小麦蛋白膜改良及成膜机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的高速发展和人们环保意识的增强,化学合成包装材料引发的严重生态问题已受到国际社会的高度重视。植物蛋白膜因形成的膜均匀透明,具有出色的阻氧性和较好的机械性能,营养丰富、可降解、易消化等特点,已成为目前可食性膜的研究热点。谷朊粉(小麦面筋蛋白,WG)是小麦淀粉生产的副产物,主要由麦醇蛋白和麦谷蛋白两部分组成,能与水形成三维立体网络结构,干燥后可形成具有韧性较强、阻氧性和热封性良好、阻油性出色的蛋白膜。由于阻湿性和机械性能较差,直接限制了WG膜在商业上的广泛应用。因此,提高和改善WG膜的阻湿性和机械性能已成为目前制约谷阮粉蛋白膜应用和发展急需解决的关键问题。
     本文以谷朊粉为成膜基料,选取国内具有代表性的大型小麦面筋蛋白生产企业七家,购买了八种不同质量的谷朊粉,研究了八种不同质量WG的成膜特性及膜性能;在此基础上,研究了成膜条件对WG膜性能的影响,优化了WG膜的最佳成膜工艺;利用麦醇溶蛋白(gliadin)和玉米醇溶蛋白(Zein)对WG膜进行改良,分别优化了麦醇溶蛋白改良膜(简称gliadin改良膜)和玉米醇溶蛋白复合膜(简称Zein复合膜)的制备工艺;并从分子水平研究了麦醇溶蛋白和玉米醇溶蛋白改良WG膜的作用机理。主要研究结果如下:
     (1)研究了八种WG的成膜特性,考察了不同质量WG对膜性能的影响,结果表明:本研究选用的八种谷朊粉的溶解性、膜液均匀度、干燥速度、揭膜难易程度、膜的色泽和表面光滑程度等成膜性之间差异较大。八种谷朊粉制备的WG膜的抗拉强度、断裂伸长率、水蒸气透过率和透光率等性能之间也有较大差别。河南莲花面粉有限公司生产的谷朊粉(莲花1)因具有蛋白质含量高、脂肪含量低、溶解性良好,膜液均匀,易揭膜和表面光滑等特点,尤其适合制备可食性WG膜。
     (2)通过单因素和正交试验考察了成膜因素对WG膜性能的影响;优化了WG膜的最佳成膜条件,结果表明:当料液比为1∶15时,WG膜的综合性能最佳;在谷朊粉中添加甘油可以降低膜的脆性,使膜柔韧性增强,且对阻湿性影响相对较小,为WG膜增塑剂的最佳选择。
     影响WG膜抗拉强度的主次顺序为:甘油浓度>pH值>乙醇浓度>加热温度,当处理组合为pH12、乙醇浓度45%、甘油浓度15%、热处理温度55℃时,膜的TS最大,为3.78MPa;影响WG膜断裂伸长率的主次顺序为:甘油浓度>pH值>乙醇浓度>加热温度,当处理组合为pH11、乙醇浓度45%、甘油浓度30%、热处理温度60℃时,膜的断裂伸长率最大,为189.2%;影响WG水蒸气透过率的主次顺序为:甘油浓度>pH值>乙醇浓度>加热温度,当处理组合为pH12、乙醇浓度45%、甘油浓度15%、热处理温度60℃时,膜的水蒸气透过率最低,为6.98g·mm/m2·d·KPa。
     综合考虑拉伸强度、断裂伸长率、水蒸气透过率三项主要指标,确定WG最佳的成膜条件为pH12、乙醇浓度45%、甘油浓度20%、热处理温度60℃。在此条件下,WG的拉伸强度、断裂伸长率、水蒸气透过率和透油率分别为3.67MPa、157.9%、7.03g·mm/m~2·d·KPa和0。
     3.利用玉米醇溶蛋白对WG膜进行改性,制备玉米醇溶蛋白复合膜,考察了添加玉米醇溶蛋白对WG膜性能的影响,结果表明:添加适量的玉米醇溶蛋白可有效地降低膜的脆性,提高膜的韧性、阻水性、机械性和阻氧性。当玉米醇溶蛋白的添加量为25%,乙醇浓度55%,甘油浓度10%,pH12、热处理温度60℃时,复合膜的拉伸强度、断裂伸长率和阻氧能力为4.89MPa、179.1%和21.7mmol/Kg,分别比WG膜(对照)提高33.2%、17.2%和28.1%;水蒸气透过率和透光率为5.20g·mm/m~2·d·KPa和35.6%,分别比对照降低26.0%和75.3%。
     4.利用麦醇溶蛋白对WG膜进行改性,制备麦醇溶蛋白改良膜,考察了添加麦醇溶蛋白对WG膜性能的影响,结果表明:添加适量的麦醇溶蛋白可有效地降低膜的脆性,提高WG膜的韧性、阻水性、机械性、透光率和阻氧性。当麦醇溶蛋白的添加量为33.3%,乙醇浓度65%,甘油浓度10%,pH11、热处理温度60℃时,改良膜的抗拉强度最大,为5.77MPa,分别比WG膜和复合膜提高了52.7%和18.0%;水蒸气透过率最小,为4.48g·mm/m~2·d·KPa,分别比WG膜和复合膜提高了35.8%和16.1%;阻氧性为18.6mmol/Kg,分别比WG膜和Zein复合膜提高了39.0%和14.3%;透光率为60.3%,分别比WG膜和复合膜提高139.3%和238.8%%。
     5.通过红外光谱、差示扫描量热谱、热重谱、巯基和二硫键含量、扫描电镜和疏水性分析,探讨Gliadin改良膜和Zein复合膜的改良作用机理,结果表明:向WG中添加麦醇溶蛋白和玉米醇溶蛋白后,Gliadin改良膜和Zein复合膜的表面变光滑,不溶性物质明显减少,且改良膜的表面结构明显优于复合膜;WG的TG曲线分为水分蒸发和WG分解两个步骤;WG膜、复合膜和改良膜的TG曲线均分为空气逸出、水分和甘油的蒸发及WG膜分解四个步骤;在热加工过程中,Gliadin改良膜和Zein复合膜的最大加热温度分别比WG膜低15.01℃和14.88℃。
     从分子角度分析,认为添加玉米醇溶蛋白和麦醇溶蛋白能够改良WG膜的性能,可能是改良膜和复合膜中蛋白质分子之间的氢键作用减弱,巯基含量减少,二硫键含量和疏水性增加共同作用的结果。
With the high-speed development of social economy and people's increasingawareness of environmental protection, serious ecological problems caused by synthesizedchemical packaging materials has aroused great concerns around the globe. Vegetableprotein films has become the focus of current research interest in edible film filed due to itsuniformity, transparency, excellent POV, good mechanical properties, rich nutrition,biodegradability and good digestibility. Wheat gluten (WG) is the byproduct of wheatstarch production, mainly consisting of gliadin and gliadin; WG can form athree-dimensional network structure with water, after dried, it can form protein films withgood toughness, high POV, good heat sealability and excellent oil resistance. However,because of poor moisture resistance and mechanical property, the commercial applicationof WG films is directly limited. Therefore, enhancement and improvement of moistureresistance and mechanical property is of current urgency for applications of WG films.
     In this paper, WG was chosen as substrate for film preparation. Eight kinds of WGwith different qualities were purchased from seven large-scale domestic representativecompanies who produce WG protein. We investigated the film-forming ability andproperties of the aforementioned eight WG films with different qualities; based on this, theeffects of film-forming conditions on the WG film properties were studied, and the optimalfilm-forming preparation technology was obtained; Then, we used gliadin or Zein tomodify the WG films and optimized the film-forming preparation technology of gliadinimproved films and Zein composite films; finally, we investigated the working mechanismof gliadin and Zein on the improved films on the molecular level. The main results were:
     (1) The film-forming ability of eight WG films and the effect of quality on the WGfilm properties were studied. The results suggested that:
     The resolvability, film liquid uniformity, drying rate, difficulty of film-uncovering,film color and surface smooth degree of the chosen eight kinds of films were significantlydifferent. The tensile strength (TS), fracture elongation rate (E), water vapor permeability(WVP) and transmission of the eight WG films prepared from the eight WG protein werealso obviously different. It was found that the Lotus1WG protein produced by HenanLotus Flour Co. Ltd. was the most suitable one for the edible WG film preparation due toits advantages of high protein content, low fat content, and good resolvability, uniform filmliquid, easy film-uncovering and smooth surface etc.
     (2) The effects of film-forming factors on the WG film properties were investigatedvia single factor test and orthogonal test, the optimal film-forming conditions wereoptimized. Results indicated that: when the solid-to-liquid ratio was1:15, WG filmsshowed the best comprehensive properties; glycerin can reduce the film brittleness andhence enhance the film flexibility, but affected the moisture resistance relatively little.Hence, it can be a best plasticizer for WG films.
     The sequence of factors influencing the WG film TS was as follows: glycerinconcentration> pH value> concentration of alcohol> temperature of treatment, with thetreatment combinations of pH12, the concentration of alcohol of45%, glycerinconcentration of15%, temperature of treatment of55℃, the maximum of TS reached3.78MPa. The sequence of factors influencing the E (elongation at break) of WG films:glycerin concentration> pH value> concentration of alcohol> temperature of treatment,with the treatment combinations of pH11, the concentration of alcohol of45%, glycerinconcentration of30%, temperature of treatment of60℃, the maximum E (elongation atbreak) of WG films reached the maximum of189.2%. The sequence of factors influencingthe WG films WVP: glycerin concentration> pH value> concentration of alcohol>temperature of treatment, with the treatment combinations of pH12, the concentration ofalcohol of45%, glycerin concentration of15%, temperature of treatment of60℃, the WVPof WG films can reach the minimum of6.98g·mm/m~2·d·KPa.
     Considering the three main indexes of TS, E (elongation at break), and WVP, theoptimal film-forming conditions was determined as follows: pH12, the concentration ofalcohol of45%, glycerin concentration of20%, temperature of treatment of60℃. Underthese conditions, the TS, E, WVP and oil permeability of the WG films were3.67MPa,157.9%%,7.03g mm/m~2d KPa and0.
     (3) Zein was used to modify WG films, Zein composite films were prepared, and theeffect of Zein on the WG films properties was investigated. The results showed that:
     Appropriate additive amount of Zein can effectively reduce the film brittleness,improve the film toughness, water resistance, mechanical properties and POV. When theadditive amount of Zein was25%, the concentration of alcohol was55%, the glycerinconcentration was10%, the pH value was12, the temperature of treatment was60℃, theTS, E and POV ability for the WG composite film were4.89MPa,179.1%and21.7mmol/Kg, increasing by33.2%,17.2%and28.1%respectively when compared with WGfilms (as the control group); the WVP and the transmission were5.20g·mm/m~2·d·KPa and35.6%, decreasing by26%and75.3%respectively when compared with WG films.
     (4) The gliadin was used to modify WG films, gliadin improved film was prepared,and the effect of gliadin on the WG film properties was investigated. The results showedthat:
     Appropriate additive amount of gliadin can effectively reduce the film brittleness,improve the film toughness, water resistance, mechanical property, transmission and POV.When the additive amount of gliadin was33.3%, the concentration of alcohol was65%,the glycerin concentration was10%, the pH value was11, the temperature of treatmentwas60℃, the TS of the improved film reached the maximum of5.77MPa, increasing by52.7%and18.0%compared with WG films and composite films respectively; the WVPwas minimum of4.48g·mm/m~2·d·KPa, increasing by35.8%and16.1%compared withWG films and composite films respectively; the POV is18.6mmol/Kg, increasing by 39.0%and14.3%compared with WG films and composite films respectively; and thetransmission rate was60.3%, increasing by139.3%and238.8%respectively, comparedwith WG films and composite films;
     (5) By analysis of infrared absorption spectroscopy, differential scanning calorimetryspectrum, thermal gravimetric spectrum, mercapto-group and disulfide bond contents,SEM micrographs and hydrophobicity, the modification mechanism of gliadin improvedfilms and Zein composite films were explored. The results showed that:
     After the addition of gliadin or Zein into WG, the surface of gliadin improved filmsand Zein composite films became smooth, the content of insoluble matter was significantlyreduced, the surface structure of improved films were obviously better than the compositefilms; The TG curve of WG was divided into two stages as water evaporation and WGdecomposition; the TG curves of WG films, composite films and improved films weredivided into four stages of air escape, water evaporation, glycerin evaporation and WGfilm decomposition; in the process of heating treatment, the maximum temperatures oftreatment of gliadin improved films and Zein composite films can be decreased by15.01℃and14.8℃compared with WG films.
     From a molecular perspective, it was proposed that the reasons why the addition ofZein and gliadin can modify WG film properties possibly were the comprehensive result ofthe weakening hydrogen bond interaction between the protein molecular, the decreasingcontent of mercapto-group, the increase of disulfide bond contents and hydrophobicity inthe gliadin improved films and Zein composite films.
引文
1.敖利刚,吴磊燕,赖富饶.2007.植物蛋白膜的应用及研究进展——现代食品科技,23(8):86-91.
    2.蔡正千.1993.热分析.高等教育出版社,32-33.
    3.车晓彦,张春红,李达.2006.可食性谷朊粉蛋白膜最佳成膜条件的研究——粮食加工,(12):78-84.
    4.陈公安,崔永岩,戚严磊.2006.增塑及改性对蛋白质塑料力学加工性能的影响——塑料工业,34(增刊):21-23.
    5.陈义勇,王伟,邓克权.2008.不同多糖对玉米醇溶蛋白膜性质的影响——食品研究与开发,29(11):25-30.
    6.陈正行,单成俊.2005.大米蛋白的可食用膜——食品与生物技术学报,24(2):85–96.
    7.邓扬悟,田少君.2004.大豆分离蛋白的成膜性研究——郑州工程学院学报,25(2):17–21.
    8.杜长安,陈复生.1995.植物蛋白工艺学.中国商业出版社,45-46.
    9.杜伟成,徐丽萍,殷丽君.1997.玉米醇溶蛋白成膜工艺条件的探讨——食品科学,18(1):15–18.
    10.冯治平,刘达玉.2005.改善花生分离蛋白成膜及保藏特性研究——食品科学,26(1):52-57.
    11.何慧,王雪刚,孔林,周俊斌.2004b.玉米醇溶蛋白保鲜膜成膜工艺的优化——粮油食品科技,12(3):7,8.
    12.黄国平,杨晓泉.2006.玉米醇溶蛋白膜的降解性能和水蒸气透过率的研究——食品研究与开发,27(3):22-23.
    13.贾祥祥,郭兴凤.2011.可食性蛋白膜研究进展——粮食与油脂,(1):5-9.
    14.姜绍通等.超高压改性谷朊粉对面条加工品质的影响——农业工程学报.2010,41(3):153-157,168.
    15.姜燕,唐传核,温其标,杨晓.2006.蛋白质膜的研究进展——食品研究与开发,27(9):185-189.
    16.姜燕,唐传核,温其标,杨晓泉.2005.增塑剂对大豆蛋白可食膜特性的影响——食品与发酵工业.31(11):112–116.
    17.金品民,秦培勇,陈翠仙.2003.联聚乙烯醇膜材料结构与性能的相关性——膜科学与技术[J].23(4):16-18.
    18.阚建全,陈宗道.1996.可食包装膜与合成包装膜综合性质的对比研究——食品与发酵工业,(6):10-12.
    19.康宇杰,欧仕益,黎明庆.2004.多糖和交联剂在制备可食性大豆分离蛋白膜中的互作效应研究——中国油脂,29(3):58-62.
    20.李丹.1999.食品蛋白质的改性技术——食品与发酵工业,(6):58-62.
    21.李梦琴,安晓琼,张剑等.制膜条件对谷朊粉可食性膜综合性能的影响——食品工业科技.2007,3(28):174-178
    22.李梦琴,安晓琼,张剑,雷娜.2007.谷朊粉-大豆分离蛋白可食性复合膜制备工艺优化研究——粮食加工,(1):78-84.
    23.李梦琴,张剑,任红涛,李超,安晓琼.2006.小麦面筋蛋白可食性复合膜的改性研究——食品科学,27(12):175-179.
    24.李超,李强,李梦琴,刘宗敏,索卫国.2004.制膜条件对可食性小麦面筋蛋白膜机械性能的影响——广州食品工业科技,20(4):8–11.
    25.李红.2001.利用谷氨酰胺转氨酶生产大豆蛋白保鲜膜的研究——食品科学,22(1):73–75.
    26.李建昌,李静茹.2005.正交设计法优化大豆分离蛋白膜工艺参数——粮食与油脂,8:27–28.
    27.李军,胡小松,陈颖,葛毅强.2002.转谷氨酰胺酶对可食性大豆蛋白保鲜膜特性的影响——中国食品学报,2(4):36–40.
    28.李升锋,周瑞,曾庆孝.2001.含脂大豆分离蛋白复合膜的研究——武汉工业学院学报,4:11–13.
    29.李硕碧.2001.小麦高分子量谷蛋白亚基与加工品质.中国农业出版社,78-79.
    30.李振华,王金水,赵谋明,王艳.王玲玲.2005.对以甘油为增塑剂所制小麦面筋蛋白膜特性的研究术.6:50–54.
    31.莉英,赵虹,陈军.2003.紫胶可食性内包装膜成膜特性及应用研究——食品科学,(1):23-27.
    32.刘国琴,李林,胡松青,陆启玉.2005.共混改性对大豆分离蛋白膜物理性能影响的研究——研究与探讨,26(6):76–78.
    33.刘建,赵宁阳等.1996.硬脂酸-海藻酸钠复合薄膜调料包装的研究——食品科学,6:67–70.
    34.刘京生,王保怀.2003.差示扫描量热法在大分子体系研究中的应用——华北电力大学学报,30(3)101–103.
    35.刘邻渭,陈宗道.1995.可食性甲基纤维素膜的制作及性质研究——食品工业科技,16(5):7-9.
    36.刘亭君,任红,杨洋,周河治.2006.凝胶多糖的制备及其在可食性膜的应用——现代食品科技,22(4):57–60.
    37.刘延奇,郭妤薇.2007.谷朊粉改性技术研究进展——食品科技,14(1):23-27.
    38.罗建锋,田少君.2003.增塑剂对可食性小麦蛋白膜性能的影响——郑州工程学院学报,24(2):35-39.
    39.罗爱平,樊庆,胡明洪,张济,王恒.2003.可食性胶原蛋白成膜技术初探——贵州农业科学,31(4):44–46.
    40.马丹,马越,张超,赵晓燕,岳喜庆,雷安亮.2009.乳化剂提高大豆分离蛋白可食性膜性能的研究——中国粮油学报,(12):42-46.
    41.马歌丽,张世涛,唐淑坤,李昌.2005.谷朊粉的应用及研究进展——粮油加工与食品机械,(12):65-69.
    42.孟陆丽,梁少华.2006.脂质对小麦蛋白膜理化特性的影响——粮油加工与食品机械,(5):62-66.
    43.宁永成.2000.有机化合物结构鉴定与有机波谱学(第二版).北京:科学出版社,332–333.
    44.童群义,朱桂兰.2004.谷朊粉的乙酰化和磷酸化复合改性研究——中国粮油学报,19(6):11-13.
    45.夏萍,梁新宇.剩余蛋白含量与烘烤品质的关系——西部粮油科技.2000,25(6):35-37.
    46.司学芝,李建伟,王金水等.2004.麦醇蛋白与麦谷蛋白提取条件的研究——郑州工程学院学报,25(3):33-39
    47.宋臻善,熊犍.2006.超声辐射对大豆分离蛋白膜性能的影响——食品工业科技.28(5):94–97.
    48.孙少敏,宋义虎,张其斌,郑强.2006.小麦醇溶蛋白膜力学性能与吸湿性研究——功能材料,7(37):1094-1098.
    49.王翀,张春红,赵前程等.2009.大豆分离蛋白与谷朊粉可食性复合膜研究——粮食与油脂,3:21-24.
    50.汪立君,李里特,张晓峰,辰巳英三.2001.利用DSC对大豆蛋白质热变性的研究——中国农业大学学
    51.汪学荣,阚建全,汪水平.2008.可食性大豆分离蛋白膜的制膜工艺研究——食品科学,29(5):153-159.
    52.王亚平,安艳霞.小麦面筋蛋白组成、结构和功能特性——粮食与油脂.2011,(1):1-4.
    53.王璋,许时婴,汤坚.1999.食品化学.北京:中国轻工业出版社,139-182..
    54.王璋等译.1991.食品化学.中国轻工业出版社,28-29.
    55.吴红奎.1999.漫谈谷朊粉——西部粮油科技,4:34–35.
    56.伍越寰编.1993.有机结构分析.中国合肥:中国科学技术大学出版社.
    57.肖凯军,郭祀远,李琳,蔡妙颜.1996.新型可食性包装材料的开发——中国食品工业,22(10):36–38.
    58.闫景坤,郭兴凤,田少君.2007.冷藏温度对玉米醇溶蛋白膜的影响——食品工业科技,(3):177-180.
    59.姚晓敏,孙向军,卢杰.2002.可食性玉米醇溶蛋白成膜工艺的研究——食品工业科技,23(1):20-24.
    60.易翠平,姚惠源,谢定.碱处理对大米蛋白分子间作用力的影响——中国粮油学报.2007,22(4):1-4.
    61.张子德,陈志周,于志彬,迟建,刘月英.2005.可食性大豆分离蛋白成膜工艺研究——中国食品学报.5(4):17–21.
    62.郑集,陈钧辉.1998.普通生物化学,第三版.高等教育出版社:116.
    63.A kio Kato.1991.Tmproprement of the functional properties of insoluble bluten by prenase digestionfollowed by dextran.Agril.Food Chem,39.
    64.Bailey C. H. A. Translation of beccari’s lecture concerning grain(1728)[J]. Cereal Chem.,1941,18:555-557.
    65.Cherian G, Gennadios A., WeUer C., et al.1995.Thermo mechanical behavior of wheat gluten films:effect of sucrose, glycerin and sorbito. Cereal Chemistry,72(1):1-6.
    66.Fido,R. J.,Bekest F.and Grast P. W. Effects of α-,β-,γ-and ω-gliadins on the dough mixingproperties of wheat flours. Journal of cereal Sci.[J].,1997,26:271-277.
    67.G.Dongowski,B,Drzikova.2005.Rheological behaviour of β-glucanpreparations from oatproducts[J].Food chemistry,(93):279-291
    68.Gennadios, A., Rhim, J.W., Handa, A., Weller, C.L., Hanna, M.A.,1998. Ultraviolet radiationaffects physical and mechanical properties of soy protein films. J. Food Sci.63:225–228.
    69.German B, Damodatan St, Kinsella J E.1982. Thermat dissociation and association behavior of soyprotein. J Agric Food Chem.,30(5):807–811.
    70.Ghorpade V. M., A. Gennadios, M. A. Hanna, and C. L. Weller (1995b) Cereal. Chem.72,559.
    71.Ghorpade V. M., H. Ali, A. Gennadios, and M. A. Hanna (1995a) Trans. ASAE38,1805.
    72.Gontard, N., S. Guilbert, and J. L. Cuq.1993. J. Food. Sci.58:206.
    73.Graveland, A., Bongers, P., Bosveld, P.,1979. Extraction and fractionation of wheat flour proteins.J.
    74.Guilbert S.1986. in Food Packaging and Preservation. Theory and Practice (M. Mathouthi, Ed.),Elsevier Applied Science, London.
    75.Gontard N., Guilbert S.,Cuq J. L.1993.Water and glycerol as plasticizers affect mechanical andwater vapor barrier properties of an edible wheat gluten. Journal of Food Science,58(1):206-211.
    76.Gomez-Marinez D,Partal P,Martinez I,et al.2009.Rheological behaviour and physical properties ofcontrolled-release gluten-based bioplastics.Bioresource Technology,100(5):1828-1832.
    77.Gueguen,J.,Viroben,G.,Noireaux,P.,Subirade,M.1998.Influence of plasticizers and treatments on theproperties of films from pea proteins.Industrial Crops and Products,7:149-157.
    78.JAD Ewart.1967..Amino acid analysis of glutenin and gliadins.J Sci Food Agric,18:111.
    79.Jambur H. Jagannath, Chindalaga Nanjappa, Dilipkumar Das Gupta, Amarinder S. Bawa.2006.Studies on the stability of an edible film and its use for the preservation of carrot (Daucus carota).International Journal of Food Science&Technology,41(5),498–506.
    80.Jong W. Rhim, Aristippos Gennadios, Curtis L. Weller, Milford A. Hanna.2002. Sodium dodecylsulfate treatment improves properties of cast films from soy protein isolate. Industrial Crops andProducts,15:199–205.
    81.Jangchud,A,Chinnan,M.S.1999.Properties of peanut protein film:sorption isotherm and plasticizereffect.Lebensm.-Wiss.u.-Technol.,32:82-94.
    82.Kim,K.M.,Weller,C.L.,Hanna,M.A,Gennadios,A.2002.Heat curing of soy protein films at selectedtemperatures and pressures.Lebensm-Wiss.u.-Technol.,35:140-145.
    83.Kinsella, J. E.1979. Am. Oil. Chem. Soc.56:242.
    84.Kiosseoglou, A., Doxastakis, G., Alevisopoulos, S., Kasapis, S.,1999. Physical characterization ofthermally induced networks of lupin protein isolates prepared by isoelectric precipitation anddialysis. Int. J. Food Sci. Technol.34:253–263.
    85.Kumar R., Choudhary V, Mishra S, Varma IK, Mattiason B.2002. Adhesives and plastics based onsoy protein products. Ind Crop Prod,16:155e72.
    86.Larr′e C., Desserme, C., Barbot, J., Gueguen, J.,2000. Properties of deamidated gluten filmsenzymatically cross-linked. J. Agric. Food Chem.48:5444–5449.
    87.Lieberman, E. R and S. G. Gilbert.1973. J. Polym. Sci.41:33–43.
    88.Lim, I., Mine, Y., Tung, M.A.,1998. Transglutaminase cross-linked egg white protein films: tensileproperties and oxygen permeability. J. Agric. Food Chem.46:4022-4029.
    89.Lindsay M. P.,and Skerritt J. H. Immunocytochemical localization of gluten proteins uncoversstructural organization of glutenin macropolymer.,2000,77:360-369.
    90.Mahmoud, R., Savello, P.A.,1993. Solubility and hydrolyzability of films produced bytransglutaminase catalytic cross-linking of whey protein. J. Dairy Sci.76:29–35.
    91.Mariniello, L., Pierro, P.D., Esposito, C., Sorrentino, A., Masi, P., Porta, R.,2003. Preparation andmechanical properties of edible pectin-soy flour films obtained in the absence or presence of
    92.Marquie, C., A. M. Tessier, C. Aymard, and S. Guilbert.1997. J. Agric. Food Chem.45,922–926.
    93.McClements, D.J., Monahan, F.J., Kinsella, J.E.,1993. Effect of emulsion droplets on the rheologyof whey protein isolates gels. J. Texture Studies24:411–422.
    94.Mojumdar S. C.,Moresoli C.,Simon L. C. et al. Edible wheat gluten (WG) protein films Preparation,thermal, mechanical and spectral properties. Therm Anal Calorim [J].,2011,104:929-936.
    95.Morillon V,Debeaufort F,CaPelle M.2000.Influence of the Physical state of water on the barrierProPerties of hydrophilic and hydrophobic films.Journal of Agriculture and FoodChemistry,48(1):11~16
    96.Motoki, M., Nio, N., Takinami, K.,1987. Functional properties of heterologous polymer prepared bytransglutaminase between milk casein and soybean globulin. Agric. Biol. Chem.51:237–239.
    97.Myoungsuk Lee, Sehee Lee, Kyung Bin Song.2005. Effect of γ-irradiation on the physicochemicalproperties of soy protein isolate films. Radiation Physics and Chemistry,72:35–40.
    98.Myoungsuk Lee, Sehee Lee, Yuhyun Ma, Sangkyu Park, Dongho Bae, Sangdo Ha, Kyung Bin Song.2005. Effect of Plasticizer and Cross-Linking Agent on the Physical Properties of Protein Films.Journal of Food Science and Nutrition,10(3):89–91.
    99.Nayak P. L.1999. J. Macromol. Sc. Rev. Macromol. Chem.Phys, C39:481–505.
    100. Payne P. I.,Seekings J. A. et al. and Worlang A. J.et al. Allelic variation of glutenin subunitsand glidins and its effect on breadmaking quality in wheat:analysis of F5progeny from Chinesesping×Chinese spring(hope1A). J.of Cereal Sci.[J].,1987,16:103-118.
    101. Park, H. J., J. M. Weller, P. J. Vergano, and R. F. Testin.1994. Trans. ASAE.37:1281–1285.
    102. Platte.2003. Improving egg safety through ultraviolet. Poultry International,42(3):12–14.
    103. Pilar Hernandez-Munoz,Ricardo Villalobos,Amparo Chiralt.2004.Effect of cross-linking usingaldehydes on properties of glutenin-rich films.Food Hydrocolloids,(18):403-411.
    104. Popineau Y,Pineau F.1988.Changes of conformation and surface hydrophobicity ofgliadins.Lebensmittel-Wisenschaft and Technologie,(21):113-117.
    105. Prospero Di Pierro, Belkis Chico, Reynaldo Villalong, Loredana Mariniello, Paolo Masi a,Raffaele Porta.2007. Transglutaminase-catalyzed preparation of chitosan–ovalbumin films. Enzymeand Microbial Technology40:437–441.
    106. Orliac,O.,Rouilly,A.,Sivestre,F.,Rigal,L.2002.Effects of additives on the mechanicalproperties,hydrophbicity and water uptake of thermo-moulded films produced from sunflowerprotein isolate.Polymer,43:5417-5425.
    107. Osborne T B. The protein of wheat kernel [M]. Washinton D. C:Carnegie Institution ofWashinton,1907.,84:1-119.
    108. Rhim,J.W.,Gemmadios,A.,Handa,A.,Weller,C.L.,Hanna,M.A.2000.Solubility,tensile,and colorproperties of modified soy protein isolate films.J.Agric.Food Chem,48:4937-4941.
    109. Rhim,J.W.,Gennadios,A,Fu,D.Weller,C.L.,Cezeirat,C.,Hanna,M.A.1999.Properties of ultravioletirradiated protein films.Lebensm-Wiss.U-Technol.,32:129-133.
    110. RJ Fido,F Bekest,P W.1997.Effect of α-,β-,γ-,ω-Gliadins on the Dough Mixing Properties ofWheat Flour.Journal of Cereal Science,26:271-277.
    111. Sanchez A. C., Popinear Y, Mangavel C., et al.1998. Effect of different plasticizers on themechanical and surface properties of wheat gliadin films. Journal of Agriculture and FoodChemistry,46(10):4539-4544.
    112. Sapirstein HD,Fu BX.1997.Characterization of an extra-strong wheat:functionality of gliadin-andglutenin-rich fractions.The Royal Australian Chemical Institute.302-306
    113. Seung Yong Choa, Chul Rhee.2004. Mechanical properties andwater vapor permeability of ediblefilms made from fractionated soy proteins with ultrafiltration. Lebensm.-Wiss. u.-Technol.37:833–839.
    114. Sevim Kaya, Ahmet Kaya.2000. Microwave drying effects on properties of whey protein isolateedible films Journal of Food Engineering,43:91–96.
    115. Sorgentini D A, Wagner J R, Anon M C.1995. Effects of thermal treatment of soy protein isolateon the characteristics and structure function relationship of soluble and insoluble fractions. J AgricFood Chem.,43(9):2471–2479.
    116. Stuchell,Y.M.,Krochta,J.M.1994.Enzymatic treatments and thermal effects on edible soy proteinfilms.Journal of Food Scikence,59(6):1332-1337.
    117. Veraverbeke WS,Verbruggen IM,Delcour JA.1998.Effect of increased high molecular weightglutenin subunits content of flour on dough mixing behavior and breadmaking.Jourmal ofAgricultural an Food Chemistry,(46):4830-4835.
    118. Uthayakumaran S,Bekes F,Gras PW.1997.Effect of varying protein content and glutenin-to-gliadinradio on the functional properties of wheat dough.A W Tarr,A S Ross,C W Wrigley,eds.Proceedingsof the47th RACI Conference’.Melbourne,The Royal Australian Chemical Institute,212-216.
    119. Weegels PL,Marscille JP,Bosveld P,et al.1994.Large-scale separation of gliadins and theirbread-making quality.Journal of Cereal Science,4:233-245.
    120. Woychik JH,Boundy,et al.1961.Starch gel electrophoresis of wheat gluten protein withconcentrated urea.Arc Biochem Biophys,94:477-482.
    121. Yihu Song,Qiang Zheng.2008.Improved tensile strength of glycerol-plasticized gluten bioplasticcontaining hydrophobic liquids.Bioresource Techmology,(99):7665-7671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700