几种抑木腐菌活性松香衍生物的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是松香生产大国,脂松香年产500,000 t以上,居世界首位。但松香的利用在我国目前仍处于原料出口和初级产品阶段,合成精细产品的工作尚处于起步阶段。我国出口的原料松香松香初级产品经国外公司深加工后又返销国内,给国家造成巨大的经济损失。因此,开展松香改性的研究,开发出符合我国市场需求的深加工松香产品就显得十分重要,这不仅对国家和地方经济的发展有益,而且对我国林业资源的合理开发和利用以及生态环境的保护有着十分重要的意义。
     本文以松香为原料合成了几种具有抑菌活性和表面活性的松香衍生物。松香衍生物的合成,一方面充分利用了松香这一可再生资源,大大提高它的附加值,促进松香深加工产业的开发,对国家和地方经济的发展、对我国林业资源的合理开发和利用以及生态环境的保护都有十分重要的意义。另一方面为合成价格低廉、高活性、无毒、环保、易生物降解的木材防腐剂提供了新的种类。
     以松香为原料,经丙烯酸改性后,与二乙烯三胺反应首次合成了松香基酰胺,并对合成松香基酰胺的条件进行了优化,得到了最佳反应条件为:反应物的摩尔比为n(丙烯酸改性松香):n(二乙烯三胺)=1:3,反应时间为8 h,体系温度为142℃;产率为98.72%。利用FTIR、MS、1H-NMR对松香基酰胺的结构进行了确证。测定了松香基酰胺的抑木腐菌性能;对四种木材腐朽菌黑曲霉(Aspergillus niger)、宛氏拟青霉(Paecilomyces variot Bainier)、白腐菌:彩绒革盖菌(Coriolus versicolor)、褐腐菌:(Gloeophyllum trabeum)进行抑菌试验,发现对四种木腐菌均有抑制效果,尤其对宛氏拟青霉抑制效果最好。选择松香基酰胺浓度为32 mg/mL、64 mg/mL、12.8 mg/mL,浸泡试材木块,进行木块微生物培养实验,用失重法检测松香基酰胺对木材的防腐性能,结果显示松香基酰胺的浓度在64 mg/mL时就对彩绒革盖菌,浓度为32 mg/mL时对密粘褶菌获得了Ⅰ级防腐。通过测定表面张力手段研究了松香基酰胺的表面性质,它的临界胶束浓度为8.0×10-4 mol/L,表面张力为39.161 mN/m,乳化力为1320 s,泡沫力为135 mm,泡沫稳定性为125mm。
     以松香为原料,与丙烯酸反应后,经环氧氯丙烷改性,再与二甲胺反应,得到双N-(3-松香酰氧基-2-羟)丙基-N,N-二甲胺,合成条件为:n(改性松香):n(环氧氯丙烷)=1:3,n(改性后的松香):n(二甲胺)=1:2,温度78℃,反应2.5 h。利用红外对其官能团及结构进行了表征。利用双N-(3-松香酰氧基-2-羟)丙基-N,N-二甲胺对四种菌进行了抑菌试验,发现对四种菌均有抑制效果,尤其是对彩绒革盖菌和密粘褶菌。选择双N-(3-松香酰氧基-2-羟)丙基-N,N-二甲胺浓度为8 mg/mL、16 mg/mL、32 mg/mL,浸泡试材木块,进行木块防腐实验,用失重法评价了双N-(3-松香酰氧基-2-羟)丙基-N,N-二甲胺对木材的防腐性能,结果显示双N-(3-松香酰氧基-2-羟)丙基-N,N-二甲胺浓度在32 mg/mL时对彩绒革盖菌、密粘褶菌都是获得了Ⅰ级防腐。
     直接以松香为原料,与环氧氯丙烷反应后,与二乙醇胺反应合成得到N-(3-松香酰氧基-2-羟)丙基-N,N-二乙醇胺化合物,合成条件为:n(改性后的松香):n(二甲胺)=1:2反应2.5h,反应温度78℃。利用FTIR对产物的官能团及结构进行了初步表征,利用LC-MS对产物结构进一步表征。产物对四种菌黑曲霉(Aspergillus niger)、宛氏拟青霉(Paecilomyces variot Bainier)、白腐菌:彩绒革盖菌(Coriolus versicolor)、褐腐菌:(Gloeophyllum trabeum)进行抑菌试验,结果显示虽然在一定浓度时,对四种菌均有抑制作用,但是抑制能力较差不适合做木材防腐剂使用。
     还合成了具有表面活性的松香基胺盐,并对合成的条件进行了优化。得到合成松香基胺盐的最佳条件为:反应物的摩尔比为n(丙烯酸改性松香):n(二甲胺)=1:1.2,反应温度78℃,时间2 h,所得产物的产率为79.1%。分别利用FTIR、MS、1H-NMR对松香基胺盐的结构进行了确认。利用松香基胺盐对木材变色菌黑曲霉(Aspergillus niger)、宛氏拟青霉(Paecilomyces variot Bainier)、木腐菌白腐菌:彩绒革盖菌(Coriolus versicolor)、褐腐菌:(Gloeophyllum trabeum)进行抑菌性能实验,结果显示松香基胺盐对四种菌无抑制效果。通过测定表面张力手段研究了松香基胺盐的表面活性,其临界胶束浓度(CMC)为8.0×10-3 mol/L,表面张力(γCMC)为43.663 mN/m,乳化力为300s,泡沫力为165 mm,泡沫稳定性为143 mm。
Abundant pine oleoresin resources are available in China. The yield of gum rosin is more than 500,000t in China. However, the task of synthesizing fine products is at the start stage. The raw material is exported to foreign countries and then deep processing rosin is sold back to our country. It results in enormous economic losses for our country. Therefore, it is very important to start the research of modified rosin and exploit products of deep processing rosin that comply with the requirements of our country's market. It's not only significant for the reasonable development of our country's forestry exploration and utilization, but also for the protection of environment.
     In this paper, rosin is used as raw material to synthesize some kinds of rosin derivatives which have anti-fungal activity and surface activity. Synthesis based on rosin not only can make full use of this renewable resource and can increase greatly its additional value but also can prompt the industry of deep processing development of rosin. Wood preservatives from rosin are renewable, active and environment-friendly.
     Rosin was used as raw material to prepare a rosin amide derivative. First, rosin was modified by acryl acid. Then the modified rosin reacted with diethyltriamine and the rosin amide derivative was produced under the following conditions:modified rosin and diethyltriamine mole ratio of 1:3, dimethylbenzene as water carrying agent, reaction temperature of 142℃and reaction time of 8 h; the yield of product is 98.72%.The chemical structure of the product as a rosin amide derivative was identified by Fourier transform infrared spectroscopy, electrospray ionization-mass spectrometry, and 1H nuclear magnetic resonance analysis.
     The anti fungal activity of a rosin amide derivative was determined in vitro with wood decay fungi such as Coriolus versicolor, Gloeophyllum trabeum and wood stain fungi such as Aspergillus niger and Paecilomyces variot Bainier. The anti-fungal experiment results signified that a rosin amide derivative was active to these fungi, especially to Paecilomyces variot Bainier. The concentrations of the rosin amide are 32 mg/mL,64 mg/mL and 128 mg/mL. The test blocks were soacked in solutions and decay chambers were prepared with corn powder and sand culture. The weight-loss method was used to detect the performance of rosin amide on wood protection. The result show that when the concentration of rosin amide is 64 mg/mL, the resistence to Coriolus versicolor are on the first grade of the wood protection; when the concentration of rosin amide is 32 mg/mL, the resistence to Gloeophyllum trabeum are on the first grade of the wood protection. A rosin amide derivative has a critical micellar concentration (CMC) of 8.0×10-4 mol/L, a surface tension of 39.161mN/m, an emulsification activity of 1320 s, a height of foam of 135 mm, and a foam stability of 125 mm.
     BisN-(3-rosin acyloxy-2-hydroxyl) propyl-N, N dimethylamine was synthsised by three steps. Firstly, the modified rosin was synthesised by the reaction of rosin and acryl acid. Secondly, the modified rosin was esterified with epoxy chloropropane with the mole ratio of 1:3. Finally, bisN-(3-rosin acyloxy-2-hydroxyl) propyl-N, N dimethylamine was produced at the conditions as follows:the intermediate and dimethylamine mole ratio of 1:2, reaction temperature of 78℃and reaction time of 2.5 h. The chemical structure of the product was identified by FTIR. The anti fungal activity of a bisN-(3-rosin acyloxy-2-hydroxyl) propyl-N,N dimethylamine was determined in vitro with wood decay fungi such as Coriolus versicolor, Gloeophyllum trabeum and wood stain fungi such as Aspergillus niger and Paecilomyces variot Bainier. The anti-fungal experiment results signified that bisN-(3-rosin acyloxy-2-hydroxyl) propyl-N,N dimethylamine was active to these fungi, especially to Coriolus versicolor and Gloeophyllum trabeum. The concentrations of bisN-(3-rosin acyloxy-2-hydroxyl) propyl-N, N dimethylamine are 8 mg/mL,16 mg/mL and 32 mg/mL. The test blocks were soacked in solutions and decay chambers were prepared with corn powder and sand culture. The weight-loss method was used to detect the performance of bisN-(3-rosin acyloxy-2-hydroxyl) propyl-N, N dimethylamine on wood protection,and when the concentration of bisN-(3-rosin acyloxy-2-hydroxyl) propyl-N,N dimethylamine is 32 mg/mL, the coriolus versicolor and the gloeophyllum trabeum are on the first grade of the wood protection.
     Rosin was used as raw material to prepare N-(3-rosin acyloxy-2-hydroxyl) propyl-N, N diethanol amine. First, rosin was modified by epoxy chloropropane. Then the modified rosin reacted with diethanol amine and N-(3-rosin acyloxy-2-hydroxyl) propyl-N, N diethanol amine was produced under the following conditions:modified rosin and diethanol amine mole ratio of 1:2, reaction temperature of 78℃, and reaction time of 2.5 h. The chemical structure of the product as a rosin amide derivative was identified by Fourier transform infrared spectroscopy, liquid chromatography-mass spectrography and 1H nuclear magnetic resonance analysis. The anti fungal activity of a N-(3-rosin acyloxy-2-hydroxyl) propyl-N,N diethanol amine was determined in vitro with wood decay fungi such as Coriolus versicolor, Gloeophyllum.trabeum and wood stain fungi such as Aspergillus niger and Paecilomyces variot Bainier. The anti-fungal experiment results signified that N-(3-rosin acyloxy-2-hydroxyl) propyl-N,N diethanol amine was active to these fungi, at a certain concentration, so it is not suitable for the use of wood preservative.
     The optimal reaction conditions of a rosin amine salt was modified rosin and dimethylamine mole ratio of 1:2, reaction temperature of 78℃and reaction time of 2 h.The yield is 79.1%. The chemical structure of the product was identified by Fourier transform infrared spectroscopy, electrospray ionization-mass spectrometry and 1H nuclear magnetic resonance analysis. The anti fungal activity of a rosin amine salt was determined in vitro with wood decay fungi such as Coriolus versicolor, Gloeophyllum trabeum and wood stain fungi such as Aspergillus niger and Paecilomyces variot Bainier. The anti-fungal experiment results signified that a rosin amine salt was no active to these fungi.Rosin amine salt has a critical micellar concentration (CMC) of 8.0×10-3mol/L, a surface tension of 43.663 mN/m, an emulsification activity of 300 s, a height of foam of 165 mm, and a foam stability of 143 mm.
引文
[1]王海鹰,柴立元,吕春绪.可聚合表面活性剂的应用研究[J].现代工,2007,27(12):67~74
    [2]张国印,伍晓林,廖广志等.三次采油用烷基苯磺酸盐类表面活性剂研究[J].大庆石油地质与开发,2001,20(2):26~28
    [3]任天瑞,李永红.松香化学及其应用[M].北京化学工业出版社,2005
    [4]杨海东编译.松香再加工及利用[M].北京:中国林业出版社,1984
    [5]陈贻炽.松香及其化工应用[M].北京化工学院,1993
    [6]黄永平.把松脂加工办成广西大产业[J].广西林业,1998,(1):7-8.
    [7]宋湛谦.松香的精细化工利用(Ⅰ)[J].林产化工通讯,2002,36(4):29-33.
    [8]宋湛谦.我国松香松节油行业前景分析[J].精细与专用化学品,2000,(15):3-4,14.
    [9]王延,宋湛谦.松香表面活性剂的开发与应用[J].表面活性剂工业,1994,(2):7-17.
    [10]粟子安.树脂酸聚合反应过程的研究[J].林产化学与工业,1985,5(3):1-22
    [11]Jong song Lee. Synthesis of acrylic rosin derivatives and application as negative photoresist [J]. European Polymer Journal 2002,38:387-392
    [12]Ayman M. Atta. New vinyl ester resins based on rosin for coating applications[J]. Reactive & Functional Polymers,2006,66:1596-1608
    [13]魏晓惠,廖世珍.松香基双季铵盐阳离子表面活性剂的合成与性能[J].精细化工,2003,20(9):557-560
    [14]祝远姣,陈小鹏.氢化松香的制备与应用[J].化工时刊,2006,20(10):71-74
    [15]Mayer M J J, Meuldijk J.Thoenes D.Influence of dispropotionated rosin acid soap on the emulsion polymerization kinetics of styrene [J].Journal of applied polymer science, 1995,56:119-126
    [16]黎永刚.自制皂化松香胶在废纸浆施胶中的应用[J].Paper Science&Technology,2004,23(5):23-25
    [17]姚光裕.碱性施胶剂的进展[J].国际造纸,1994,(6):38-40
    [18]米彩峰.一种治疗银屑病的植物药及其原料药松香酸的制备工艺[P].CN:1883519,2006
    [19]曹铸.松香酸钠胶囊的研制及治疗银屑病临床疗效观察[J].中华医学实践杂志,2004,4(5):458-459
    [20]王金源,王洪军.高效肥皂的无污染加工方法[P].CN:1279277,2001
    [21]Fei Wang,Takuya Kitaoka,Hiroo Tanaka.Supramolecular structure and sizing performance of rosin based emulsion size microparticles [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2003,221:19-28
    [22]Yu Caili, Zhang faai. Preparation and characterization of rosin glycerin ester and itsbromide[J]. Front. Chem. China,2006,2:158-160
    [23]周文富,赖文忠,陈芳琴等.丙烯酸松香聚氧乙烯蔗糖酯的合成与结构表征[J]。精细 化工,2000,17(2):704-707
    [24]周文富,赖文忠,陈芳琴等.一种新型的松香聚氧乙烯蔗糖酯的合成与性能研究[J].日用化学工业,2001,31(3):66-68
    [25]Paul H.Aldrich. Aqueous dispersions of rosin anhydride and their use as sizing agent for paper [P].US:3582464,1971
    [26]Ulrich Cuntze.Surface active compounds based on nature rosin [P].US:4312631,1982
    [27]叶存清.松香腈的生产工艺的研究[[J].福建林学院学报,1999,19(4):331-333
    [28]Gottstein W J, Cheney L C. Dehydroabietyl amine-a new resolving agent[J]. J Org Chem,1965,30 (6):2072-2073
    [29]Stewart M.Miller. Dehydroabietylammonium salts of 6-oxo-2-piperidinecarboxylic acid[P]. US:4254261,1981
    [30]袁旭宏.松香及其衍生产品的合成与应用[J].江西农业学报2006,18(3):167~168
    [31]王孟钟,黄应昌.胶黏剂应用手册.北京:化学工业出版社,1987.103~112
    [32]Harima Chemicals Inc.Air entraining for concrete[P]JP57166353,1982
    [33]仇厚援,吴莉宇等.一种新型缓蚀剂的电化学性能研究[J].南方冶金学院学报1992(3):247
    [34]杨芳,胡成功.浅谈木材防腐处理.内蒙古民族大学学[J].2007,13(5):5
    [35]Butcher J A. Preston A F. Drysdale J. Potential of unmodified and copper-modified alkylammonium compounds as groundline preservatives [J].N. Z. For. Sci, 1979,9(3):348-358.
    [36]李坚《木材科学》[M]哈尔滨:东北林业大学出版社,1994:1-20
    [37]任世学.季按盐类木材防腐剂的应用研究[D].东北林业大学,S782.33
    [38]范旭,丁霞,林中祥,赵林果,邓慧敏.N,N-二羧甲基脱氢枞胺的合成、表征及抑制木材腐朽菌的活性[J].现代化工,2007,27(1)
    [39]陈人望.中国的木材保护工业.木材保护技术发展及产品质量控制研讨会.2009,11,8-13
    [40]黎永刚.自制皂化松香胶在废纸浆施胶中的应用[J].Paper Science&Technology,2004,23(5):23-25
    [41]孙念超.关于铁路木材防腐工业技术发展及环境保护措施的研究[J].工作研究,2000,18(3):9—11
    [42]常青春.季铵盐型阳离子表面活性剂的发展及应用[J].佳木斯大学学报(自然科学版),2003,21(4):503-506.
    [43]王延,杨成根,周永红,宋湛谦.新型脱氢松香基季铵盐类抗菌剂的合成、结构表征及抗菌活性研究[J].天然产物研究与开发,1998,10(4):59-63
    [44]余蜀宜.丙烯酸改性松香聚氧乙烯醚磺酸钠的合成[J].精细与专用化学品,1999,13(4):4-7
    [45]武文洁,赵小华,温佩.丙烯酸改性松香的合成工艺研究[J].林业科技2007,32(1):59-61.
    [46]苏文强.槐树提取物对木材的防腐作用研究[D].东北林业大学2006,5
    [47]胡旭.新型松香衍生物双子表面活性剂的合成与性能[D].东北林业大学,2007,5
    [48]梁梦兰,叶建峰.松香衍生物的季铵盐阳离子表面活性剂的合成与性能测定[J].化学世界,2000,(3):138-141.
    [50]焦学瞬.N-(3-十二烷氧-2-经)丙基-N-二甲基甜菜碱两性表面活性剂的合成与性质[J].16~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700