草鱼消化系统蛋白酶生化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶、不饱和脂肪酸以及抗冷冻蛋白是水生生物体内适应变温环境的几种重要的功能物质。酶是鱼以及水生生物体内非常重要的功能物质,具有比较典型的生长环境温度适应性。来源于低温寒冷地区的鱼及其他水生生物体内的酶具有冷酶的某些性质,在低温下有比较高的催化活性,能有效催化生物化学反应;对热不稳定,在中等以上温度即迅速失活;有比较低的Arrhenius活化能。而在热带地区的鱼体内发现有耐热的消化蛋白酶。已经研究的大多数来自鱼虾等水生生物体内的消化蛋白酶表现出一定的不是很严格的冷酶的特性。
     本论文选择我国主要淡水鱼草鱼作为研究对象,研究其消化道蛋白酶的主要生物学特性。主要目的是探讨草鱼消化器官中蛋白酶的可开发利用前景并深入研究探讨草鱼消化生理和营养。
     研究了草鱼和青鱼主要消化酶的活性分布。在草鱼和青鱼各消化器官中均检出酸性蛋白酶、碱性蛋白酶、淀粉酶和三酰基甘油脂酶的活性。上述主要消化酶在2种鱼的消化器官中有各自不同的分布。这些酶在2种鱼的肝和胰腺中活性比肠道高得多。这些消化酶大多沿青鱼和草鱼的整个肠道分布。除青鱼肠道中的淀粉酶外,所有其他酶在2种鱼的肠中、前段的活性均高于肠道尾部的活性(酸性蛋白酶在青鱼尾肠段中的活性尤其低),但是2种鱼尾肠段的酶活性也相当高,尤其是草鱼。青鱼肠道中消化酶活性的分布更复杂些,每种酶都有不同的分布规律。和青鱼相比,这些酶在草鱼肠道中的分布更均匀一些。碱性蛋白酶在草鱼肠道中前部的活性只略高于尾段。整个肠道表现出的高碱性蛋白酶活性可能是草鱼快速生长的原因之一。
     研究了草鱼消化道中粗酸性和碱性蛋白酶的提取及部分性质。粗酶的热稳定性研究表明粗草鱼酸性蛋白酶在50℃保温30 min后损失其80%的酶活力,而使粗草鱼碱性蛋白酶损失约80%的酶活力需要60℃保温30 min。粗草鱼碱性蛋白酶的热稳定性表现出某种生长环境适应性的趋势。
     采用SDS-底物-PAGE电泳方法并经适当改进,分析鉴定了草鱼肠道粗碱性蛋白酶的种类。草鱼肠道中只有胰蛋白酶和金属蛋白酶,没有胰凝乳蛋白酶,这种简单的酶谱可能更加有效,尤其是在很强的环境适应能力和独特的食性方面。
     通过凝胶过滤色谱和离子交换色谱纯化了2种草鱼肠道胰蛋白酶(胰蛋白酶同工酶GT-A和GT-B)。纯化的酶在SDS-聚丙烯酰胺凝胶电泳胶片上以单带迁移,其相对分子质量分别为26,400和30,750。高效液相表明2种酶是纯纯酶。GT-A和GT-B均能水解酪蛋白和BAEE(N-苯酰-1-精氨酸乙酯),被SBTI(大豆胰蛋白酶抑制因子)、PMSF(甲苯磺酰氟)和TLCK(甲苯磺酰赖氨酸氯甲酮)等强烈抑制,不被EDTA(乙二胺四乙酸二钠)抑制,依据其分子质量、水解特性和抑制特性,判断这是2种胰蛋白酶。
     研究了2种纯化的胰蛋白酶的各种性质。GT-A的最适作用pH为8.0,GT-B为8.5。GT-A的最适作用温度为40℃,GT-B为45℃。GT-B的热稳定性略高于GT-A,在中性磷酸盐缓冲溶液中,2种酶都在加热温度达到65℃时迅速失去活性,其热稳定性高于极地或者长期生长在寒冷环境里的鱼胰蛋白酶而低于热带鱼胰蛋白酶,这是草鱼生长环境温度适应性的表现之一。草鱼胰蛋白酶有高的生理转化效率V_(max)/K_m,有低的Arrhenius活化能值(E_a)。氯化钙的存在基本上不影响酶的活性,但是提高酶的热稳定性。DSC(差示量热扫描分析)表明酶的热变性温度分别为66.3℃(GT-A)和67.3℃(GT-B)。钙离子的存在分别提高2种酶的变性温度6.7℃(GT-A)和7.1℃(GT-B)。草鱼胰蛋白酶的热稳定性介于北极鱼和热带鱼胰蛋白酶之间,这和中国大部分省内草鱼生长的广泛的水域环境温度相适应。
     研究了2种草鱼胰蛋白酶同工酶的氨基酸组成以及圆二色性。2种酶都只含有比较低的芳香族氨基酸、半胱氨酸以及蛋氨酸,丝氨酸和甘氨酸的含量很高,尤其酸性氨基酸含量极高,而碱性氨基酸含量相对比较低。酶溶液在280 nm处只有微弱的吸光度,而在210 nm附近有很高的吸光度。在变性剂存在下,GT-B的紫外吸收大幅度增加,依据“双状态模型”计算得到其变性自由能为39.825KJ/mol。CD测定表明2种酶蛋白分子均具有较少的规则二级构象单元(包括α-螺旋、β-折叠以及β-转角)和较多的无规卷曲构象。这些信息结合起来可以较好地解释2种酶的理化和动力学等性质。此外,2种酶的活性中心肯定含有丝氨酸和组氨酸残基。
     此外,结合底物特异性以及底物-PAGE分析了草鱼肠道的酸性蛋白酶的活性组分。草鱼肠道酸性蛋白酶中有1种组织蛋白酶B、L或者H,另外有1种酶能水解牛血红蛋白而不能水解BAA(N-苯酰-1-精氨酰苯胺)。部分纯化了从草鱼肠道中提取的粗酸性蛋白酶,其主要活性组分是一种能水解牛血红蛋白而不能水解BAA的酶。部分纯化的酶最适作用温度为37℃,最适作用pH约为2.3,酶不耐热,60℃加热30min即丧失几乎全部活力。酶被胃抑酶素A强烈抑制,被EDTA抑制,但是不被PMSF和SBTI抑制。
Enzymes, unsaturated fat acids, and antifreeze protein (AFP) are important functional compositions for the aquatic organisms adapting to cold environment. Enzymes, which are typical environment temperature dependent, play an important role in fish and other aquatic organisms. The digestive enzymes from fish or other aquatic organisms residing in the cold temperature environment have the properties of cold-adapted enzyme: performing high catalysis activity at low temperature; thermal unstable, denaturing fast at medium temperature; low Arrhenius active energy. In contrast, the digestive enzymes from tropic fish are thermal stable. Most of the investigated proteinases from fish and shrimp exhibit some properties of cold-adapted enzyme, but their adaptations to low temperature are discrete comparing to those occurring "real" cold enzymes.
     This thesis investigated the biological properties of proteinases from the intestines of grass carp, which is one of major fresh water fishes in China. The objectives of this project were evaluating the utilization potentiality of proteinases from intestines of grass carp, and intensively studying the digest physiology and nutrition of grass carp.
     Activity distributions of the main digestive enzymes of grass carp and black carp were studied. In the all digestive organs of grass carp and black carp, the acidic and basic protease, amylase and lipase were detected and were diversely distributed in the digestive organs of the two species. These enzymes are far more active in fish liver and pancreas than in intestine, and most of them distribute along the whole intestine of the two species. All the enzymes except amylase are more active in the forepart and middle part than the end of the intestines of the fishes (especially for the acidic protease of the black carp), but all the digestive enzymes are rather active in the distal part, especially for grass carp. The enzymes' activity distribution in intestines of the black carp are more sophisticated, and each has its own distribution patterns, and the enzymes distribute more uniformly in intestine of grass carp than that of black carp. The alkaline proteases activity is slightly higher in the forepart and middle parts than in the end of the Grass carp intestines. High protease activity in the whole intestines of grass carp may be one of the reasons why they can grow fast.
     The crude acidic and alkaline proteinases from the digestive tracts of grass carp were extracted, and some their properties have been studied. The thermostability assay results of the enzymes showed that the acidic proteinase lost 80% of its activity after heating at 50℃for 30 min, and the alkaline proteinase lost 80% of its activity after heating at 60℃for 30 min. The thermostability of alkaline proteinase showed the trend of environmental temperature adaptability.
     SDS-substrate-PAGE method was slightly modified and used to characterize classes and types of the grass carp alkaline proteinase. There were trypsins and metalloprotease (or elastase) in the grass carp intestine but not chymotrypsin. The simple zymogram might be more efficient especially to strong adaptability to the environments in that it resided and to its special food habit.
     Two types of trypsin isozymes were purified by gel filtration chromatography and ion-exchange chromatography. Their relative molecular masses were determined to be 26,400 and 30,750, respectively, using SDS-PAGE electrophoresis. The HPLC results showed that the enzymes were pure. All two isozymes could hydrolyze casein and BAEE, and be strongly inhibited by SBTI, PMSF and TLCK, but not by EDTA. They could be defined as trypsin according to their relative molecular mass, hydrolyzing characteristic and inhibition properties.
     The properties of the both purified trypsin isozymes (GT-A and GT-B) were determined. The optimum pH and temperature for GT-A are 8.0 and 40℃, and the optimum pH and temperature for GT-B are 8.5 and 45℃. The thermostability of GT-B is slightly higher than that of GT-A. Both trypsins in neutral phosphate buffer solution quickly lose their activities as temperature exceeds 65℃. The higher thermostability of both trypsins than that of fish trypsins from freezing conditions is an indication of adaptability to living environments' temperature for grass carp. Trypsins from Grass carp have high physiological efficiency of V_(max)/K_m and low Arrhenius activation energy (E_a). In the presence of CaCl_2, the activities of enzyme might not be influenced, however, their thermostability can be improved. Differencial scan calorimetry (DSC) analysis results showed that their heat-induced denature temperatures were 66.3℃(GT-A) and 67.3℃(GT-B), respectively. In the presence of Ca~(2+), the thermo denatured temperature is elevated by 6.7℃for GT-A and 7.1℃for GT-B. Thermal stabilities of both GT-A and GT-B were intermediate between Arctic and tropical fish species, and consistent with the wide range of water temperatures to which grass carp are exposed in most provinces of China.
     The amino acid composition and circular dichroism (CD) of two fish trypsin isozymes were determined. They contained low content of aromatic amino acids, cysteine and methionine, high content of serine and glycine. The content of acid amino acids was very high while that of alkaline amino acids was relatively low. Weak absorbance was read at wavelength of 280 nm for enzyme solution, but very high absorbance was read near 210 nm. And in the present of denaturant, the absorption increased significantly. According to "di-state model", the denaturation free energy (ΔG) was calculated to be 39.825 kJ/mol for GT-B. The results of CD indicated that both GT-A and GT-B contained small ratio ofα-helix,β-sheet, andβ-return but mostly random. The information of compositions and structures from both GT-A and GT-B can explain their physic-chemic and dynamical properties. Furthermore, it is verified that the active central of both GT-A and GT-B contains serine and histidine resides.
     The active components of acid proteases from Grass carp intestines were analyzed according to the substrate specificity of enzymes using substrate-PAGE electrophoresis. The acidic proteases from Grass carp intestines might be composed Cathepsin B, L or H and an enzyme which can hydrolyze bovine hemoglobin but can't hydrolyze N-bezoyl-1-argininamide (BAA). The crude acidic proteases extracted from Grass carp intestine were partially purified, the main active component of the partially purified acidic protease was an enzyme which can hydrolyze bovine hemoglobin while can't hydrolyze BAA. The optimal temperature and pH of the partially purified protease were 37℃and pH 2.3, respectively. The protease had poor thermostability, almost completely losing its activity when it was heated at 60℃for 30 min. It was strongly inhibited by pepstatin A and inhibited by ethylenediaminetetraacetate (EDTA), but it was not inhibited by PMST and SBTI.
引文
1.中国水产信息中心.水产统计信息[DB/OL].www.fishinfo.cn,2004.9.
    2.中国渔业中心.淡水鱼[DB/OL].jky.qzedu.cn,2005.11.
    3.Somero G N.Temperature as a selective factor in protein evolution.The adaptation strategy of compromise[J].J Exp Zool,1977,194:175-188.
    4.Haard N F.Specialty enzymes from marine organisms[J].Food Tech,1998,52:64-67.
    5.Shahidi F,Janak Kamil Y V A.Enzymes from fish and aquatic invertebrates and their application in the food industry[J].Trends in Food Sci Tech,2001,12,435-464.
    6.Bezerra R S,Santos J F,Paiva P M G,et al.Characterization of stomach and pyloric caeca of T-ambaoui(Colossoma macropomum)[J].J Food Biochem,2000,24:189-199.
    7.Cockson A,Bourne D.Enzymes in the digestive tract of two species of euryhaline fish[J].Comp Biochem Physiol,1972,41 A:715-718.
    8.Simpson B K,Haard N F.Trypsin from Greenland Cod,Gadus ogac.isolation and comparative properties[J].Comp Biochem Physiol,1984,79B:613-622.
    9.Heu M S,Kim H.R,Pyeum J H.Comparison of trypsin and chymotrypsin from the viscera of anchovy,Engraulis Japonica[J].Comp Biochem Physiol,1995,112B:557-567.
    10.Cohen T,Gertler A,Birk Y.Pancreatic proteolytic enzymes from carp(Cyprinus carpio):Ⅱ.Kinetic properties and inhibition studies of trypsin,ehymotrypsin and elastase[J].Comp Biochem Physiol,1981,69B:647-653.
    11.Martinez A,Alsen R L,Serra J L.Purification and characterization of two trypsin-like enzymes from the digestive tract of anchovy,Engraulis encrasicholus[J].Comp Biochem Physiol,1988,91B:557-567.
    12.Simpson B K,Simpson M V,Haard N F.Properties of trypsin from the pyloric ceca of Atlantic cod (gadus morhua)[J].J Food Sci,1990,55:959-961.
    13.Jeong Y,Wei C I,Preston J F,et al.Purification and characterizayion of proteinases from hepatopancreas of crayfish(Procambarus clarkii)[J].J Food Biochem,2000,24:311-322.
    14.Osnes K K,Mohr V.On the purification and characterization of three anionic,serine-type peptide hydrolases from Antarctic Krill,Euphausia superba[J].Comp Biochem Physiol,1985,82B:607-619.
    15.Arunchalam K,Haard N F.Isolation and characterization of pepsin from polar cod(Boreogadus SAIDA)[J].Comp Biochem Physiol,1985,80 B:467-473.
    16.Squires E J,Haard N F,Felthem L A W.Gastrue proteases of the Greenland cod Gadus ogac.Ⅰ.Structural properties[J].Biochem Cell Biol,1986,64:205-211.
    17.王武.鱼类增养殖学[M].北京:中国农业出版社.2000,145-153.
    18.Hora S L,Pillay T V R(Edited).Handbook on fish culture in the Indo-Pacific region[M].FAO Fish Biol Teeh Pap,1962,14:203.
    19.Stevenson J H.Observations on grass carp in Arkansas[J].Prog Fish cult,1965,27,203-206.
    20.Hickling C F.On the feeding process in the white amur,Ctenopharyngodon Idella.Proc.[J].Zool Soc,London,1966,148,408-419.
    21.Singh S B,Sukumaran K K,Pillai K K,et al.Observations on the efficiency of grass carp,Ctenopharyngodon Idella(val.) in controlling and utilizing aquatic weeds in ponds in india[J].Proc indo-Pac Fish Counc,1971,12:220-235.
    22.Cross D G.Aquatic weed control using grass carp[J].J Fish Biol,1969,1:27-30.
    23.Fischer Z.Biology and bioenergetics of grass carp,Ctenopharyngodon Idella(Val.)[J].Pol Arch Hydrobiol,1973,20,521-557.
    24.Lindsay G J H,Harris J E.Carboxymethyl cellulase activity in the digestive tract of fish[J].J Fish Biol,1980,16:219-233.
    25.吴婷婷,朱晓鸣.鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究[J].中国水产科学.1994.1:10-17.
    26.李广丽,王义强.草鱼、鲤鱼肠道、肝胰脏消化酶活性的初步研究[J].湛江水产学院学报.1994.14:34-40.
    27.周继术,吉红,姜媛.关于鲤、鲫、草鱼对苹果渣离体消化率的比较研究[J].水产科学.2006.25:346-348.
    28.马广智,徐军,唐玫,等.臭氧对草鱼鱼种肠道蛋白酶和淀粉酶活性的影晌[J].华南师范大学学报(自然科学版).2001,(4):1-4.
    29.陈鹏飞,毛江,黄剑飞等.光合细菌(PSB)在西伯利亚鲟鱼饲料中的作用及其对主要消化酶活性的影晌[J].粮食与饲料工业.2003,(11):27-29.
    30.叶继丹,卢彤岩,刘洪柏,等.六种鲟鱼消化酶活性的比较研究[J].水生生物学报.2003.27:590-595.
    31.高春生,肖传斌,王艳玲,等.淇河鲫鱼与普通鲫鱼消化酶活性研究[J].广东农业科学.2006.4:72-74.
    32.罗辉,周剑,叶华.微生态制剂对鱼类肠道结构和消化酶活性的影响[J].水产科学.2006.25:105-108.
    33.冯俊荣,陈营,刘红梅.牙鲆幼鱼消化能力与肠道蛋白酶活性的研究[J].水产科学.2006.25:163-165.
    34.费志良,乔慧,郝忱,等.3种淡水蚌消化酶活力的初步研究[J].淡水渔业.2006.(4):3-6.
    35.阎希柱,邱岭泉.饲料中添加甜菜碱对尼罗罗非鱼蛋白酶、淀粉酶活性的影响[J].中国水产科学.1997.4:10-17.
    36.Kawai S,Ikeda S.Studies on digestive enzymes of fishes.Ⅰ.Carbohydrates in digestive organs of several fishes[J].Bull Jpn Soc Sci Fish,1971,37:333-337.
    37.Jany K D.Studies on digestive enzymes of the stomachless bony fish Carassius auratus Gibelio (Bloch):endopeptidases[J].Comp Biochem Physiol,1976,53B:31-38.
    38.Kawai S,Ikeda S.Studies on digestive enzymes of fishes.Ⅱ.Effect of dietary change on the activities of digestive enzymes in carp intestine[J].Bull Jpn Soc Sci Fish,1972,38:265-270.
    39.Tripathi S D,Mishra D N.Synergistic approach in carp polyculture with grass carp as a major component[J].Aquaculture,1986,54:157-160.
    40.Das K M,Tripathi S D.Studies on the digesyive enzymes of grass carp,Ctenophyngodon idella(Val.)[J]..Aquaculture,1991,92:21-32.
    41.Prejs A,Blaszczyk M.Relationships between food and cellulase activity in freshwater fish[J].J Fish Biol,1977,11:447-452.
    42.Eshel A,Lindner P,Smimoff P,et al.Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater[J].Comp Biochem Physiol,1993,106A:627-634.
    43.Fraisse M,Woo N Y S,Noailla-Depeyre J,et al.Distribution pattern of digestive enzyme activities in the intestive of the catfish(Ameiurus nebulosus L.) and of the carp(Cyprinus carpio L.)[J].Comp Biochem Physiol,1981,70A,443-446.
    44.Glass H J,Macdonald N L,Moran R M,et al.Digestion of protein in different marine species[J].Comp Biochem Physiol,1989,94B:607-611.
    45.Kolkovski S.Digestive enzymes in fish larvae and juveniles—implication and applications to formulated diets[J].Aquaculture,2001,200:181-201.
    46.Smalas A Q,Heimstad E S,Hordvik A,et al.Cold adaptation of enzymes:structural comparison between salmon and bovine trypsins.Pro Struct Funct Gen,1994,20:149-166.
    47.Genicot S,Rentier F,Van Beeumen J,et al.Trypsin from temperate and Antarctic fish Paranotothenia magellanica.Molecular adaptations.SCAR Sixth Biology Symposium(Abstracts).1994,Pp.106.
    48.Chong A S C,Hashim R,Lee C Y,et al.Partial characterization and activities of proteases from the digestive tract of discus fish(Symphysodon aequifasciata)[J].Aquaculture,2002,203:321-333.
    49.Diaz-Lopez M,Moyano-Lopez F J,Alarcon-Lopez F J,et al.Characterization of fish acid proteases by substrate-Gel electrophoresis[J].Comp Biochem Physiol,1998,121B:369-377.
    50.Garcia-Carreno F L,Haard N F.Characterization of proteinase classes in langostilla(Pleuroncodes planipes) and crayfish(Pacifastacus astacus) extracts[J].J Food Biochem,1993,17:97-113.
    51.Demis L E,Garcia-Carreno F L,Haard N F.Estimation of protein digestibility:Ⅲ.Studies on the digestive enzymes from the pyloric ceca of rainbow trout and salmon[J].Comp Biochem Physiol,1994,109A:349-360.
    52.Alarcon F J,Diaz M,Moyano F J,et al.Characterization and functional properties of digestive proteases in two sparids;gilthead seabream(Sparus aurata) and common dentex(Dentex dentex)[J].Fish Physiol Biochem,1998,19:257-267.
    53.Garcia-Carreno F L,Dimes L E,Haard N F.Substrate-Gel electrophoresis for composition and molecular weight of proteinases or proteinaeeous proteinase inhibitors[J].Analytical Biochem,1993,214:65-69.
    54.Tengjaroenkul B,Smith B J,Caceci T,et al.Distribution of intestinal enzyme activities along the Intestinal tract of cultured tilapia,Oreochromis niloticus L.[J].Aquaculture,2000,182,317-327.
    55.Einarsson S,Davis P S.On the localization and ultrastructure of pepsinogen,trypsinogen and chymotrypsin secreting cells in the atlantic salmon,Salmo salar L.[J].Comp Biochem Physiol,1996,114 B,295-301.
    56.Natalia Y,Hashim R,Ali A,et al.Characterization of digestive enzymes in carnivorous ornamental fish,the Asian bony tongue Scleropages formosus(Osteoglossidae)[J].Aquaculture,2004,223:305-320.
    57.El-Sayed A F M,Martinez I M,Moyano F M.Assessment of the effect of plant inhibitors on digestive proteases of nile tilapia using in vitro assays[J].Aquae Int,2000,8:403-415.
    58.Sarbahi D S.1951.Studies on the digestive enzymes of goldfish Carassius auratus(linn.) and large mouth black bass Micropterus salmoides(lacepede)[J].Biol.Bull.100:244-257.
    59.Komai T,Kawabata C,Amano M,et al.Todarepsin,a new cathepsin D from hepatopancreas of Japanese common squid(Todarodes pacificus)[J].Comp Biochem Physiol,2004,137B:373-382.
    60.Kurokawa T,Uji S,Suzuki T.Identification of pepsinogen gene in the genome of stomaehless fish,Takifugu rubripes[J].Comp Biochem Physiol,2005,140B:133-140.
    61.黄川.国际水产品加工呈五大趋势[J].湖南农业.2006,(4):31.
    62.龚丽,苏建.半干罗非鱼片加工工艺研究[J].干燥技术与设备.2006,21:28-30.
    63.陶建军.大银鱼淡干品的加工[J].渔业致富指南.2006,(2):25-26.
    64.于丽萍.小鱼罐头的生产工艺[J].农村实用技术与信息.2006,(1):31-32.
    65.肖枫,康怀彬.茄汁鲢鱼软罐头加工工艺的研究[J].科学养鱼.2006,(4):40-42.
    66.王杨.生产鱼糕,市场巨大[J].农村实用科技.2006,(5):21.
    67.金玉松.银杏鮰鱼丸的加工工艺[J].渔业致富指南.2006,(6):18-20.
    68.宋琍琍.鲢鱼鱼糜制品加工技术研究开发[J].现代渔业信息.2006,(1):29-31.
    69.李复生,卢勇泽.冷冻鱼糜加工工艺研究[J].中国水产.2006,(3):32-34.
    70.戴巍.冷冻鲢鱼片生产工艺.保鲜与加工[J].2006,(2):51-53.
    71.刁石强,李来好.冻罗非鱼片加工技术工艺研究[J].制冷.2005.18:48-49.
    72.朱志伟,曾庆孝.鱼露及加工技术研究进展[J].食品与发酵工业.2006,(7):68-70.
    73.廖启元,钱俊青.自溶法回收鱼类加工废弃物中鱼油的研究[J].浙江工业大学学报.2006,(2): 28-30.
    74.陈宜芳,任泽林.鱼浆蛋白粉加工研究进展及其应用前景[J].饲料工业.2005.28:36-38
    75.邱曼丽.几种国产和进口鱼粉的部分营养成分及对牙鲆消化率的比较[J].福建水产.2005.(4):23-25.
    76.苑艳辉,钱和,姚卫蓉.鱼下脚料综合利用之研究近况与发展趋势[J].水产科学.2004,23:40-42.
    77.龚钢明,顾慧,蔡宝国.鱼类加工下脚料的资源化与利用途径[J].中国资源综合利用,2003,7:23-24
    78.El-Beltagy A E,EI-Adawy T A,Rahma E H,et al.Purification and characterization of an acidic protease from the viscera of bolti fish(Tilapia nilotico)[J].Food Chem,2004,86:33-39.
    79.Miura S,Kimura S.Jellyfish mesogloea collagen:Characterization of molecules as α1 α2 α3heterotrimers[J].J Biol Chem,1985,260:15352-15356.
    80.Nagai T,Suzuki N.Preparation and partial characterization of collagen from paper nautilus (Argonauta argo,Linnaeus) outer skin[J].Food Chem,2002,76:149-153.
    81.Ikoma T,Kobayashi H,Tanaka J,et al.Physical properties of type Ⅰ collagen extracted from fish scales of Pagrus major and Oreochromis niloticas[J].Int J Biol Maeromol,2003,32:199-204.
    82.余艳.高压处理法萃取鱼皮明胶[J].明胶科学与技术.2006,23:18-21.
    83.胡治平,霍艳丽.红罗非鱼和黑罗非鱼鱼皮明胶性能比较[J].明胶科学与技术.2005,22:31-33.
    84.Kim J S.添加剂对用乙醇分级沉淀法制备的黄鳍箬鳎鱼皮明胶物理性质的影响[J].明胶科学与技术.2002,19:28-30.
    85.周艳军,李培仁.鱼明胶的制备及其性质[J].明胶科学与技术.2002,19:31-33.
    86.Ladislaus M,Kasankala K,草鱼鱼皮中明胶提取工艺优化[J].海洋水产研究.2006,16:23-25.
    87.汪志君,顾林.废水鱼汁微波水解技术研究[J].扬州大学烹饪学报.2005,(4):51-53.
    88.蒋挺大.壳聚糖.北京:化学工业出版社.2001(1).
    89.刘良栋,张伟安,舒俊林等.壳聚糖辅助下玉米修复铅污染土壤能力的研究[J].生态毒理学报.2006,(1):271-277.
    90.王勇.淡水小龙虾的综合利用[J].安徽农业科学.2006,34:4406-4407.
    91.夏文水.酶法改性壳聚糖的研究进展[J].无锡轻工大学学报:食品与生物技术.2001,20(5):550-554.
    92.夏文水,Muz R.脂肪酶解聚壳聚糖及其衍生物的研究[J].无锡轻工大学学报:食品与生物技术.1996,15(1):1-5.
    93.苏畅,夏文水,姚惠源等.木瓜蛋白酶中具有壳聚糖水解酶活性成分的分离[J].食品工业科技.2003,24(5):80-82.
    94.陈小娥,夏文水,余晓斌.微生物壳聚糖酶研究进展[J].海洋科学.2004,28(3):72-76.
    95.魏新林,夏文水.甲壳低聚糖的生理活性研究进展[J].中国药理学通报.2003,19(6):614-617.
    96.王璋.食品酶学[M].北京:中国轻工业出版社.1994(1):9-12.
    97.Whitaker J R.Intrduction.In Principles of Enzymologyfor the Food Sciences[M].New York:Marcel Dekker.1994:1-27.
    98.James J,Simpson B K.Application of enzymes in food precessing.Crit Rev Food Sci Nutr,1996,36:437-463.
    99.Godfrey T,Reichelt T J.Introduction to industrial enzymology.In Industrial Enzymology[M].London:Nature Press.1983:1.
    100.郭琪,王静雪.海洋微生物酶的研究概况.水产科学.2005,24(12):41-44.
    101.De Vecchi,S.,Coppes,Z.Marine fish digestive proteases-relevance to food industry and the south-west Atlantic region-Areview[J].J Food Biochem,1996,20,193-214.
    102.于国英,尹淑敏,于力.从鲐巴鱼消化道中提取蛋白酶的条件比较[J].中国生化药物杂志.1994,15:256-257.
    103.陈义勇,乐国伟,施用晖.鱼酶和鱼蛋白的性质及其在食品工业中的应用[J].食品科技.2003,(1):38-39.
    104.Brewer P,Helbig N,Haard N F.Atlantic cod pepsin-characterization and use as a rennet substitute[J].Can Inst Food Sci Technol J,1984,17:38.
    105.Haard N F.Atlantic cod gastric protease.Characterization with casein and milk substrate and influence of sepharose immobilization on salt activation,temperature characteristics and milk dotting reaction[J].J Food Sci,1986,51:313-316.
    106.Norris E R,Elam D W.Preparation and properties of crystalline salmon pepsin[J].J Biol Chem,1940,134:443-453.
    107.Fryton J S,Bergmann M.The specificity of salmon pepsin[J].J Biol Chem,1940,136:559-560.
    108.Norris E R,Mathies J C.Preparation,properties and crystallization of tuna pepsin[J].J Biol Chem,1953,204:673-680.
    109.Vonk H J.The specificity and collaborations of digestive enzymes in metazoa[J].Biol Rev,1973,12,245-284.
    110.Twining S S,Alexander P A,Huibregtse K,et al.A pepsinogen from rainbow trout[J].Comp Biochem Physiol,1983,75B:109-112.
    111.Hjelmeland K,Raa J.Characteristics of two trypsin type isozymes isolated from the Arctic fish capelin(Mallotus Villosus)[J].Comp Biochem Physiol,1982,71 B:557-562.
    112.Kobori H,Sullivan C W,Shizuya H.Heat labile alkaline phosphatase from Antarctic baetaria:rapid 5'end labeling of nucleic acids[J].Proc Natl Aead Sei USA,1984,81:6691-6695.
    113.Brendeiberger H.Determination of digestive enzyme kinetics:a new method to define trophic niches in freshwater snails[J].Oecologia,1997,109:34-40.
    114.Sidell B D,Hazel J R.Triacylglycerol lipase activities in tissues of Antarctic fishes[J].Polar Biol,2002,25:517-522.
    115.Richards G P,Julie C,Peter C,et al.Purification and characterization of tissue kallikrein-like proteinases from the black sea bass(Centropristis striata) and the Southem frog(Rana berlandieri)[J].Comp Biochem Physiol,1995,111C:69-82.
    116.李达,杨春波.鄱阳湖鳜鱼不同组织中乳酸脱氢酶同工酶的比较研究[J].淡水渔业.2002,6:41-43.
    117.Osatomi K,Sasai H,Minjie C,et al.Purification and characterization of myofibril-bound serine proteinase from carp Cyprinus carpio ordinary muscle[J].Comp Biochem Physiol,1997,l16B:183-190.
    118.Ohkubo M,Miyagawa K,Osatomi K,et al.Purification and characterization of myofibril-bound serine protease from lizard fish(Saurida undosquamis) muscle[J].Comp Biochem Physiol,2004,137B:139-150.
    119.王金水,赵谋明.转谷氨酰胺酶的性质、制备及在食品加工中的应用[J].中国调味品.2005,(9):13-19.
    120.Feller G,Narinx E,Louis J,et al.Enzymes from psychrotrophic organisms[J].FEMS Mierobiol Rev,1996,18:189-202.
    121.Davail S,Feller G,Narinx E,et al.Cold adaptation of proteins.Purification,characterization and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA41[J].J Biol Chem,1994,269:17448-17453.
    122.Narinx E,Davail S,Feller G,et al.Nueleotide and derived amino acid sequence of the subtilisin from the Antarctic psychrotroph Bacillus TA39.Biochem Biophys Acta,1992,1131:111-113.
    123.Genicot S,Feller G,Gerday C,Trypsin from Antarctic fish Paranotothenia magellanica as comparative with trout(Salmo gairdneri) trypsin[J].Comp Biochem Physiol,1988,90B:601-609.
    124.Bezerra R S,Santos J F,Paiva P M G,et al.Partial purification and characterization of a thermostable trypsin from pyioric caeca of Tambaoui(Colossoma macropomum)[J].J Food Biochem,2001,25,199-211.
    125.Squires E J,Haard N F,Felthem L A W.1986b.Gastruc proteases of the Greenland cod Gadus ogac.Ⅱ.Structural properties[J].Biochem.Cell.Biol.64:215-222.
    126.Priralov P L.1979.Stability of proteins[J].Adv.Protein Chem.33:167-241.
    127.Creighton T E.Stability of folded conformations[J].Curr Opin Struct Biol,1991,1,5-16.
    128.Burly S K,Petsko G A.Aromatic-aromatic interaction:a mechanism of protein structure stabilization.Sci,1985,229:23-28.
    129. Jaenicke R. Protein stability and molecular adaptation to extreme conditions[J]. Eur J Biochem, 1991, 202:715-728.
    130. Fontana A. Analysis and modulation of protein stability[J]. Curr Opin Biotech, 1991,2: 551-560.
    131. Vihinen M. Ralationship of protein flexibility to thermostability[J]. Pro Eng, 1987, 1:477-480.
    132. Wrab A, Schweiger A, Schultes V, et al. Extremely thermostable d-glyceraldehyde-3-phosphate hydrogenase from the eubacterium Thermotoga maritima[J]. Biochem, 1990,29: 7584-7592.
    133. Genicot S, Rentier-Delrue F, Edwards D, et al. Trypsin and trypsinogen from an antarctic fish: molecular basis of cold adaptation[J]. Biochim Biophys Acta, 1996, 1299:45-57.
    134. Eisenberg D, Schwartz E, Komaromy M, et al. Analysis of membrane and surface protein sequences with the hydrophobic moment plot[J]. J Mol Biol, 1984, 179: 125-142.
    135. Erickson M C. Variation of lipid and Tocopherol composition in three strains of channel catfish (Ictalurus punctatus)[i]. J Sci Food Agric, 1992, 59:529-536.
    136. Heran T L, Sgoutas S A, Heran J A, et al. Polyunsaturated fatty acids and fat in fish flesh for selecting species for health benefits[J]. J Food Sci, 1987, 52: 1209-1211.
    137. Gallagher M L, Harrell M L, Rulifson R A. Variation in lipid and fatty acid contents of Atlantic Croakre, Strped Mullet and summer flounder[J]. Trans Amer Fish Soc, 1991, 120:614-619.
    138. Bautista M N, Del M J, Valle L, et al. Lipid and fatty acid composition of brackhwater and freshwater reared milkfish (Chanos chanos) [J]. Aquaculture, 1991, 96: 241-248.
    139. Fernandez-palacios H, Izquerdo M S, Robaina L, et al. Effects of n3HUFA level in broodstock diets on egg quality of gilthead sea bream (Spams auata) [J]. Aquaculture, 1995, 132: 325-332.
    140. Kojima T M S, Yoshinaka R, Ikeda S. Chemical compositions and fatty acid composition of lipids in Cyprinidae in lake Biw[J]. Bull Jap Sci Fish, 1986, 52: 1779-1785.
    141. Chanmugam R, Boudreau M, Hwang D H. Differences in the ω3 fatty acid contents in pond-reared and wild fish and shellfish[J]. J Food Sci, 1986, 51: 1556-1557.
    142. Nettleton J A, Allen W H, Klatt L V, et al. Nutrients and chemical residues in one- to two-pound Mississippi farm-raised channel catfish {Ictalurus punctatus) [J]. J Food Sci, 1990, 55: 954—958.
    143. Andrews J W, Stickney R R. Interactions of feeding rates and environmental temp on growth, food conversion, and body composition of channel catfish[J]. Trans Amer Fish Soc, 1972, 101:94-99.
    144. Serliez 1, Panserat S, Corraze G, et al. Cloning and nutritional regulation of a A6-desaturase-like enzyme in the marine teleost gilthead seabream (Sparus aurata) [J], Comp Biochem Physiol, 2003, 135B:449-460.
    145. Tocher D R, Fonseca-Madrigal, J, Dick, J R, et al. Effects of water temperature and diets containing palm oils on fatty acid desaturation and oxidation in hepatocytes and intestinal enterocytes of rainbow trout (Oncorhynchus mykiss) [J]. Comp Biochem Physiol, 2004, 137B: 49-63.
    146. Feeney R E, Hofmann R. Depression of freezing point by glycoproteins from an Antarctic fish[J]. Nature, 1973, 243: 357-358.
    147. DeVries A L. Glycoproteins as biological antifreeze in Antarctic fishes[J]. 1971, Science, 172: 1152-1155.
    148. DeVries A L, Komatsu, S K, Feeney, R E. Chemical and physical properties of point-depressing glycoproteins from Antarctic fishes[J]. J Bio Chem, 1970, 245: 2901-2908.
    149. Duman J G, DeVries A L. Freezing resistance in winter flounder Pseudopleuronectes amerecanus[J]. Nature, 1974,247: 237-238.
    150. Ananthanayanan V S, Hew C L. Structural studies on freeze-point-depressing protein of the winter flounder Pseudopleuronectes amerecanus[J]. Biochem Biophy Commu, 1977, 74:685-689.
    151. Jia Z, Deluca C I, Chao H, et al. Structural basis for binding of a globular antifreeze protein to ice[J]. Nature, 1996, 384: 285-288.
    152.李乾忠,卢晓芙.抗冷冻蛋白的抗冷冻机理.内蒙古大学学报(自然科学版)[J].1994.3(25):150-156.
    153. DeVies P L, Roach A H, Hew C L. DNA sequence coding for an antifreeze protein precursor from winter flounder[J]. Proc Natl Acad Sci USA, 1984, 79:335-339.
    154. Scholander P F, Maggert J E. Supercooling and ice propagation in blood from Arctic fish[J]. Cryobiol, 1971,8:371-374.
    155. Hew C L, Fletcher G L, Ananthanarayanan V S. Isolation and characterization of antifreeze protein from the shorthorn sculpin,Myoxocephalus scorpius[J].Can J Biochem,1980,58:377-383.
    156.Zachariassen K E,Kristiansen E.lee nucleation and antinucleation in Nature[J].Cryobiol,200,41:257-279.
    157.Pudney P D A,Buckley S L,Sidebottom C M,et al.The Physico-chemical characterization of a boiling stable antifreeze protein from a Perennial Grass(Lolium perenne)[J].Archives Biochem Biophys,2003,410:238-245.
    158.Tong L,Qingsong L,Raymond W K,et al.Extracellular expression,purification and characterization of a winter flounder antifreeze polypeptide from Escherichia coil[J].Pro Express Puri,2000,18:175-181.
    159.Gejing D,Laurson R A.Isolation and characterization of an antifreeze protein from the Longhorn Sculpin,Myoxocephalus octodecimspinosis[J].Biochim Biophys Acta,1998,1388:305-314.
    160.Evans R P,Fletcher G L.Isolation and characterization of type Ⅰ antifreeze protein from Antarctic snailfish(Liparis atlanticus) and Dusky snaifish(Liparis gibbus)[J].Biochim Biophys Aeta,2001,1547:235-244.
    161.Slaughter D,Fletcher G L,Ananthanayanan V S.Antifreeze proteins from the sea Raven,Hemitripterus americanus[J].J Bio Chem,1981,256:2022-2026
    162.Nancy F N,Trinh K Y,Hew C L.Structure of polypeptide precursor from the sea Raven,Hemitripterus americanus[J].J Bio Chem,1986,261:15690-15695.
    163.Enevoldsen L T,Heiner I,DeVries A L,et al.Does fish from the Disko bay area of Greenland possess antifreeze proteins during the summer[J]? Polar Biol,2003,26:365-370.
    164.Duman J G,Bennett V,Sformo T,et al.Antifreeze proteins in Alaskan insects and spiders[J].J Insect Physio,2004,50:259-266.
    165.Ray M K,Sitaramamma T,Ghondohi S,et al.Occurrence and expression of CspA,a cold shock gene in Antarctic psychrotrophic bacteria[J].FEMS Microbiol Lett,1994,116:55-60.
    166.湖南省科学技术厅.2007年湖南省科技计划项目申报指南[DB/OL].www.hnst.gov.cn.2007.3.
    1.Shahidi F,Janak Kamil Y V A.Enzymes from fish and aquatic invertebrates and their application in the food industry[J].Trends Food Sci Tech,2001,12:435-464.
    2.Norris E R,Elam D W.Preparation and properties of crystalline salman pepsin[J].J Biol chem,1940,134:443-453.
    3.Natalia Y,Hashim R,Ali A,et al.Characterization of digestive enzymes in carnivorous omamental fish,the Asian bony tongue Scleropages formosus(Osteoglossidae)[J].Aquaculture,2004,223:305-320.
    4.Tengjaroenkul B,Smith B J,Caceci T,et al.Distribution of intestinal enzyme activities along the Intestinal tract of cultured Nile tilapia,Oreochromis niloticus L.[J].Aquaculture,2000,182:317-327.
    5.Sidell B D,Hazel J R.Triacylglycerol lipase activities in tissues of Antarctic fishes[J].Polar Biol,2002,25:517-522.
    6.Einarsson S,Davis P S.On the localization and ultrastructure of pepsinogen,trypsinogen and chymotrypsin secreting cells in the atlantic salmon,Salmo salar L.[J].Comp Biochem Physiol,1996,114 B:295-301.
    7.吴婷婷,朱晓鸣.鳜鱼、青鱼、草鱼、鲤、鲫、鲢消化酶活性的研究[J].中国水产科学.1994,1:10-17.
    8.周景祥,余涛,黄权等.鲤鱼、黄桑鱼和大眼狮鲈消化酶活性的比较研究[J].吉林农业大学报.2001,23:94-96.
    9.席峰,林利民,王志勇.大黄鱼发育进程中消化酶的活力变化[J].中国水产科学.2003,10:301-304.
    10.Fischer Z.Biology and bioenergetics of grass carp,Ctenopharyngodon Idella(Val.)[J].Pol Arch Hydrobiol,1973,20:521-557.
    11.Das K M,Tripathi,S D.Studies on the digestive enzyme of grass carp,Ctenopharyngodon Idella (Val.)[J].Aquaculture,1991,.92:21-32.
    12.Hickling C F.On the feeding process in the white amur,Ctenopharyngodon Idella[J].Proc.Zool.Soc.London,1966,148:408-419.
    13.Cross,D G.Aquatic weed control using grass carp[J].J Fish Biol 1969,1:27-30.
    14.李广丽,王义强.草鱼鲤鱼肠道、肝胰脏消化酶活性的粗步研究[J].湛江水产学院学报.1994,14(1):34-40.
    15.冷向军,王道尊.青鱼的营养与饲料配制技术[J].上海水产大学学报.2003,6(3):25-27.
    16.刘玉良,朱雅珠.青鱼对十四种饲料的消化率[J].水产科技情报.1990,12(6):14-17.
    17.王道尊,梅志平.青鱼配合饲料中可消化能需要量的研究[J].水产科技情报.1992,4(2):18-20.
    18.王道尊,潘兆龙.不同脂肪源饲料对青鱼生长的影响[J].水产学报.1989,8(4):18-20.
    19.中山大学生物系生化微生物教研室编.生化技术导论[M].北京,科学出版社.1999.
    20.Lowry O H,Rosebrough N J,Farr A L,et al.Protein measurement with the Folin phenol reagent[J].J Biol Chem,1951,193:265-275.
    21.汪家政,范明主编.蛋白质技术手册[M].北京:科学出版社.2002.
    22.Kurokawa T,Uji S,Suzuki T.Identification of pepsinogen gene in the genome of stomachless fish,Takifugu rubripes[J].Comp Biochem Physiol,2005,140B:133-140.
    23.Glass H J,Macdonald N L,Moran R M,et al.Digestion of protein in different marine species[J].Comp B iochem Physiol 1989,94B:607-611.
    24.Fraisse M,Woo N Y S,Noailla-Depeyre J,et al.Distribution pattern of digestive enzyme activities in the intestive of the catfish(Ameiurus nebulosus L.) and of the carp(Cyprinus carpio L.)[J].Comp Biochem Physiol,1981,70A:443-446.
    25.王武主编.鱼类增养殖学[M].北京:中国农业出版社.2000,10:35-48.
    26. Chiu S T, Pan B S. Digestive protease activities of juvenile and adult eel (Anguilla japonica) [J]. Aquaculture, 2002, 205: 141-156.
    27. Sabapathy U, Teo L H. Aquantitative study of some digestive enzyme in the rabbitfish, Siganus canaliculate and the sea bass, Lates calcarifer[3]. J Fish Biol, 1993, 42: 595-602.
    28. Rangruangsak-Torrissen K, Male R. Trypsin isozymes: development, digestion and structure. In: Seafood Enzymes, utilization and influence on postharvest seafood quality (Haard, N. F., Simpsom, B. K. Eds) [M], New York: Marcel Dekker. 2000: 215-269.
    29. Torrissen K R, Moss R, Andresen, LH, et al. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon {Salmo salar L.)[J]. Fish Physiol, Biochem, 2006, 32: 7-23.
    30. Ash R. Hydrolytic capacity of the trout (Salmo gairdneri) intestinal mucosa with respect to hree specific dipeptides[J]. Comp Biochem Physiol, 1980, 65B: 173-176.
    31. Munilla-Morán R, Stark J R. Metabolism in marine flatfish—Ⅵ. effect of nutritional state on digestion in turbot, Scophthalmus maximus (L.) [J]. Comp Biochem Physiol, 1990, 95B: 625-634.
    32. Munilla-Moran R, Saborido-Rey F. Digestive activity in marine species, Ⅱ. amylase activities in gut from seabream (Sparus aurata), Turbot (Scophthalmus maximus) , redfish (Sebastes mentella) [J]. Comp Biochem Physiol, 1995, 113B: 827-834.
    33. Erickson M C. Variation of lipid and Tocopherol composition in three strains of channel catfish (Ictalurus punctatus) [J]. J Sci Food Agric, 1992,59: 529-536.
    34. Van Pelt T I, Piatt J F, Lance B K. et al. Proximate composition and energy density of some North Pacific forage fishes[J]. Comp Biochem Physiol, 1997, 118A: 1383-1398.
    35. Gallagher M L, Harrell M L, Rulifson R A. Variation in lipid and fatty acid contents of Atlantic Croakre. Strped Mullet and summer flounder[J]. Trans Amer Fish Soc, 1991, 96: 614-619.
    36. Oku H, Ogata H, Fang-Liang X. Organization of the lipoprotein lipase gene of red sea bream Pagrus major[3]. Comp Biochem Physiol, 2002, 131B: 775-785.
    1.Ikoma T,Kobayashi H,Tanaka J,et al.Physical properties of type Ⅰ collagen extracted from fish scales of Pagrus major and Oreochromis niloticas.International J Biol Macromol,2003,32:199-204.
    2.Harrd N F.Specialty enzymes from marine organisms[J].Food Tech,1998,52:64-67.
    3.De Vecchi S,Coppes Z.Marine fish digestive proteases-relevance to food industry and the south-west Atlantic region-Areview.J Food Biochem,1996,20:193-214.
    4.Shahidi F,Janak Kamil Y V A.Enzymes from fish and aquatic invertebrates and their application in the food industry.Trends Food Sci Tech,2001,12:435-564.
    5.胡远皆,尹长松,孙育平.鲍鱼酶的制备和应用试验[J].水产科技情报.2000,(27):256-258.
    6.于国英,朱莉,韩志武,等.鲐鱼消化道中蛋白酶的分离纯化及其活性研究[J].《中国海洋药物》杂志.2002,4:54-56.
    7.El-Beltagy A E,El-Adawy T A,Rahma E H,et al.Purification and characterization of an acidic protease from the viscera of bolti fish(Tilapia nilotico)[J].Food Chem,2004,86:33-39.
    8.Kristinsson H G,Rasco B A.Hydrolysis of salmon muscle proteins by an enzyme mixture extracted from atlantic salmon(Salmon salar) pyloric caeca[J].J Food Biochem,2000,24:177-187.
    9.Hurtado J L,Borderias J,Montero P.Characterization of proteolytic activity in octopus(Octopus vulgaris) ann muscle[J].J Food Biochem,1999,23:469-483.
    10.Bezerra R S,Santos J F,Paiva P M G,et al.Characterization of stomach and pyloric caeca of Tambaoui(Colossoma macropomum)[J].J Food Biochem,2000,24:189-199.
    11.Bezerra R S,Santos J F,Paiva P M G,et al.Partial purification and characterization of a thermostable trypsin from pyloric caeca of Tambaoui(Colossoma macropomum)[J].J Food Biochem,2001,25:199-211.
    12.Feller G,Narinx E,Louis J,et al.Enzymes from psychrotrophic organisms[J].FEMS Microbiol Rev,1996,18:189-202.
    13.Glass H J,Macdonald N L,Moran R M,et al.Digestion of protein in different marine species[J].Comp Biochem Physiol,1989,94B:607-611.
    14.汪家政,范明主编.蛋白质技术手册[M].北京:科学出版社.2002.
    15.Natalia Y,Hashim R,Ali A,et al.Characterization of digestive enzymes in carnivorous ornamental fish,the Asian bony tongue Scleropages formosus(Osteoglossidae)[J].Aquaculture,2004,223:305-320.
    16.Arunchalam K,Haard N F.Isolation and characterization of pepsin from polar cod(Boreogadus SAIDA)[J].Comp Biochem Physiol,1985,80 B:467-473.
    17.Twining S S,Alexander P A,Huibregtse K,et al.A pepsinogen from rainbow trout[J].Comp Biochem Physiol,1983,75B:109-112.
    18.Tanji M,Kageyama T,Takahashi,K.Tuna pepsinogens and pepsins purification,characterization and amino-terminal sequences[J].Eur J Biochem,1988,177:251-259.
    19.Goldman-Levkovitz S,Rimon A,Rimon S.Purification properties and specificity of cathepsin D from Cyprinus carpio[J].Comp Biochem Physiol,1995,112B:147-151.
    20.Squires E J,Haard N F,Felthame L W.Gastric Proteases of the Greenland Cod Gadus ogac.Ⅰ.Isolation and kinetic properties[J].Biochem Cell Biol,1986,64:205-214.
    21.Heu M S,Kim H R,Pyeun J H.Comparison of trypsin and chymotrypsin from the viscera of anchovy,Engraulis japonica[J].Comp Biochem Physiol,1995,112B:557-567.
    22.Hjelmeland K,Rana J.Characteristics of two trypsin type isozymes isolated from the Arctic fish capelin(Mallotus Villosus)[J].Comp Biochem Physiol,1982,71 B:557-562.
    23.Simpson B K,Simpson M V,Haard N F.Properties of trypsin from the pyloric ceca of Atlantic cod (gadus morhua)[J].J Food Sci,1990,55:959-961.
    24.Simpson B K,Haard N F.Trypsin from Greenland Cod,Gadus ogac.isolation and comparative properties[J].Comp Biochem Physiol,1984,79B:613-622.
    25.Genicot S,Rentier-Delrue F,Edwards D,et al.Trypsin and trypsinogen from an antarctic fish:molecular basis of cold adaptation[J].Biochim Biophys Acta,1996,1299:45-57.
    1.Lemos D,Ezquerra J M,Garcia-Carreno F L.Protein digestion in penaeid shrimp:digestive proteinases,proteinase inhibitprs and feed digestibility[J].Aquaculture,2000,186:89-105.
    2.Garcia-Carreno F L,Dimes L E,Haard N F.Substrate-Gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors[J].Analytical Biochem,1993,214:65-69.
    3.Chong A S C,Hashim R,Lee C Y,et al.Partial characterization and activities of proteases from the digestive tract of discus fish(Symphysodon aequifasciata)[J].Aquaculture,2002,203:321-333.
    4.Diaz-Lopez M,Moyano-Lopez F J,Alarcon-Lopez F J,et al.Characterization of fish acid proteases by substrate-Gel electrophoresis[J].Comp Biochem Physiol,1998,121B:369-377.
    5.Garcia-Carreno F L,Haard N F.Characterization of proteinase classes in langostilla(Pleuroncodes planipes) and crayfish(Pacifastacus astacus) extracts[J].J Food Biochem,1993,17:97-113.
    6.Lemieux H,Blier P U,Dutil J-D,Do digestive enzymes set physiological limit on growth rate and food conversion efficiency in Atlantic cod(Gadus morhua)? Fish Physiol Biochem,1999,20:293-303.
    7.Rungruangsak-Torrissen K,Pringle G M,Moss R,et al.Effects of varying rearing temperature on expression of different trypsin isozymes,feed conversion efficiency and growth in Atlantic salmon (salmo salar L.).Fish Physiol Biochem,1998,19:247-255.
    8.Prescott M,Peek K,Daniel R M.Characterisation of a thermostable pepstatatin-insensitive acid proteinase from a Bacillus sp.[J].lnt J Biochem Cell Biol,1995,27:729-739.
    9.Cohen T,Gertler A,Birk Y.pancreatic proteolytic enzymes from carp(Cyprinus carpio):Ⅰ.Purification and physical properties of trypsin,chymotripsin,elastase and carboxypeptidase[J].Comp Biochem Physiol,1981,69B:639-646.
    10.Demis L E,Garcia-Carreno F L,Haard N F.Estimation of protein digestibility:Ⅲ.Studies on the digestive enzymes from the pyloric ceca of rainbow trout and salmon[J].Comp Biochem Physiol,1994,109A:349-360.
    11.Alarcon F J,Diaz M,Moyano F J,et al.Characterization and functional properties of digestive proteases in two sparids;gilthead seabream(Sparus aurata) and common dentex(Dentex dentex)[J].Fish Physiol Biochem,1998,19:257-267.
    12.Natalia Y,Hashim R,Ali A,et al.Characterization of digestive enzymes in carnivorous ornamental fish,the Asian bony tongue Scleropages formosus(Osteoglossidae)[J].Aquaculture,2004,223:305-320.
    13.Sunde J,Taranger G L,Torrissen K R.Digestive protease activities and free amino acids in white muscle as indicators for feed conversion efficiency and growth rate in Atlantic salmon(Salmo salar L.)[J].Fish Physiol Biochem,2003,24:207-218.
    14.Rangruangsak-Torrissen K,Male R.Trypsin isozymes:development,digestion and structure.In:Seafood Enzymes,utilization and influence on postharvest seafood quality(Haard,N.F.,Simpsom,B.K.Eds)[M],New York:Marcel Dekker.2000:215-269.
    15.Torrissen,K.R.,Moss,R.,Andresen,L.H.,et al.Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon(Salmo salar L.)[J].Fish Physiol Biochem,2006,32:7-23.
    1.Haard N F.Specialty enzymes from marine organisms[J].Food Tech,1998,52:64-67.
    2.De Vecchi S,Coppes Z.Marine fish digestive proteases-relevance to food industry and the south-west Atlantic region-A review[J].J Food Biochem,1996,20:193-214.
    3.Shahidi F,Janak Kamil Y V A.Enzymes from fish and aquatic invertebrates and their application in the food industry[J].Trends Food Sci Tech,2001,12:435-564.
    4.Bezerra R S,Santos J F,Paiva P M G,et al.Partial purification and characterization of a thermostable trypsin from pyloric caeca of Tambaoui(Colossoma macropomum)[J].J Food Biochem,2001,25:199-211.
    5.Cohen T,Gertler A,Birk Y.pancreatic proteolytic enzymes from carp(Cyprinus carpio):Ⅰ.Purification and physical properties of trypsin,chymotripsin,elastase and carboxypeptidase[J].Comp Biochem Physiol,1981,69B:639-646.
    6.Feller G,Payan F,Theys F,et al.Stability and structural analysis of α- amylase from the Antarctic Psychrophile Alterornonas haloplanetis A23[J].Eur J Biochem,1994,222:441-447.
    7.于国英,朱莉,韩志武,等.鲐鱼消化道中蛋白酶的分离纯化及其活性研究[J].中国海洋药物杂志.2002,4:54-56.
    8.Simpson B K,Simpson M V,Haard N F.Properties of trypsin from the pyloric ceca of Atlantic cod (gadus morhua)[J].J Food Sci,1990,55:959-961.
    9.Arunchalam K,Haard N F.Isolation and characterization of pepsin from Polar cod(Boreogadus saida)[J].Comp Biochem Physiol,1985,80B:467-473.
    10.Simpson B K,Haard N F.Purification and characterization of trypsin from the Greenland cod,(Gadus Ogac).1.Kinetic and thermodynamic characteristics[J].Can J Biochem Cell Biol,1984,62:894-900.
    11.Squires E J,Haard N F,Felthem L A W.Gastric proteases of the Greenland cod Gadus ogac.Ⅰ.Isolation and kinetic properties[J].Biochem Cell Biol,1986,64:676-685.
    12.Tanji M,Kageyama T,Takahashi K.Tuna pepsinogens and pepsins:purification,characterization and amino-terminal seguences[J].Eur J Biochem,1988,177:251-259.
    13.Heu M S,Kim H R,Pyenu J H.Comparion of trypsin and chymotrypsin from the viscera of anchovy,Engraulis japonica[J].Comp Biochem Physiol,2000,112B:557-567.
    14.Martinez A,Olsen R L,Serra J L.Purification and characterization of two trypsin-like enzymes from the digestive tract of anchovy Engraulis encrasicholus[J].Comp Biochem Physiol,1988,91B:677-684.
    15.Dimes L E,Haard N F.Estimation of protein digestibility.3.Studies on the digestive enzymes from the pyloric caeca of rainbow trout and salmon[J].Comp Biochem Physiol,1994,109A:677-684.
    16.Jeong Y,Wei C,Preston J F,et al.Purification and characterization of proteases from hepatopanereas of crayfish(Procambarus clarki)[J].J Food Biochem,2000,24:311-332.
    17.El-Beltagy A E,El-Adawy T A,Rahma E H,et al.Purification and characterization of acidic protease from the viscera of bolti fish(Tilapia nilotica)[J].Food Chem,2004,86:33-39.
    18.Natalia Y,Hashim R,Ali A,et al.Characterization of digestive enzymes in carnivorous ornamental fish,the Asian bony tongue Scleropages formosus(Osteoglossidae)[J].Aquaculture,2004,223:305-320.
    19.中山大学生物系生化微生物教研室编.生化技术导论[M].北京:科学出版社.1999.
    20.国家药典委员会.中华人民共和国药典[M].北京:化工出版社.2005:624-626.
    21.Lowry O H,Rosebrough N J,Farr A L,et al.Protein measurement with the Folin phenol reagement[J].J Biol Chem,1951,193:265-275.
    22.汪家政,范明.蛋白质技术手册[M].北京;科学出版社.2002.
    23.Blackshear P J.System for Polyacrylamide gel electrophoresis[J].Meth Enzymol,1984,104:237-255.
    24.Garcia-Carreno F L,Dimes L E,Haard N F.Substrate-Gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors[J].Analytical Biochem,1993,214:65-69.
    25.Raksakulthal R,Haard N F.Purification and characterization of amino peptidase fraction from squid (lllex Illecebrosus)[J].J Food Biochem,1999,23:123-144.
    1.Haard N F.1998.Specialty enzymes from marine organisms[J].Food Tech,52:64-67.
    2.Arunchalam K,Haard N F.Isolation and characterization of pepsin from Polar cod(Boreogadus saida)[J].Comp Biochem Physiol,1985,80B:467-473.
    3.Simpson B K,Haard N F.Purification and characterization of trypsin from the Greenland cod,(Gadus Ogac).Ⅰ.Kinetic and thermodynamic characteristics[J].Can J Biochem Cell Biol,1984,62:894-900.
    4.Simpson B K,Simpson M V,Haard N F.Properties of trypsin from the pyloric ceca of Atlantic cod (gadus morhua)[J].J Food Sci,1990,55:959-961.
    5.Smalas A Q,Heimstad E S,Hordvik A,et al.Cold adaptation of enzymes:structural comparison between salmon and bovine trypsins[J].Pro Struct Funct Gen,1994,20:149-166.
    6.Genicot S,Rentier-Delrue F,Edwards D,et al.Trypsin and trypsinogen from an antarctic fish:molecular basis of cold adaptation[J].Biochim Biophys Acta,1996,1299:45-57.
    7.Feller G,Narinx E,Louis J,et al.Enzymes from psychrotrophic organisms[J].FEMS Microbiol Rev,1996,18:189-202.
    8.Osnes K K,Mohr V.On the purification and characterization of three anionic,serine-type peptide hydrolases from Antarctic krill,euphausia superba[J].Comp Biochem Physiol,1985,82B:607-619.
    9.Heu M S,Kim H R,Pyenu J H.Comparion of trypsin and chymotrypsin from the viscera of anchovy,Engraulis japonica[J].Comp Biochem Physiol,2000,112B:557-567.
    10.Bezerra R S,Santos J F,Paiva P M G,et al.Partial purification and characterization of a thermostable trypsin from pyloric caeca of Tambaoui(Colossoma macropomura)[J].J Food Biochem,2001,25:199-211.
    11.Cohen T,Gertler A,Birk Y.Pancreatic proteolytic enzymes from carp(Cyprinus carpio):Ⅱ.Kinetic properties and inhibition studies of trypsin,chymotrypsin and elastase.Comp Biochem Physiol,1981,69B:647-653.
    12.于国英,朱莉,韩志武,等.鲐鱼消化道中蛋白酶的分离纯化及其活性研究[J].中国海洋药物杂志.2002,4:54-56.
    13.Martinez A,Olsen R L,Serra J L.Purification and characterization of two trypsin-like enzymes from the digestive tract of anchovy Engraulis encrasicholus[J].Comp Biochem Physiol,1988,91B:677-684.
    14.Heu M S,Kim H R,Pyenu J H.Comparion of trypsin and chymotrypsin from the viscera of anchovy,Engraulis japonica[J].Comp Biochem Physiol,2000,112B:557-567.
    15.Jeong Y,Wei C,Preston J F,et al.Purification and characterization of proteases from hepatopancreas of crayfish(Procambarus clarki)[J].J Food Biochem,2000,24:311-332.
    16.Hjelmeland K,Raa J.Characterization of two trypsin type isozymes isolated from the Arctic fish capelin(Mallotus villosus)[J].Comp Biochem Physiol,1982,71B:557-562.
    17.Osnes K K,Mohr V.On the purification and characterization of three anionic,serine-type peptide hydrolases from Antarctic krill,euphausia superba[J].Comp Biochem Physiol,1985,82B:607-619.
    18.Outzen H,Berglund G I,Smalas A O,et al.Temperature and pH sensitivity of trypsins from atlantic salmon(Salmo salar) in comparison with bovine and porcine trypsin[J].Comp Biochem Physiol,1996,115B:33-45.
    19.Squires E J,Haard N F,Felthem L A W.Gastric proteases of the Greenland cod Gadus ogac.Ⅰ.Isolation and kinetic properties[J].Biochem Cell Biol,1986,64:676-685.
    20.El-Beltagy A E,El-Adawy T A,Rahma E H,et al.Purification and characterization of an acidic protease from the viscera of bolti fish(Tilapia nilotico)[J].Food Chem,2004,86:33-39.
    21.Goldman-Levkovitz S,Rimon A,Rimon S.Purification properties and specificity of cathepsin D from Cyprinus carpio[J].Comp Biochem Physiol,1995,112B:147-151.
    22.王璋,许时婴,江波等译.Fennema,O.R.(美).食品化学(Food Chemistry)[M].北京:中国轻工业出版社.2003:268-441.
    23.鲁子贤.旋光色散和圆二色性在分子生物学中的应用[M].北京:科学出版社.1987:98.
    24.王璋.食品酶学[M].北京:中国轻工业出版社.1991:72-122.
    25.Kramer D E,Whitaker J R.Ficin-catalyzed reactions.Hydrolysis of α-N-bennzoyl-1-arginine ethyl ester and α-N-bennzoyl-1-argininamide[J].Plant Physiol,1969,44:609-614.
    26.O'leary M H,Urberg M,Young A P.Nitrogen isotope effects on the papain-catalyzed hydrolysis of α-N-bennzoyl-1-argininamide[J].Biochem,1974,13:2077-2081.
    27.Cohen T,Gertler A,Birk Y.pancreatic proteolytic enzymes from carp(Cyprinus carpio):Ⅰ.Purification and physical properties of trypsin,chymotripsin,elastase and carboxypeptidase[J].Comp Biochem Physiol,1981,69B:639-646.
    28.Matthews B W,Sigler P B,Hendeson R,et al.Three-dimensional structure of tosyl-chymo-trypsin [J].Nature,1967,214:652-656.
    29.Stroud R M,Kay L M,Dickerson R E.Three-dimensional structure of tosyl-trypsin[J].J Molec Biol,1974,83:185-189.
    30.Shotten D M,Watson H C.Three-dimensional structure of tosyl-elastase[J].Nature,1970,225:811-816.
    31.Blow D M,Birktoft J J,Hartley B S.Role of a buried acid group in the mechanism of action of chymotrypsin[J].Nature,1969,221:337-340.
    32.杜锦珠,茹炳根,卫新成译.Fersht A(英).酶的结构和作用机制[M].北京:北京大学出版社.1991:18-21.
    33.Blow D M,Janin J,Sweet R M.Mode of action of soybean trypsin inhibitor(Kunitz) as a model for specific protein-protein interactions[J].Nature,1974,249:54-57.
    1.Jonas E,Ragyanszki M,Olah J,et al.Proteolytic digestive enzymes of carnivorous(Silurus glanis L),Herbivorous(Hypophthalmichthys molitrix VAL) and omnivorous(Cyprinus carpio L) fishes[J].Aquaculture,1983,30:145-154.
    2.Torrissen K R.Characterization of proteases in the digestive tract of Atlantic salmon(Salmo salar) in comparison with rainbow trout(Salmo gardneri)[J].Comp Biochem Physiol,1984,77B:669-674.
    3.Natalia Y,Hashim R,Ali A,et al.Characterization of digestive enzymes in a carnivorous ornamental fish,the Asian bony tongue Scleropages formosus(Osteoglossidae)[J].Aquaculture,2004,233:305-320.
    4.Sabapathy U,Teo L H.A quantitative study of some digestive enzymes in the rabbit-fish,Siganus canaliculatus and the sea bass(Lates calcarifer)[J].J Fish Biol,1993,42:595-602.
    5.Sanchez-Chiang L,Cisternas E,Ponce O.Partial purification of pepsins from adult and juvenile salmon fish Oncorhynchus keta.Effect of NaCl on proteolytic activities[J].Comp Biochem Physiol 1987,87B:793-797.
    6.Chiu S T,Pan B S.Digestive protease activities of juvenile and adult ell(Anguilla japonica)[J].Aquaculture,2002,205:141-156.
    7.Norris E R,Elam D W.Preparation and properties of crystalline salmon pepsin[J].J Biol Chem,1940,134:443-453.
    8.Norris E R,Mathies J C.Preparation,properties and crystallization of tuna pepsin[J].J Biol Chem,1953,204:673-680.
    9.El-Beltagy A E,El-Adawy T A,Rahma E H,et al.Purification and characterization of an acidic protease from the viscera of bolti fish(Tilapia nilotico)[J].Food Chem,2004,86:33-39.
    10.Arunchalam K,Haard N F.Isolation and characterization of pepsin from polar cod(Boreogadus SAIDA)[J].Comp Biochem Physiol,1985,80 B:467-473.
    11.Twining S S,Alexander P A,Huibregtse K,et al.A pepsinogen from rainbow trout[J].Comp Biochem Physiol,1983,75B:109-112.
    12.Tanji M,Kageyama T,Takahashi K.Tuna pepsinogens and pepsins purification,characterization and amino-terminal sequences[J].Eur J Biochem,1988,177:251-259.
    13.Squires E J,Haard N F,Felthame L W.Gastric Proteases of the Greenland Cod Gadus ogac.Ⅰ.Isolation and kinetic properties[J].Biochem Cell Biol,1986,64:205-214.
    14.Haard N F.Atlantic cod gastric protease.Characterization with casein and milk substrate and influence of sepharose immobilization on salt activation,temperature characteristics and milk clotting reaction[J].J Food Sci,1986,51:313-316.
    15.Brewer P,Helbig N,Haard N F.Atlantic cod pepsin-characterization and use as a rennet substitute[J].Can Inst Food Sci Technol J.,1984,17:38.
    16.Goldman-Levkovitz S,Rimon A,Rimon S.Purification properties and specificity of cathepsin D from Cyprinus carpio[J].Comp Biochem Physiol,1995,112B:147-151.
    17.Komai T,Kawabata C,Amano M,et al.Todarepsin,a new cathepsin D from hepatopancreas of Japanese common squid(Todarodes pacificus)[J].Comp Biochem Physiol,2004,137B:373-382.
    18.Kurokawa T,Uji S,Suzuki T.Identification of pepsinogen gene in the genome of stomachless fish,Takifugu rubripes[J].Comp Biochem Physiol,2005,140B:133-140.
    19.汪家政,范明主编.蛋白质技术手册[M].北京:科学出版社.2002.
    20.Jany K D.Studies on the the digestive enzymes of the stomachless bonefish Carassius auratus gibelio (BLOCH):endopeptidase.Comp Biochem Physiol,1976,53B:31-38.
    21.Haard N F,Feltham L W,Helbig N,et al.Modification of protein with proteolytic enzymes from the marine environment[J].Adv Chem,1982,198,223-244.
    22.Bezerra R S,Santos J F,Paiva P M G,et al.Characterization of stomach and pyloric caeca of Tambaqui(Colossoma macropomum)[J].J Food Biochem,2000,24:189-199.
    23.Qiao Y,Gumpertz M,Van Kempen T.Stability of pepsin(E.C 3.4.23.1) during in vitro protein digestibility assay[J].J Food Biochem,2002,26:355-375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700