(21):6705-6714
    [52]Desbaumes L., Eisenberg A. Single-solvent preparation of crew-cut aggregates of various morphologies from an amphiphilic diblock copolymer[J]. Langmuir,1999,15(1):36-38
    [53]Cheng D., Ng S. C., Chan H. S.0. Morphology of polyaniline nanoparticles synthesized in triblock copolymers micelles[J]. Thin Solid Films,2005,477(1-2):19-23
    [54]He X. H., Schmid F. Using prenucleation to control complex copolymeric vesicle formation in solution[J]. Macromolecules,2006,39(26):8908-8910
    [55]He X. H., Schmid F. Spontaneous formation of complex micelles from a homogeneous solution[J]. Physical Review Letters,2008,100(13):137802
    [56]Zhang L., Eisenberg A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid)block copolymers in solutions[J]. Macromolecules, 1996,29(27):8805-8815
    [57]Nakayama M., Okano T., Miyazaki T., et al. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release [J]. Journal of Controlled Release,2006,115(1):46-56
    [58]Lo C. L., Huang C. K., Lin K., et al. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery[J]. Biomaterials,2007,28(8): 1225-1235
    [59]周礼,鲁智勇,张熙,等.N-异丙基丙烯酰胺共聚物的温敏性[J].高分子材料科学与工程,2006,22(2):165-168
    [60]王国明,刘文博,蔡晴,等.温敏性嵌段共聚物纳米胶束的制备及其稳定性[J].功能高分子学报,2008,21(3):242-247
    [61]王海青,俞玫,鲍军波,等.新型温度敏感性自组装胶束P(NiPAAm-co-DMNN)-co-P(L-Ala)的合成和性能[J].高等学校化学学报,2009,30(1):212-214
    [62]Martin T. J., Prochazka K., Munk P., et al. pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethyleneoxide)[J]. Macromolecules,1996,29(18): 6071-6073
    [63]Butun V., Billingham N. C., Armes S. P. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer:formation of micelles and reverse micelles in aqueous solution[J]. Journal of the American Chemical Society,1998, 120(45):11818-11819
    [64]Wei H., Zhang X. Z., Cheng H., et al. Self-assembled thermo-and pH responsive micelles of poly(10-undecenoic acid-b-N-isopropylacrylamide) for drug delivery[J]. Journal of Controlled Release,2006,116(3):266-274
    [65]Aime J. P., Reibel D., Mathis C. Physical properties of the block copolymer polystyrene polyacetylene in solution[J]. Synthetic Metals,1993,55(1):127-134
    [66]Dai L. M., White J. W. Aggregation in conducting copolymer solutions[J]. Journal of Polymer Science Part B:Polymer Physics,1993,31(1):3-15
    [67]Wu C., Niu A. Z., Leung L. M., et al. Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles[J]. Journal of the American Chemical Society,1999,121(9):1954-1955
    [68]Jiang M., Qiu X. P., Qin W, et al. Intermacromolecular complexation due to specific interactions[J]. Macromolecules,1995,28(3):730-735
    [69]Wang J., Jiang M. Polymeric self-Assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation[J]. Journal of the American Chemical Society,2006,128(11):3703-3708
    [70]Liu X. Y., Jiang M., Yang S. L., et al. Micelles and hollow nanospheres based on ε-caprolactone-containing polymers in aqueous media[J]. Angewandte Chemie, International Edition,2002,41(16):2950-2953
    [71]刘琼,吴文辉,陈颖,等.荧光探针法研究疏水改性聚丙烯酰胺溶液的疏水缔合行为[J].功能高分子学报,2005,18(1):22-27
    [72]Aguiar J., Carpena P., Molina-Bolivar J. A., et al. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method[J]. Journal of Colloid and Interface Science,2003,258(1):116-122
    [73]杨涛,李文娟,周从山.芘荧光探针光谱法测定CTAB临界胶束浓度[J].石化技术与应用,2007,25(1):49-54
    [74]蒋福宾,曾华辉,杨正业,等.稳态荧光探针法测定松香基季铵盐Gemini的表面活性剂胶束聚集数[J].应用化学,2008,25(10):1167-1170
    [75]王琛.以聚酯类材料为载体的阿司匹林/环糊精药物控制释放体系的研究[D].浙江:浙江大学,2004
    [76]向苗.温敏性聚合物胶束的制备及性质研究[D].兰州:兰州大学,2008
    [77]Yokoyama M., Fukushima S., Uehara R., et al. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor[J]. Journal of Controlled Release,1998,50(1-3):79-92
    [78]Emoto K., Iijima M., Nagasaki Y., et al. Functionality of polymeric micelle hydrogels with organized three-dimensional architecture on surfaces[J]. Journal of the American Chemical Society,2000,122(11):2653-2654
    [79]Kwon G. S., Kataoka K. Block copolymer micelles as long circulating durg vehicles[J]. Advanced Durg Delivery Reviews,1995,16(2-3):295-309
    [80]Yamamoto K., Nagasaki Y, Kato M., et al. Surface charge modulation of poly(ethylene glycol)-poly(D,L-lactide) block copolymer micelles:conjugation of charged peptides[J]. Colloids and Surfaces B:Biointerfaces,1999,16(1-4):135-146
    [81]邓联东.两亲性嵌段共聚物及其自组装载药胶束的研究[D].天津:天津大学,2002
    [82]Yuna E., Leuning M., Huang S. K., et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealh) liposomes in human tunor xenograft[J]. Cancer Research,1994,54(13):3352-3356
    [83]Sheff D. Endosomes as a route for drug delivery in the real world[J]. Advanced Drug Delivery Reviews,2004,56(7):927-930
    [84]Allen C., Maysinger D., Eisenberge A. Nano-engineering block copolymer aggregates for drug delivery[J]. Colloids and Surfaces B:Biointerfaces,1999,16(1-4):3-27
    [85]刘莉.基于聚乙二醇双亲性聚合物及其共混物的凝聚态研究[D].浙江:浙江大学,2006
    [86]Kwon G, Naito M., Yokoyama M., et al. Block copolymer micelles for drug delivery: loading and release of doxorubicin[J]. Journal of Controlled Release,1997,48(2,3): 195-201
    [87]Bader H., Ringsdorf H., Schmidt B. Water-souble polymers in medicine [J]. Angewandte Makromolekulare Chemie,1984,123(1):457-485
    [88]Zhang L., Eisenberg A. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) block copolymers[J]. Science,1995,268(5218): 1728-1731
    [89]Yu K., Zhang L., Eisenberg A. Novel morphologies of "crew-cut" aggregates of amphiphilic diblock copolymers in dilute solution[J]. Langmuir,1996,12(25): 5980-5984
    [90]Liu F., Eisenberg A. Synthesis of poly(tert-butyl acrylate)-block-polystyrene-block-poly(4-vinylpyridine) by living anionic polymerization[J]. Angewandte Chemie, International Edition,2003,42(12):1404-1407
    [91]Liu F., Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl Pyridine)[J]. Journal of the American Chemical Society,2003,125(49):15059-15064
    [92]Liu S. Y., Weaver J. V. M., Save M., et al. Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles[J]. Langmuir,2002,18(22):8350-8357
    [93]Zhou Y. X., Li S. L., Fu H. L., et al. Fabrication and in vitro drug release study of microsphere drug delivery systems based on amphiphilic poly-a,p-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) graft copolymers [J]. Colloids and Surfaces B:Biointerfaces,2008,61(2):164-169
    [94]Li Y. B., Deng Y. H., Wang X. G., et al. Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer[J]. Macromolecules,2006,39 (3):1108-1115
    [95]Ilhan F., Galow T. H., Rotello V. M., et al. Giant vesicle formation through self-assembly of complementary random copolymers [J]. Journal of the American Chemical Society, 2000,122(24):5895-5896
    [96]Liu X. Y, Kim J. S., Wu J., et al. Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly (styrene-co-methacrylic acid)[J]. Macromolecules,2005,38(16):6749-6751
    [97]施冬健,刘晓亚,陈明清,等.光敏性双亲共聚物在水溶液中的胶束化行为[J].高分子学报,2004(4):600-604
    [98]施冬健,刘晓亚,陈明清,等.光敏性无规-类接枝双亲聚合物的合成与表征[J].江南大学学报,2004,3(1):74-78
    [99]茹敏良,戴炜枫,杜征臻,等.三元无规接枝共聚物的合成及其自组装性能研究[J]. 化学学报,2008,66(16):1884-1888
    [100]朱洁莲,刘仁,江金强,等.双亲性无规离聚物溶液的自组装[J].功能高分子学报,2008,21(3):253-259
    [101]Thurmond K. B., Kowalewaki T., Wooley K. L., et al. Water-soluble knedel-like structure:The preparation of shell-cross-linked small particles[J]. Journal of the American Chemical Society,1996,118(30):7239-7240
    [102]Ding J. F., Liu G J. Polystyrene-block-poly(2-cinnamoylethyl methacrylate) nanospheres with cross-linked shells[J]. Macromolecules,1998,31(19):6554-6558
    [103]刘晓亚,陈明清,陈道勇,等.无规-类接枝共聚物自组装制备交联纳米微球[J].功能高分子学报,2003,16(4):485-498
    [104]姚芳莲,汪民,马晓燕,等.PVP-PEG-PLA壳层交联的纳米胶束的制备方法[P].中国专利:101265311,2008-09-17
    [105]郭艳玲,赵军,左榘,等.嵌段共聚物核交联胶束的制备与载药性能研究[J].化学研究与应用,2008,20(6):724-728
    [106]Miyata K., Kakizawa Y., Nishiyama N., et al. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression[J]. Journal of the American Chemical Society,2004,126(8):2355-2361
    [107]Frank M., Fries L. The role of complement in inflammation and phagocytosis [J]. Immunology Today,1991,12(9):322-326
    [108]Yao K. J., Shen S. C., Yun J. X., et al. Protein adsorption in supermacroporous crypgels with embedded nanoparticales[J]. Biochemical Engineering Journal,2007,36(2): 139-146
    [109]杨安树.MePEG-PLGA纳米粒长循环机制及载TNF-a拮抗肽性能研究[D].武汉:华中科技大学,2009
    [110]Alexis F., Pridgen E., Molnar L. K., et al. Factors affecting the clearance and biodistribution of polymeric nanoparticales[J]. Molecular Pharmaceutics,2008,5(4): 505-515
    [111]Zahr A. S., Davis C. A., Pishko M. V. Macrophage uptake of core-shell nanopartical surface modified with poly(ethylene glycol)[J]. Langmuir,2006,22(19):8178-8185
    [112]Sheng Y, Liu C. S., Yuan Y., et al. Long-circulating polymeric nanoparticales bearing a combinatorial coating of PEG and water-soluble chitosan[J]. Bionaterials,2009,30(12): 2340-2348
    [113]Gaucher G, Asahina K., Wang J. H., et al. Effect of poly(N-vinyl-pyrrolidone)-block-poly(D,L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticales[J]. Biomacromolecules,2009,10(2):408-416
    [114]徐建平.磷酰胆碱基细胞膜仿生界面的构建于研究[D].浙江:浙江大学,2005
    [115]Ishihara K., Nomura H., Mihara T., et al. Why do phospholipid polymers reduce protein adsorption?[J]. Biomedical Materials Reserch,1998,39(2):323-330
    [116]Gong Y. K., Mwale F., Wertheimer M. R., et al. Promotion of U937 cell adhesion on polypropylene surfaces bearing phosphorylchiline functionalities[J]. Journal of Biomaterials Science, Polymer Edition,2004,15(11):1423-1434
    [117]Xu J. P., Wang X. L., Fan D. Z., et al. Construction of phospholipid anti-biofouling multilayer on biomedical PET surfaces[J]. Applied Surface Science,2008,255(2): 538-540
    [118]Lv J. A., Ma J. N., HuangFu P. B., et al. Surface modification with phosphorylcholine and stearyl groups to adjust the hydrophilicity and hydrophobocity[J]. Applied Surface Science,2008,255(2):498-501
    [119]Gong M., Yang S., Ma J. N., et al. Tunable cell membrane mimetic surfaces prepared with a novel phospholipids[J]. Applied Surface Science,2008,255(2):555-558
    [120]Salvage J. P., Rose S. F., Phillips G. J., et al. Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery [J]. Journal of Controlled Release,2005,104(2):259-270
    [121]Licciardi M., Giammona G., Du J. Z., et al. New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery system[J]. Polymer, 2006,47(9):2946-2955
    [122]Ma Y. H., Tang Y. Q., Billingham N. C., et al. Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media[J]. Macromolecules,2003,36(10):3475-3484
    [123]Castelletto V., Hamley I. W., Ma Y. X., et al. Microstructure and physical properties of a pH-responsive gel based on a novel biocompatible ABA-type triblock copolymer[J]. Langmuir,2004,20(10):4306-4309
    [124]Ma Y. H., Tang Y. Q., Billingham N. C., et al. Synthesis of biocompatible, stimuli-responsive, physical gels based on ABA triblock copolymers[J]. Biomacromolecules,2003,4(4):864-868
    [125]Licciardi M., Tang Y, Billingham N. C., et al. Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs[J]. Biomacromolecules,2005,6(2):1085-1096
    [126]Uchida T., Furuzono T., Ishihara K., et al. Graft copolymers having hydrophobic backbone and hydrophilic branches. XXX. Preparation of polystyrene-core nanospheres having a poly(2-methacryloyloxyethyl phosphorylcholine) corona[J]. Journal of Polymer Science Part A:Polymer Chemistry,2000,38(17):3052-3058
    [127]Ishihara K., Iwasaki Y, Nakabayashi N. Polymeric lipid nanosphere consisting of water-soluble poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate)[J]. Polymer Journal,1999,31(12):1231-1236
    [128]Konno T., Watanabe J., Ishihara K. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers[J]. Journal of Biomedical Materials Research Part A,2003,65(2):209-214
    [129]Soma D., Kitayama J., Konno T., et al. Intraperitoneal administration of paclitaxel solubilized with poly(2-methacryloxyethyl phosphorylcholine-co n-butyl methacrylate) for peritoneal dissemination of gastric cancer [J]. Cancer Science,2009,100(10): 1979-1985
    [130]徐建平,陈伟东,计剑,等.新型仿生聚合物胶束用于纳米药物载体的研究[J].高等学校化学学报,2007,28(2):394-396
    [131]Chu H. Y, Liu N., Wang X., et al. Morphology and in vitro release kinetics of drug-loaded micelles based on well-defined PMPC-b-PBMA copolymer[J]. International Journal of Pharmaceutics,2009,371(1-2):190-196
    [132]马佳妮.仿细胞膜结构纳米聚合物胶束的合成及应用研究[D].西安:西北大学,2009
    [133]Kumar M. N. V. R., Kumar N., Domb A. J., et al. Pharmaceutical polymeric controlled drug delivery systems[J]. Advances in Polymer Science,2002,160:45-117
    [134]Sung Y. K., Kim S. W. Advances in biodegradable polymers for drug delivery systems[J]. Korea Polymer Journal,2000,8(5):199-208
    [135]Goda T., Goto Y., Ishihara K. Cell-penetrating macromolecules:Direct penetration of amphipathic phospholipid polymers across plasma membrane of living cells[J]. Biomaterials,2010,31(8):2380-2387
    [1]Watanabe J., Eriguchi T., Ishihara K. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers[J]. Biomacromolecules,2002,3(6):1375-1383
    [2]Ogawa R., Watanabe J., Ishihara K. Domain-controlled polymer alloy composed of segmented polyurethane and phospholipid polymer for biomedical applications [J]. Science and Technology of Advanced Materials,2003,4(6):523-530
    [3]Miyamoto D., Watanabe J., Ishihara K. Highly stabilized papain conjugated with water-soluble phospholipid polymer chain having a reacting terminal group[J]. Journal of Applied Polymer Science,2004,91:827-832
    [4]王昌河,王朝阳,曹林,等.2-甲基丙烯酰羟乙基磷酰胆碱聚合膜的研究现状及应用进展[J].生物医学工程学杂志,2007,24(2):470-473
    [5]Kurosawa S., Nakamura M., Park J. W., et al. Evaluation of a high-affinity QCM immunosensor using antibody fragmentation and 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer[J]. Biosensors & Bioelectronics,2004,20(6): 1134-1139
    [6]张静,杨珊,马佳妮,等.新型仿细胞膜结构化妆品添加剂—磷脂聚合物[J].化学世界,2009,50(5):318-320
    [7]Lewis A. L., Hughes P. D., Kirkwood L. C., et al. Synthesis and characterization of phosphorylcholine-based polymers useful for blood filtration devices [J]. Biomaterials, 2000,21(18):1847-1859
    [8]Konno T., Watanabe J., Ishihara K. Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups[J]. Biomacromolecules,2004,5 (2):342-347
    [9]徐建平,陈伟东,计剑,等.新型仿生聚合物胶束用于纳米药物载体的研究[J].高等学校化学学报,2007,28(2):394-396
    [10]Watanabe J., Ishihara K. Establishing ultimate biointerfaces covered with phosphorylcholine groups[J]. Colloids and Surfaces B:Biointerfaces,2008,65(2): 155-165
    [11]杨珊.仿细胞膜结构聚合物的合成及应用研究[D].西安:西北大学,2009
    [12]Kadoma Y., Nakabayashi N., Masuhara E., et al. Synthesis and hemolysis test of the polymer containing phosphorylcholine groups[J]. Kobunshi Ronbunshu,1978,35(7): 423-427
    [13]Umeda T., Nakaya T., Imoto M. The convenient preparation of a vinyl monomer containing a phospholipid analog[J]. Makromolekulare Chemie,1982,3(7):457-459
    [14]Ishihara K., Ueda T., Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes[J]. Polymer Journal,1990,22(5):355-360
    [15]马佳妮,宫铭,杨珊,等.2-甲基丙烯酰氧基乙基磷酰胆碱单体及其聚合物的合成与应用[J].化学进展,2008,20(7-8):1151-1157
    [16]Yusa S., Fukuda K., Yamamoto T., et al. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent[J]. Biomacromolecules,2005,6(2):663-670
    [17]Stenzel M. H., Barner-Kowollik C., Davis T. P., et al. Amphiphilic block copolymer based on poly(2-acryloyloxyethyl phosphorylcholiune) prepared via RAFT polymerisation as biocompatible nanocontainers[J]. Macromolecular Bioscience,2004, 4(4):445-453
    [18]Lucas H. J., Mitchell F. W., Scully C. N. Cyclic phosphates of some aliphatic glycols[J]. Journal of the American Chemical Society,1950,72(12):5491-5497
    [1]陈伟东.细胞膜仿生纳米传递体系的研究[D].浙江:浙江大学,2005
    [2]沈一丁.高分子表面活性剂[M].北京:化学工业出版社,2002:8-10
    [3]Kalyanasundaram K., Thomas J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems [J]. Journal of the American Chemical Society,1977,99(7):2039-2044
    [4]Aguiar J., Carpena P., Molina-Bolivar J. A., et al. On the determination of the critical micelle concentration by the pyrene 1:3 ratio method[J]. Journal of Colloid and Interface Science,2003,258(1):116-122
    [5]刘琼,吴文辉,陈颖,等.荧光探针法研究疏水改性聚丙烯酰胺溶液的疏水缔合行为[J].功能高分子学报,2005,18(1):22-27
    [6]杨涛,李文娟,周从山.芘荧光探针光谱法测定CTAB临界胶束浓度[J].石化技术与应用,2007,25(1):49-54
    [7]蒋福宾,曾华辉,杨正业,等.稳态荧光探针法测定松香基季铵盐Gemini的表面活性剂胶束聚集数[J].应用化学,2008,25(10):1167-1170
    [8]罗天元.扫描电镜在环境试验中的应用[J].环境技术,2001,5:24-26
    [9]郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学,2006:38-38
    [10]Lewis A. L., Cumming Z. L., Goreish H. H., et al. Crosslinkzble coatings form phosphorylcholine-based polymers[J]. Biomaterials,2001,22(2):99-111
    [11]朱怀江,罗健辉,隋新光,等.新型聚合物溶液的微观结构研究[J].石油学报,2006,27(6):79-83
    [12]朱怀江,赵常青,罗健辉,等.聚合物水化分子的微观结构研究[J].电子显微学报,2005,24(3):205-210
    [13]倪克钒,单国荣,翁志学,等.甲基丙烯酸-3-三甲氧基硅丙酯的水解-缩合反应速率常数[J].化工学报,2006,57(12):2987-2990
    [14]刘晓亚,陈明清,陈道勇,等.无规-类接枝共聚物自组装制备交联纳米微球[J].功能高分子学报,2003,16(4):495-498
    [15]Rosler A., Vandermeulen G. W. M., Klok H. A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers[J]. Advanced Drug Delivery Reviews, 2001,53(1):95-108
    [16]Bharali D. J., Sahoo S. K., Mozumdar S., et al. Cross-linked polyvinylpyrrolidone nanoparticales:a potential carrier for hydrophilic drugs[J]. Journal of Colloid and Interface Science,2003,258(2):415-423
    [17]Hong Q. S., Liu J., Wang L. Q., et al. A new class of silica cross-linked micellar core-shell nanoparticales[J]. Journal of the American Chemical Scoiety,2006,128(19): 6447-6453
    [1]Torchilin V. P. Structure and design of polymeric surfactant-based drug delivery systems[J]. Journal of Controlled Release,2001,73(2-3):137-172
    [2]陆彬.作为载药系统的聚合物胶束和囊泡的研究[J].河南大学学报,2008,27(1):2-7
    [3]魏彦,周建平,霍美蓉.难溶药物载体:聚合物胶束的研究进展[J].江苏药学与临床研究,2006,14(4):228-232
    [4]陈伟东.细胞膜仿生纳米传递系统的研究[D].浙江:浙江大学,2005
    [5]王肇炎,陈正玉,赖清宏.阿霉素的临床应用[M].北京:人民卫生出版社,1991
    [6]Lin R. Y., Ng L. S., Wang C. H. In vitro study of anticancer drug doxorubicin in PLGA-based microparticles[J]. Biomaterials,2005,26(21):4476-4485
    [7]Delia O., Daniel R. G., Francisco A. Adriamycin-induced myocardial toxicity:New solutions for an old problem?[J]. International Journal of Cardiology,2007,117(1):6-15
    [8]Yokoyama M., Okano T., Sakurai Y., et al. Improved synthesis of adriamycin-conjugated poly(ethylene oxide) poly(aspartic acid) block-copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin[J]. Journal of Controlled Release,1994,32(3):269-277
    [9]Bae Y., Nishiyama N., Kataoka K. In vivo antitumor activity if the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments[J]. Bioconjugate Chemistry,2007.18(4):1131-1139
    [10]Jeong Y., Na H. S., Cho K. O., et al. Antitumor activity of adriamycin-incorporated polymeric micelles of poly(γ-benzyl L-glutamate)/poly(ethylene oxide)[J]. International Journal of Pharmaceutics,2009,365(1-2):150-156
    [11]Kim J. O., Kabanov A. V., Bronich T. K. Polymer micelles with crosslinked polyanion core for delivery of a cationic drug doxorubicin[J]. Journal of Controlled Release,2009, 138(3):197-204
    [12]Gong Y. K., Mwale F., Wertheimer M. R., et al. Promotion of U937 cell adhesion on polypropylene surfaces bearing phosphorylchiline functionalities[J]. Journal of Biomaterials Science, Polymer Edition,2004,15(11):1423-1434
    [13]Lv J. A., Ma J. N., HuangFu P. B., et al. Surface modification with phosphorylcholine and stearyl groups to adjust the hydrophilicity and hydrophobocity[J]. Applied Surface Science,2008,255(2):498-501
    [14]Xu J. P., Wang X. L., Fan D. Z., et al. Construction of phospholipid anti-biofouling multilayer on biomedical PET surfaces[J]. Applied Surface Science,2008,255(2): 538-540
    [15]Kwon G, Naito M., Yokoyama M., et al. Block copolymer micelles for drug delivery: loading and release of doxorubicin[J]. Journal of Controlled Release,1997,48(2,3): 195-201
    [16]张跃庭,董岸杰,邓联东,等.水溶性紫杉醇两亲性共聚物纳米胶束研究[J].化学工程,2005,33(2):39-43
    [17]Kim S. Y., Shin I. G, Lee Y. M., et al. Methoxy poly(ethylene glycol) and ε-caprolactone amphiphilic block copolymeric micelle containing indomethacin:Ⅱ. Micelle formation and drug release behaviours [J]. Journal of Controlled Release,1998,51(1):13-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700