猪链球菌噬菌体SMP裂解酶和受体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪链球菌病是一种重要的人兽共患传染病,能导致仔猪脑膜炎、败血症、关节炎、心内膜炎、肺炎和人的脑膜炎,对公共卫生尤其是相应从业人员的生命安全构成威胁。因抗生素滥用,导致细菌耐药,给该病的防控带来了困难。由噬菌体基因编码的裂解酶——裂解效率高、与抗生素具协同作用,且不易产生抗性菌株,是一种颇具潜力的杀菌制剂。本文通过重组表达的方法获得纯化的猪链球菌噬菌体裂解酶LySMP,研究了该酶的杀菌作用特点、酶不同结构区域Lys1、Lys2、Lys3和Lys4的杀菌活性以及应用裂解酶全酶治疗感染猪链球菌的斑马鱼的保护作用。
     为了获得具有生物学活性的猪链球菌噬菌体裂解酶LySMP,采用重组表达技术,PCR扩增噬菌体SMP的裂解酶基因,插入pET-28a(+)中,构建出重组表达载体pET-lys。将该载体导入大肠杆菌BL21中诱导表达,获得55kDa的融合LySMP蛋白。酶谱试验表明该蛋白具有裂解宿主菌SS2-H的活性。表达产物经纯化后,浓度可达1-3mg/ml。
     裂解酶LySMP的体外生物学活性的研究发现纯化的LySMP需加0.8%β-巯基乙醇方可发挥裂解作用。同时,细菌用PMSF和溶菌酶处理后也具有更好的裂解效果。平板裂解试验结果显示,LySMP的超声破碎粗提物裂解谱比原始噬菌体广。噬菌体的宿主菌仅有2株猪链球菌2型,但在17株猪链球菌2型中,有15株可被裂解酶裂解,此外,所测的猪链球菌7型、9型,马兽疫链球菌亚种以及金黄色葡萄球菌,也可被裂解,不过目前尚未发现其可裂解大肠杆菌和沙门氏菌。LySMP在37℃,pH5.2的条件下,裂解效率最高。LySMP可使所测细菌浊度下降约1.2-98%不等。
     为了进一步研究LySMP发挥裂解功能的区域,并比较各功能区与全酶的裂解效率,同样通过大肠杆菌原核表达技术,针对全酶LySMP上的催化区和结合区,进行了四种不同组合的区域表达。各片段位于LySMP 1-243、1-279、2-300和151-443位氨基酸,表达产物命名为Ly1, Lys2,Lys3,Lys4。表达后产物大小分别为32kDa、36kDa、39kDa和37kDa。酶谱试验显示,Lys1和Lys2蛋白具有裂解宿主菌SS2-H的活性。而Lys3和Lys4未形成可见的透明条带。表达产物Lys1, Lys2经纯化后,浓度可达1-3mg/ml。
     对有较强裂解活性的区段Lys1和Lys2进行了体外生物学活性测定和条件优化。超声波处理的Lys1, Lys2粗提物的裂解谱均比原始噬菌体广,但比全酶LySMP的裂解谱窄。在17株猪链球菌2型中,7株可被Lys1和Lys2分别裂解,金黄色葡萄球菌也可被裂解,形成透明的抑菌圈。7型菌株、9型菌株、马兽疫链球菌亚种、大肠杆菌和沙门氏菌均不被裂解,不形成抑菌圈。Lys1中加入0.3%β-巯基乙醇或加入20mM半胱氨酸后酶活性最高;而Lys2中则需加入0.8%β-巯基乙醇或加入15mM半胱氨酸方可使酶活性达到最高。Lys1和Lys2的最佳作用温度均为37℃,Lys1和Lys2分别在pH5.2和pH 6.8的条件下裂解效率最高。浓度均为100mM的Lys1、Lys2和LySMP对SS2-4菌株的裂解试验结果显示,LySMP使细菌浊度下降最多,达到33.7%;其次是Lys2,下降27.2%;Lys1最低,只有8.9%。
     为了研究裂解酶的体内抗菌效果,选用裂解活性较强的LySMP,以斑马鱼作为模式动物,统计裂解酶处理组和细菌攻击对照组斑马鱼的存活率,从而揭示裂解酶的体内抗感染效果。试验研究了LySMP在不同感染阶段对猪链球菌HA9801的抗感染效果。将斑马鱼分为7组,每组30尾。裂解酶处理组1为在50LD50猪链球菌HA9801攻击前30min,用2μg LySMP腹腔注射斑马鱼;裂解酶处理组2为用50LD50的猪链球菌HA9801与2μg lySMP的混合物(1:1)腹腔注射斑马鱼;裂解酶处理组3为在50LD50猪链球菌HA9801攻击30min后,用2μg LySMP腹腔注射斑马鱼;抗生素处理组用2μg阿莫西林,于50LD50猪链球菌HA9801攻击后30min腹腔注射斑马鱼,计算各组斑马鱼的存活率。同时设猪链球菌HA9801攻击对照组、PBS对照组、LySMP对照组。结果表明,裂解酶处理组1、2、3均对猪链球菌有抗感染作用,斑马鱼的存活率分别可达70%、66.7%和70%,而HA9801攻击组存活率仅有6.7%。抗生素治疗组存活率可达96.7%,PBS对照组、LySMP对照组存活率均为100%,表明裂解酶对斑马鱼具有抗感染效果。
     为了评估LySMP对猪链球菌不同血清型、不同菌株的体内抗菌活性,选用猪链球菌2型SS2-H、SS2-3、猪链球菌9型SH040817和猪链球菌7型SH040805作为攻击菌株,分别腹腔注射斑马鱼各30尾,30min后再注射2μg LySMP,计算斑马鱼的存活率。结果显示,LySMP注射后能有效抵御猪链球菌SS2-H、SS2-3、SH040817及SH040805的攻击,存活率分别达到90%、93.3%、86.7%及60%。LySMP对SS2-H、SS2-3、SH040805有较强的抗感染效果,与攻击对照组相比,存活率分别提高了36.7%、66.6%、40%。斑马鱼感染猪链球菌后通过注射LySMP可显著提高存活率的事实提示,LySMP可作为防控猪链球菌病的一种高效抗感染制剂。
     猪链球菌烈性噬菌体SMP宿主谱很窄,仅可感染猪链球菌SS2-H和SS2-6形成噬斑,因而制约了噬菌体在防控猪链球菌上的应用。为了阐明噬菌体与猪链球菌相互作用的物质基础,本研究通过化学和酶法以及原生质体吸附等方法确定了噬菌体在猪链球菌上的受体成分。通过提取细菌细胞壁,将细胞壁稀释后用蛋白酶K、SDS、变溶菌素处理的方法,分别破坏蛋白或多糖成分,再与噬菌体共孵育,发现采用变溶菌素处理的细胞壁可使噬菌体的吸附率降低至23.1%;制备SS2-H原生质体,作原生质球吸附试验,结果显示噬菌体对原生质体吸附率为0。分别用甘露糖、半乳糖、核糖、鼠李糖、氨基葡萄糖、N-乙酰氨基葡萄糖和葡萄糖等组成噬菌体磷壁酸的成分进行结合阻断试验,结果表明,甘露糖、鼠李糖、氨基葡萄糖和N-乙酰氨基葡萄糖对SMP分别有32.3%、41.9%、50%和25.8%的阻断作用。在可逆性吸附试验中,分别在30min、60min和90min时,检测噬菌体对细胞壁的吸附率,结果呈现不可逆吸附,在90min时即达到完全吸附。上述结果表明,参与噬菌体SMP受体结合的细菌成分为多糖,极有可能为肽聚糖或磷壁酸,蛋白质未参与其吸附作用。SMP识别细菌细胞表面的氨基葡萄糖、N-乙酰葡萄糖胺、甘露糖及鼠李糖成分,而葡萄糖和半乳糖不参与噬菌体识别,噬菌体对受体的识别是不可逆的。
Streptococcus suis is an important zoonotic pathogen that causes meningitis, sepsis, arthritis, endocarditis and pneumonia in piglet or human meningitis. It is a big threaten to public hygiene and human life. Worse more, the severe antibiotics resistance of bacteria make it difficult to the prevention and treatment of this disease. In this thesis, recombinant S. suis phage lysin, named LySMP and truncated segments Lys1, Lys2, Lys3, Lys4 were expressed and purified to eliminate the clonization of bacteria. For animal test, LySMP was chosed for anti-infectious therapy of S. suis infected zebrafish.
     Purified active LySMP was obtained by recombinant expression in Escherichia coli. The DNA of SMP was extracted before a pair of primers was designed according to the lysin gene, designated LySMP. After amplification by PCR, the products were then inserted into a prokaryotic expression plasmid, pET-28a(+) to obtain the recombinant plasmid pET-lys. It was introduced into E. coli BL21 competent cells and induced for expression. The expression product of about 55 kDa was obtained. The zymogram testified that it could lyse host strain SS-H. The purified product of recombinant LySMP protein was 1-3mg/ml.
     The in vitro characterization of LySMP was analyzed. Chromatographically purified LySMP treated with 0.8% of b-mercaptoethanol showed high degrading efficiency against PMSF or lysozyme treated cells comparing to PBS washed cells. Plate assay showed an extensive lysin spectrum of lysin lysate than those of whole phage against bacteria investigated. Fifteen of seventeen strains of S. suis serotype 2 could be lysed, as well as S. suis serotype 7 and S. suis serotype 9, Streptococcus equi ssp. zooepidemicus and Staphylococcus aureus. But E. coli and Salmonella enterica were not affected. LySMP exerted efficient lysis activity at 37℃, pH 5.2. The turbidity of bacterium investigated was observed to decrease by 1.2–68%.
     To investigate and choose the active lytic LySMP domains, catalyse and binding segments of LySMP together was expressed in E. coli. Four domains of LySMP at amino acid position of 1-243, 1-279, 2-300, 151-443 were expressed and the recombinant proteins were named as Lys1, Lys2, Lys3, Lys4. The resulting product were about 32kDa,36kDa,39kDa,37kDa, respectively. By zymogram, it deduced that both of Lys1 and Lys2 could lyse the host strain SS2-H. However, for Lys3 and Lys4, no band were found. The purified product of Lys1 and Lys2 protein were 1-3mg/ml.
     Characterization of truncated Lys1, Lys2 in vitro was tested and optimun conditions for lysis were chosed. Lys1, Lys2 lysate exhibited an extensive lysin spectrum than those of whole phage against bacteria investigated. Seven of seventeen strains of S. suis serotype 2 could be lysed, as well as S. aureus. But S. suis serotype 7 and S. suis serotype 9, S. equi ssp. zooepidemicus,E. coli and S. enterica were not affected.. Purified Lys1 showed high degrading efficiency when added 0.3% ofβ-mercaptoethanol or 20mM cysteine; while purified Lys2 showed high degrading efficiency when added 0.8% ofβ-mercaptoethanol or 15mM cysteine. Lys1 exerted efficient lysis activity at 37℃, pH 5.2 and Lys2 exerted efficient lysis activity at 37℃, pH 6.8. 100mM LySMP exerted a higher degradation activity compared to Lys1 and Lys2 under the same concentration which can obtain a reduced turbidity of 33.7% verse 27.2% and 8.9%.
     The in vivo anti-infective effect of LySMP was tested by using zebrafish as the infection model of S. suis serotype 2. Survival rate of lysin treated groups and S. suis challenging group were compared to investigate the anti-infective effect of LySMP. Zebrafish were fist divided into seven groups for the anti-infective test of S. suis HA9801 with 30 fish in each group. Lysin treated group 1 were inoculated with 2μg LySMP in peritoneal before challenging with 50 LD50 HA9801. In group 2, 2μg LySMP and 50LD50 HA9801 were equally mixed and inoculated to zebrafish. In group 3, 2μg LySMP was adminstered post infection, and then the survival rate was calculated. PBS, LySMP controlling groups and antibiotic group were respectively inoculated with PBS, LySMP and amoxicillin. Result showed that three lysin treated groups have anti-infective effect toward HA9801 challenging, the survival rate were 70%、66.7% and 70%. For challenging group, the survival rate was 6.7%. Survival rate of antibiotic group was 96.7%, PBS and LySMP controlling groups were 100%.
     Different strains of S. suis were adminstered to zebrafish to evaluate the anti-infective effect of LySMP. Two SS2 stains, SS2-H and SS2-3, one SS7 strain, SH040805, one SS9 strain, SH040817 were respectively inoculated to zebrafish and for 30min after, 2μg LySMP were again inoculated for the rescue of fish. Survival rate of four groups were 90%, 93.3%, 86.7%, 60%. Result showed that LySMP could rescue fish from high mortality rate, and LySMP could be a candidate therapy agent for S. suis disease.
     S. suis phage SMP has a limited host rang that can only infect SS2-H and SS2-6 strains and form plague on agar plate, which limited the use of phage. To elucidate interaction of phage and its host bacteria, chemically and enzymatically treated cell wall and extracted protoplasts were tested to confirm gradients invovled in phage adsorption. In this sturdy, SS2-H cell wall were extracted and diluted to a proper concentration. Diluted cell walls were treated with SDS, proteinase K and mutanolysin respectively. The mutanolysin treated cell wall made a reduction rate of adsorption to phages to 23.1%. SS2-H protoplasts were prepared and adsorption assay was done to find no adsorption result of protoplasts with phages. Numerous saccharides, including mannose, galactose, glucose, glucosamine, N- acetylglucosamine, rhamnose and ribose, were tested. Mannose, rhamnose, glucosamine and N- acetylglucosamine could adsorb to phage with an adsorption rate of 32.3%, 41.9%, 50% and 25.8%. In reversible adsorption assay, phages were incubated with SS2-H cell walls. At intervals of 30min, 60min, 90min, dissociated phages were separated and counted to find a gradually reduction until 100% adsorption to cell wall at 90min. It demonstrated that saccharides ingredients was the receptor of SMP instead of protein and probable ingredients were peptidoglycan or teichoic acid. Mannose, rhamnose, glucosamine and N- acetylglucosamine could be the surface binding sites of SS2-H to SMP and the binding of cell walls to SMP were irreversible.
引文
[1] Staats JJ, Feder I, Ok wu mabua O, et al. Streptococcus suis: Past and present . Veterinary Research Communications, 1997, 21: 381-407.
    [2] Arends JP, Zanen HC . Meningitis caused by Streptococcus suis in humans. Reviews of Infectious Diseases. 1988, 10:131一137.
    [3] Chanter N, P W Jones, T J L Alexander. Meningitis in pigs caused by Streptococcus suis-a speculative review. Veterinary Microbioloogy, 1993, 36:39-55.
    [4] Clifton-Hadley FA, Alexander TL. The carrier site and carrier rate of Streptococcus suis type II in pigs. Veterinary Records, 1980, 107: 40-41.
    [5] Aarestrup FM, S E Jorsal, N E Jensen. Serological characterization and antimicrobial susceptibilityof Streptococcus suis isolates from diagnostic samples in Denmark during 1995 and 1996. Veterinary Microbiology 1998, 60:59-66.
    [6]黄毓茂,黄引贤. 2型猪链球菌的血清学鉴定[[J].中国兽医学报. 1995,11: 63-65.
    [7]姚火春,陈国强,陆承平.猪链球菌1998分离株病原特性鉴定.南京农业大学学报. 1999, 22 : 67-70.
    [8]何家惠,诸长贵,徐绮遐,等.猪急性败血型链球菌病的诊断及病原鉴定.中国人兽共患病杂志,1999,15: 190-191.
    [9]梁家习,吕元聪.人感染猪链球菌病的流行与防治.广西预防医学. 2006, 12: 121-123.
    [10] Ip M, Fung KS, Chi F, et al. Streptococcus suis in Hong Kong. Diagnostic Microbiology and Infectious Diseases, 2007. 57: 15-20.
    [11] Mwaniki CG, Robertson LD, Trott DJ, et al. Clonal analysis and virulence of Australian isolates of Streptococcus suis type 2. Epidemiology and Infection, 1994. 113: 321一334.
    [12] Vecht U, Wisselink H J, Jellema M L, et al. Identification of two proteins associated with virulence of the Streptococcus suis type 2. Infection and Immunity. 1992, 59: 3156-3162.
    [13] van Leengoed L A,Vecht U,Verheyen E R. Streptococcus suis type2 infections in the Netherlands (Part two).Veterinary Qarterly, 1987 ,9:111一117.
    [14]李干武,姚火春,陆承平.在猪链球菌2型江苏分离株中发现新的orf2毒力相关基因.农业生物技术学报,2003 ,11: 295一298.
    [15] JobinmC, Gottschalk M, Grenier D. Upregulation of prostaglandin E2 and matrix metalloproteinase- 9 production by human macrophage-like cells: Synergistic effect of capsular material and cell wall from Streptococcus suilline. Microbial Pathogenesis, 2006,40:29-34
    [16] Tenenbaum T, Adam R, Eggelnpohler I, et al. Strain-dependent disruption of blood-cerebrospinal fluid barrier by Streptoccocus suis suilline in vitro. FEMS Immunology Medical Microbiology, 2005,44:25-34.
    [17] Sprenger H, Roesler A, Tonnp, et al. Chemokines in the cerebrospinal fluid of patients with meningitis. Clinical Immunology and Immunopathology, 1996, 80:155-161.
    [18] Vela AI, Moreno Mi A, Cebolla JA, et al. Antimicrobial susceptibility of clinical strains ofStreptococcus suis isolated from pigs in Spain. Veterinary Microbiology. 2005, 105: 143-147.
    [19] Kataoka Y, Yoshida T, Sawada T. A 10-year survey of antimicrobial susceptibility of streptococcus suis isolates from swine in Japan. Journal of Veterinary Medical Science 2000, 62: 1053-1057.
    [20] Marie J, Morvan H, Berthelot-Herault F, et al. Antimicrobial susceptibility of Streptococcus suis isolated from swine in France and from humans in different countries between 1996 and 2000.Journal of Antimicrobial Chemotherapy. 2002, 50: 201一209.
    [21] Han DU, Choi C, Han HJ, et al. Prevalence capsular type and antimicrobial susceptibility of Streptococcus suis isolated from slaughter pigs in Korea. Canadian Journal of Veterinary Research. 2001, 65: 151-155.
    [22] Aarestrup FM, Rasmussen, Jensen NE, et al. Trends in the resistance to antimicrobial agents of Streptococcus suis isolates from Denmark and Sweden. Veterinary Microbiology. 1998, 63: 72-80.
    [23]王丽平,陆承平,唐家琪. 32种抗菌药物对临床分离猪源链球菌的体外抗菌活性.微生物学报2004,44:794-799.
    [24]王丽平.动物源链球菌耐药性与毒力的关系及感染对小鼠肝药酶活性的影响.南京农业大学博士论文. 2005, 69.
    [25] Zhang C, Ning Y, Zhang Z, Song L, Qiu H, Gao H In vitro antimicrobial susceptibility of Streptococcus suis strans isolated from clinically healthy sows in China. 2008 Veterinary Microbiology 131: 386-392
    [26] Loessner M.J. Bacteriophage endolysins-current state of research and applications. Current Opinion in Microbiology, 2005,8:480–487
    [27] Barenboim M,Chang CY, Dibha F, etal.Characterization of the dual start motif of a classII holin gene[J]. Molecular Microbiology,1999,32 :715.
    [28] Young, R. Bacteriophage lysis: mechanism and regulation. Microbiology Review. 1992, 56: 430–481
    [29] Loessner MJ, Maier SK, Daubek PH, et al. Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hudrolases from different bacilli. Journal of Bacteriology. 1997, 179:2845
    [30] Loessner MJ, Wendlinger G, Scherer S. Heterogeneous endolysin Listeria monocytogenes bacteriophages: a new class of enzyme and evidence for conserved holin genes within the siphoviral lysis cassettes. Molecular Microbiology, 1995, 16:1231
    [31] Loessner MJ, Gange S, Scherer S. Evidence for a Holin-like protein gene fully embedded out of frame in the endolysin gene of Staphlococcus aureus bacteriophage 187. Journal of Bacteriology, 1999, 181: 4452.
    [32] Sao-Jose C, Parreira R, Vieira G, et al: The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. Journal of Bacteriology 2000, 182:5823-5831.
    [33] Kakikawa M, Yokoi KJ, Kimoto H, et al. Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage phig1e. Gene. 2002, 299:227-234.
    [34] Nelson D, Loomis L, Fischetti VA. Prevention and elimination colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. The Proceedings of the Mational Academy of Sciences. 2001, 98:4107-4112.
    [35] Loeffler JM, Nelson D, Fischetti VA: Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 2001, 294:2170-2172.
    [36] Deutsch SM, Guezenec S, Piot M, et al. Mur-LH, the broad-spectrum endolysin of Lactobacillus helveticus temperate bacteriophage f-0303. Applied Environmental Microbiology 2004, 70:96–103,
    [37] Pritchard DG, Dong S, Baker JR, et al. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 150:2079–2087, 2004.
    [38] Zimmer M, Vukov N, Scherer S, et al. The murein hydrolase of the bacteriophage f3626 dual lysis system is active against all tested Clostridium perfringens strains. Applied Environmental Microbiology. 68:5311– 5317, 2002.
    [39] Yoong P, Schuch R, Nelson D, et al. Identification of a broadly active phage lytic enzyme with lethal activity against antibioticresistant Enterococcus faecalis and Enterococcus faecium. Journal of Bacteriology. 2004, 186:4808–4812.
    [40] Navarre WW, Ton TH, Faull KF, et al. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanylglycine endopeptidase activity. Journal of Biological Chemistry 1999, 274:15847-15856.
    [41] Romero P, Lopez R, Garcia E. Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. Journal of Bacteriology 2004, 186:8229-8239.
    [42] Navarre WW. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11: Identification of a D-alanyl-glycine endopeptidase activity. Journal of Biological Chemistry. 1999, 274, 15847–15856.
    [43] Pritchard DG, Dong S, Kirk MC,et al. LambdaSa1 and lambdaSa2 propohage lysins of Streptococcus agalactiae. 2007. Applied Environmental Microbiology 73: 7150-7154
    [44] David MD, Juli FF, Shengli D, et al. The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohudrolase/peptidase domain. Applied and Environmental Microbiology. 2006,72:5108-5112
    [45] Sheehan MM, Garcia JL, Lopez R. et al. The lytic enzyme of the pneumococcual phage Dp-1: a chimeric lysin of intergeneric origin. Molecular Microbiology. 1997, 25: 717.
    [46] Low LY, Yang C, Perego M, et al. Structure and lytic activity of a Bacillus anthracis prophage endolysin. Journal of Biological Chemistry 2005, 280:35433-35439.
    [47] Loessner MJ, Gaeng S, Wendlinger G, et al. The two- component lysis system of Staphylococcus aureus phage Twort: a large TTG-start holin and an associated amidase endolysin. FEMS Microbiology Letters. 1998, 162: 265.
    [48] Loessner MJ, Gange S, Scherer S. Evidence for a holin-like protein gene fully embedded out of frame in the endolysin gene of Staphylococcus aureus bacteriophage 187. Journal of Bacteriology, 1999, 181: 4452.
    [49] Zimmer M, Sattelberger E, Inman RB, et al. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed translational frameshifting in structural protein synthesis. Mol Microbiol 2003, 50:303-317.
    [50] Varea J, Monterroso B, Saiz JL, et al: Structural and thermodynamic characterization of Pal, a phage natural chimeric lysin active against pneumococci. Journal of Biological Chemistry 2004, 279: 43697-437
    [51] Hermoso JA, Monterroso B, Albert A, et al. Structural basis for selective recognition of pneumococcal cell wall by modular endolysin from phage Cp-1. Structure . 2003, 11: 1239-1249.
    [52] Buey RM, Monterroso B, Menendez M, et al. Insights into molecular plasticity of choline binding proteins pneumococcal surface proteins by SAXS. Journal of Molecular Biology, 2007, 365:411-424.
    [53] Porter CJ, Schunch R, Pelzek AJ, et al. The 1.6 A crystal structure of the catalytic domain of PlyB, a bacteriophage lysin active against Bacillus anthracis, Journal of molecular biology. 2007, 366:540-550.
    [54] Xu M, Arulandu A, Struck DK, et al. Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science. 2005, 307:113-117.
    [55] Konrdorfer IP, Danzer J, Schmelcher M, et al. The crystal structure of the bacteriophage PSA endolysin reveals a unique fold responsible for specific recognition of Listeria cell walls. Journal of Molecular Biology. 2006, 364: 678-689.
    [56] Krause RM Studies on bacteriophages of hemolytic streptococci. I. Factors influencing the interaction of phage and susceptible host cell. The Journal of Experimental Medicine. 1957, 106: 365-384.
    [57] Zimmer M, Vukov N, Scherer S, et al. The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Applied Environmental Microbiology 2002, 68L5311-5317.
    [58] Cheng Q, Nelson D, Zhu S, et al. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrobial Agents and Chemotherapy. 2005, 49: 111-117.
    [59] Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature. 2002, 418:884-889.
    [60] Loeffler JM, Fischetti VA: Synergistic lethal effect of a combination of phage lytic enzymes withdifferent activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrobial Agents and Chemotherapy. 2003, 47:375-377.
    [61] Djurkovic S, Loeffler JM, Fischetti VA: Synergistic killing of Streptococcus pneumoniae with the bacteriophage lytic enzme Cpl-1 and penicillin or gentamicin depends on the level of penicillin resistance. Antimicrobial Agents and Chemotherapy2005, 49:1225-1228.
    [62] Jado I, Lopez R, Garcia E, et al. Phage lytic enzymes as therapy for antibiotic resistant Streptococcus pneumoniae infection in a murine sepsis model. Antimicrobial Agents and Chemotherapy 2003, 52:967-973.
    [63] Rashel M, Uchiyama J, Ujihara T, et al.: Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phiMR11. The Journal of Infectious Diseases 2007, 196:1237-1247.
    [64] Loeffler JM, Djurkovic S, Fischetti VA: Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infection and Immunity 2003, 71:6199-6204.
    [65] Walsh S, Shah A, Mond J: Improved Pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrobial Agents and Chemotherapy 2003, 47:554-558.
    [66] Grandgirard D, Loeffler JM, Fischetti VA, Let al Phage lytic enzyme cpl-1 for antibacterial therapy in experimental pneumococcal meningitis. Journal of Infectious Disease 2008, 197:1519-1522.
    [67] Entenza JM, Loeffler JM, Grandgirard D, et al. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrobial Agents and Chemotherapy 2005, 49:4789-4792.
    [68] Witzenrath M, Schmeck B, Doehn J, et al. Systemic use of the endolysin Cpl-1 rescues mice with fatal pneumococcal pneumonia 2009, 37: 642-649.
    [69] Tuomanen E, Liu H, Hengstler B,et al: The induction of meningeal inflammation by components of the pneumococcal cell wall. J Infect Dis 1985, 151:859-868.
    [70] McCullers JA, Karlstrom A, Iverson AR, et al. Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathologens 2007. 3:e28
    [71] Schuch R, Nelson D, Fischetti VA: A bacteriolytic agent that detects and kills Bacillus anthracis. Science 2002, 418:884-889.
    [72] Gaeng S, Scherer S, Neve H, et al: Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis Applied Environmental Microbiology 2000, 66:2951-2958.
    [73] Melinda JM, Narbad A, Michael JG. Molecular characterization of a Clostridium difficile bacteriophage and its cloned biologically active endolysin 2008,190:6734-6740.
    [74] de Ruyter PG, Kuipers OP, Meijer WC, et al. Foodgrade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nature Biotechnology 1997, 15:976-979.
    [75] Tuler TR, Callanan MJ, Klaenhammer TR.. Overexpression of peptidases in Lactococcus and evaluation of their release from leaky cells. Journal of Dairy Science 2002, 85:2438-2450.
    [76] Hori K, KanekoM, Tanji Y, et al. Construction of selfdisruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Applied Microbiology and Biotechnology 2002, 59:211-216.
    [77] de Vries J, Harms K, Broer I, et al: The bacteriolytic activity in transgenic potatoes expression a chimeric T4 lysozyme gene and the effect of T4 lysozyme on soil- and phytopathogenic bacteria. Systematic and Applied Microbiology 1999, 22:280-286.
    [1]陆承平.兽医微生物学(第四版).北京:中国农业出版社, 2007, 476.
    [2]冯树异,程松高,余修平.医学微生物(第二版).北京:中国医科大学中国协和医科大学联合出版社, 1999, 12.
    [3] Morita M, Tanji Y, Mizoguchi K , et al. Characterization of a virulent bacteriophage specific for Escherichia coli O157:H7 and analysis of its cellular receptor and tail fiber genes. FEMS Microbiology Letters. 2002, 211: 77–83.
    [4] Randall-Hazelbauer L, Schwartz M. Isolation of the bacteriophage lambda receptor from Escherichia coli. Journal of Bacteriology. 1973, 116:1436–1446.
    [5] Hantke K, Braun V. Functional interaction of the tonA/tonB receptor system in Escherichia coli. Journal of Bacteriogy. 1978. 135: 190–197.
    [6] Poranen MM, Daugelavicius R, Bamford DH. Common principles in viral entry. Annul Review of Microbiology. 2002, 56: 521–538.
    [7] Valyasevi R, Sandine WE, Geller BL. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Applied Environmental Microbiology. 1990, 56: 1882–1889.
    [8] Pooley HM, Paschoud D, Karamata D. The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP glucose pyrophosphorylase. Journal of General Microbiology. 1987, 133: 3481–3493.
    [9] Takumi K, Takeoka A, Kinouchi T, Kawata T. Solubilization and partial properties of receptor substance for bacteriophage alpha 2 induced from Clostridium botulinum type A 190L. Microbiology and Immunology. 1985, 29: 1185–1195.
    [10] Wendlinger G, Loessner MJ. Scherer S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 1996, 142: 985–992.
    [11] Sao-Jose C, Baptista C , Santos MA. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. Journal of Bacterioogy. 2004, 186: 8337–8346.
    [12] Valyasevi R, Sandine WE, Geller BL. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. Journal of Bacteriology. 1991.173:6095–6100.
    [13] Maisner A, Schneider-Schanlies J, Liszewski MK, etal.Binding of measles virus to membrane (CD46): Importance of disulfide bonds and N-glycans for the receptor function. Journal of Virology. 1994, 68: 6299-6304.
    [14] Craig RB, Rase LB, Stuart K, etal. Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residue sand binds to mannose 6- phosphate receptors. Journal of Biological Chemistry. 1994, 269: 17067-17074.
    [15]姜先荣,杨杰,任可勤.酵母双杂交系统.细胞生物学杂志. 2000, 22: 176-181.
    [16]张迪,霍克克,顾科隆,等.酵母双杂交技术研究进展.高技术通讯. 2000, 10: 98-101.
    [17] Yu SL, Ko KL, Chen CS, et al. Characterization of the distal tail fiber locus and determination ofthe receptor for phage AR1, which specifically infects Escherichia coli O157: H7. Journal of Bacteriology 2000, 182: 5962-5968.
    [18] Valyasevi R, Sandine WE, Geller BL. A Membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis c2. Journal of Bacteriology. 1991, 173, 6095-6100.
    [19] Roncero C, Darzins A, Casadaban MJ. Pseudomonas aeruginosa transposable bacteriophages D3112 and B3 require pili and surface growth for adsorption. Journal of Bacteriology. 1990, 172: 1899-1904.
    [1] Arends J P, Zanen H C. Meningitis caused by Streptococcus suis in humans. Reviews of Infectious Diseases. 1988, 10: 131一137.
    [2] Chanter N, Jones PW , Alexander TJ . Meningitis in pigs caused by Streptococcus suis- a speculative review. Veterinary Microbioloogy. 1993, 36: 39-55.
    [3] Clifton-Hadley F A, AlexanderTJ . The carrier site and carrier rate of Streptococcus suis type II in pigs. The Veterinary Record. 1980, 107: 40-41.
    [4] Staats JJ, Feder I, Ok wu mabua O, et al. Streptococcus suis: Past and present. Veterianry Research Communications. 1997, 21: 381-407.
    [5] Aarestrup FM, Jorsal S E, Jensen N E. Serological characterization and antimicrobial susceptibility of Streptococcus suis isolates from diagnostic samples in Denmark during 1995 and 1996. Veterinary Microbiology. 1998, 60: 59-66. [6J黄毓茂,黄引贤.2型猪链球菌的血清学鉴定.中国兽医学报, 1995, 11: 63-65.
    [7]姚火春,陈国强,陆承平.猪链球菌1998分离株病原特性鉴定.南京农业大学学报. 1999,22: 67-70.
    [8]何家惠,诸长贵,徐绮遐,等.猪急性败血型链球菌病的诊断及病原鉴定.中国人兽共患病杂志, 1999, 15: 190-191.
    [9]赵冉.猪链球菌2型的PCR诊断及猪链球菌7型和9型国内分离株的检测.南京农业大学硕士学位论文, 2003: 54-62.
    [10] Wu ZF, Zhang W, Lu CP. Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microbial pathogenesis. 2008, 45: 159–166.
    [11]王丽平,陆承平,唐家琪.猪链球菌对大环内酯类抗生素的耐药性及耐药表型.南京农业大学学报. 2004, 27 : 81-84.
    [12] Fischetti VA. Bacteriophage lytic enzymes : novel anti-infectives. Trends in microbiology. 2005, 13 : 491–495.
    [13]王丽平,陆承平,唐家琪. 32种抗菌药物对临床分离猪源链球菌的体外抗菌活性.微生物学报. 2004, 44: 794-799.
    [14] Zhang C, Ning Y, Zhang Z,et al. In vitro antimicrobial susceptibility of Streptococcus suis strans isolated from clinically healthy sows in China. Veterinary Microbiology. 2008, 131: 386-392
    [15] Loeffler JM, Nelson D, Fischetti VA. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science. 2001, 294: 2170-2172.
    [16] Fischetti VA. Bacteriophage lytic enzymes: novel anti-infectives. Trends in Microbiology. 2005, 13: 491-495.
    [17] Loeffler JM, Djurkovic S, Fischetti VA. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infection and Immununity. 2003, 71: 6199-6204.
    [1] Barenboim M,Chang CY, Dib Hajj F, etal. Characterization of the dual start motif of a class II gene. Molecular Microbiology. 1999, 32: 715.
    [2]陆承平.兽医微生物学(第四版).北京:中国农业出版社. 2007, 08. 10-15.
    [3] Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proceedings of National Academic Science USA. 2001, 98: 4107-4112.
    [4] Loeffler JM, Nelson D, Fischetti VA. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science. 2001, 294: 2170-2172.
    [5]. Jado I, Lopez R, Garcia E, et al. Phage lytic enzymes as therapy for antibiotic resistant Streptococcus pneumoniae infection in a murine sepsis model. Journal of Antimicrobial Chemotherapy. 2003, 52: 967-973.
    [6] Grandgiard D, Loeffler JM, Fischetti VA, et al. Phage lytic enzyme Cpl-1 for antibacterial therapy in experimental pneumococcal lysin. The Journal of Infectious Diseases. 2008, 197: 1519-1522.
    [7] Ma Y, Lu CP. Isolation and identification of a bacteriophage capable of infecting Streptococcus suis type 2 strains. Veterinary Microbiology . 2008, 132: 340–347.
    [8] Pritchard DG, Dong S, Kirk MC, et al. LambdaSa1 and lambdaSa2 prophage lysins of Streptococcus agalactiae. Applied Environmental Microbiolology. 2007, 73: 7150–7154.
    [9] Yoong P, Schuch R, Nelson D, et al. Identification of a broadly active phage lytic enzyme with lethal activity against antibioticresistant Enterococcus faecalis and Enterococcus faecium. Journal of Bacteriology. 2004, 186: 4808–4812.
    [10] Deutsch SM, Guezenec S, Piot M, et al. Mur-LH, the broad-spectrum endolysin of Lactobacillus helveticus temperate bacteriophage f-0303. Applied Environental Microbiology. 2004, 70: 96–103.
    [11] Pritchard DG, Dong S, Baker JR, et al. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology, 2004, 150: 2079–2087,
    [12] Zimmer M, Vukov N, Scherer S, et al. The murein hydrolase of the bacteriophage f3626 dual lysis system is active against all tested Clostridium perfringens strains. Applied Environmental Microbiology.2002, 68: 5311–5317.
    [13] Hevehan DL, De Bernardez Clark E. Oxidative renaturation of lysozyme at high concentrations. Biotechnology and Bioengeering. 1997, 54: 221–230
    [14] Batas B, Chaudhuri JB. Protein refolding at high concentration using size-exclusion chromatography. Biotechnology and Bioengeering . 1996, 50:16–23.
    [15] Simmons T, Newhouse YM, Arnold KS, et al. Human low density lipoprotein receptor fragment: successful refolding of a functionally active ligand binding domain product in Escherichia coli. Journal of Biological Chemistry. 1997, 272: 25531–25536.
    [16] Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage A11 and A12 endolysins on whole cells and biofilms of Staphylococcus aureus. Applied Environmental Microbiology. 2007, 73: 347–352.
    [17] Jobin MC, Grenier D. Identification and characterization of four proteases produced by Streptococcus suis. FEMS Microbiology Letters. 2003, 220:113–119.
    [18]秦华明,宗敏华,梁世中.糖在蛋白质药物冷冻干燥过程中保护作用的分子机制.广东药学院学报. 2001, 17: 305-307.
    [1] Sheehan MM, Garcia JL, Lopez R., et a. The lytic enzyme of the pneumococcual phage Dp-1: a chimeric lysin of intergeneric origin. Molecular Microbiology, 1997, 25: 717.
    [2] Navarre WW, Ton-That H, Faull KF, et al. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity. The Journal of Biological Chemistry. 1999, 274: 15847–15856.
    [3] Pritchard DG, Dong S, Kirk MC, et al. LambdaSa1 and lambdaSa2 propohage lysins of Streptococcus agalactiae. Applied Environmental Microbiology. 2007, 73: 7150-7154.
    [4] Donovan DM, Foster-Frey J, Dong S, et al. The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohudrolase/peptidase domain. Applied and Environmental Microbiology. 2006, 72: 5108-5112.
    [5] Donovan DM, Foster-Frey J. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiology Letters . 2008, 287: 22–33.
    [6] Loessner MJ, Gaeng S, Wendlinger G, et al. The two-component lysis system of Staphylococcus aureus bacteriophage Twort: a large TTG-start
    [1] Garcia P, Garcia JL, Garcia E, et al. Modular organization of the lytic enzymes of Streptococcuspneumoniae and its bacteriophages. Gene. 1990, 86: 81–88.
    [2] Baba T, Schneewind O. Target cell specificity of a bacteriocin molecule: a C-terminal signal directslysostaphin to the cell wall of Staphylococcus aureus. The EMBO Journal. 1996, 15: 4789–4797.
    [3] Porter CJ, Schuch R, Pelzek AJ, et al. The 1.6 A crystal structure of the catalytic domain of PlyB, abacteriophage lysin active against Bacillus anthracis. Journal of Molecular Biology. 2007, 366:540–550.
    [4] Perez-Dorado I, Campillo NE, Monterroso B et al. Elucidation of the molecular recognition ofbacterial cell wall by modular pneumococcal phage endolysin CPL-1. The Journal of BiologicalChemistry. 2007, 282: 24990–24999.
    [5] Loessner MJ, Gaeng S, Wendlinger G, et al. The two-component lysis system of Staphylococcusaureus bacteriophage Twort: a large TTG-start lysin and an associated amidase endolysin. FEMSMicrobiology Letters . 1998, 162: 265–274.
    [6] Yokoi KJ, Kawahigashi N, Uchida M, et al.The two-component cell lysis genes holWMY and lysWMYof the Staphylococcus warneri M phage varphiWMY: cloning, sequencing, expression, and mutational analysis in Escherichia coli. Gene. 2005, 351: 97–108.
    [7] Donovan DM, Foster-Frey J, Dong S, et al.The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohydrolase/peptidase domain. Applied Environmental Microbiology. 2006, 72: 5108–5112.
    [8] Low LY, Yang C, Perego M, et al. Structure and lytic activity of a Bacillus anthracis prophage endolysin. The Journal of Biological Chemistry. 2005, 280: 35433–35439.
    [9] Pritchard DG, Dong S, Baker JR, et al. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology. 2004, 150: 2079–2087.
    [10] Donavan DM, Foster-Frey J. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiology Letters. 2008, 287: 22-33.
    [11] Zimmer M, Vukov N, Scherer S et al. The murein hydrolase of the bacteriophageФ3626 dural lysis system is active against all tested Clostridium perfringens strains. Applied and Environmental Microbiology. 2002, 68: 5311-5317.
    [12] Loessner MJ, Kramer K, Ebel F, et al. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Molecular Microbiology. 2002, 44: 335-349.
    [13] Loessner MJ, Gaeng S, Scherer S. Evidence for a lysin-like protein gene fully embedded out-of-frame in the endolysin gene of Staphylococcus aureus bacteriophage 187. Journal of Bacteriology. 1999, 181: 4452–4460.
    [14] Cheng Q, Fischetti VA. Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci. Applied Microbiology and Biotechnology. 2007, 74: 1284-1291.
    [15] Robertson ID, Blackmore DK. Prevalence of Streptococcus suis type 2 in pig carcases. TheVeterinary Record . 1986, 118: 275.
    [16] McDonald HM, Pruett PS, Deivanayagam C, et al. Structural adaptation of an interacting non-native C terminal helical extension revealed in the crystal structure of NAD1 synthetase from Bacillus anthracis. Acta Crystallographica section D: Biol Crystallography . 2007, 63: 891–905.
    [17] Woestenenk EA, Hammarstrom M, van den BS, et al. His tag effect on solubility of human proteins produced in Escherichia coli: a comparison between four expression vectors. Journal of Structural and Functional Genomics. 2004, 5: 217–229.
    [18] Perron-Savard P, De CG , LeMH. Dimerization and DNA binding of the Salmonella enterica PhoP response regulator are phosphorylation independent. Microbiology. 2005, 151: 3979–3987.
    1 Willett CE, Zapata AG, Hopkins N, et al. Expression of zebrafish rag genes during early development identifies the thymus. Developmental Biology. 1997.182: 331–341.
    2 Willett CE, Cortes A, Zuasti A, et al. Early hematopoiesis and developing organs in the zebrafish. Developmental Dynamics. 1999. 214:323–336.
    3 Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999. 126: 3735–3745.
    4 Haire RN, Rast JP, Litman RT, et al. Characterization of three isotypes of immunoglobulin light chains and T-cell antigen receptor alpha in zebrafish. Immunogenetics 2000. 51: 915–923.
    5 Neely M, Pfeifer J, Caparon MG. Streptococcus zebrafish model of bacterial pathogenesis. Infection and Immunology. 2002, 70: 3904–3914.
    6 Phelps HA, Neely MN. Evolution of the zebrafish model: from development to immunity and infectious disease. Zebrafish. 2005, 2: 87–103.
    7濮俊毅,黄新新,陆承平.用斑马鱼检测猪链球菌2型的致病力.中国农业科学. 2007, 40: 2655-2658.
    8陈阳,吴迪,陈雪燕等.猪链球菌2型分离株对野生斑马鱼的致病性.动物医学进展. 2008, 29: 1-5.
    9 Wu ZF, Zhang W, Lu CP. Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microbial Pathogenesis. 2008, 45: 159-166.
    10 Fischetti VA. Bacteriophage lytic enzymes: novel anti-infectives. Trends in microbiology. 2005, 13: 491-496.
    [1] Ma YL, Lu CP. Isolation and identification of of a bacteriophage capable of infecting Streptococcus suis type 2 strains. Veterinary Microbiology. 2008, 132: 340-347.
    [2] Pooley HM, Paschoud D, Karamata D. The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDP glucose pyrophosphorylase. Journal of General Microbiogy. 1987,133: 3481–3493.
    [3] Takumi K, Takeoka A, Kinouchi T, et al. Solubilization and partial properties of receptor substance for bacteriophage alpha 2 induced from Clostridium botulinum type A 190L. Microbiology and Immunology. 1985, 29: 1185–1195.
    [4] Wendlinger G, Loessner MJ, Scherer S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology. 1996, 142: 985–992.
    [5] Sao-Jose C, Baptista C, Santos M.A. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. Journal of Bacteriology. 2004. 186: 8337–8346.
    [6] Valyasevi R, Sandine WE, GellerBL. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. Lactis C2. Journal of Bacteriology. 1991, 173: 6095–6100.
    [7] Valyasevi R, Sandine WE, Geller BL. The bacteriophage kh receptor of Lactococcus lactis subsp. Cremoris KH is the rhamnose of the extracellular wall polysaccharide. Applied and Environmental Microbiology. 1990, 56 : 1882-1889.
    [8] Valyasevi R, Sandine WE, Geller, B.L. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. Lactis c2. Journal of Bacteriology. 1991, 173: 6095-6100.
    [9]吴东儒.糖类的生物化学(第一版).高等教育出版社. 1987, 477-532.
    [10] Raisanen L , Draing C , Pfitzenmaier M, et al. Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-Alanyl andα-Glucose substitution of poly (Glycerophosphate) backbones. Journal of Bacteriology. 2007, 189: 4135-4140.
    [11] Jacobson ED, Landman OE. Interaction of protoplasts, L forms, and Bacilli of Bacillus subtilis with 12 strains of bacteriophage. Journal of Bacteriology. 1975, 124: 445-458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700