棉花14-3-3蛋白在纤维发育中的功能表达和相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上最重要的纤维作物,我国是重要的棉花生产国和消费国,棉花在我国国民经济中占有十分重要的地位。棉纤维细胞是由胚珠外表皮分化而成的不分枝单细胞毛状突起,是棉花生产的主要产品,其产量和品质直接决定了棉花生产的产值和效益。因此,提高棉花纤维的产量和品质一直以来都是棉花育种的主要目标。利用基因工程的方法可以实现优良基因的定向转移进而实现棉花纤维产量与品质的改良,因此研究棉花纤维发育的分子机制、克隆与棉花纤维发育相关的基因,对棉花纤维品质改良具有重要意义。
     14-3-3蛋白是一类广泛存在于真核生物中高度保守的调控蛋白,它们通过识别特异的磷酸化序列与靶蛋白相互作用,参与一系列信号传导和调控过程,在植物生长发育中起着重要的作用。为了研究14-3-3蛋白在棉花纤维发育过程中的调控作用,我们分离克隆了棉花14-3-3基因,并对这些基因的结构、表达模式及其编码蛋白的亚细胞定位、蛋白质之间的相互作用及功能进行了研究。主要结果如下:
     1.Gh14-3-3基因的分离克隆及氨基酸序列分析
     从棉花cDNA文库中分离克隆了5个编码14-3-3蛋白基因的cDNA,分别被命名为Gh14-3-3L、Gh14-3-3a、Gh14-3-3e、Gh14-3-3f, Gh14-3-3g。同时,利用PCR技术从棉花基因组中克隆了4个Gh14-3-3基因的全长序列,通过与cDNA序列比较分析发现,Gh14-3-3L和Gh14-3-3a两个基因的结构相似,均由6个外显子和5个内含子组成;Gh14-3-3e和Gh14-3-3f两个基因结构相似,由4个外显子和3个内含子组成,且内含子的插入部位和大小都具有保守性。序列比较和进化分析结果表明,这5个Gh14-3-3基因的编码蛋白可以被分为两类,其中3个(Gh14-3-3e、Gh14-3-3f和Gh14-3-3g)属于非ε型14-3-3蛋白,另外2个(Gh14-3-3L和Gh14-3-3a)蛋白属于ε型14-3-3蛋白。
     2.Gh14-3-3蛋白的亚细胞定位
     为了研究Gh14-3-3蛋白在细胞中的分布情况,利用GFP荧光蛋白共定位技术研究了Gh14-3-3蛋白的亚细胞定位。构建了Gh14-3-3L、Gh14-3-3a及Gh14-3-3e基因与eGFP的融合表达载体,并在农杆菌介导下转化棉花下胚轴。经筛选培养后获得抗性愈伤组织,激光共聚焦显微镜观察表明,Gh14-3-3L蛋白主要定位于细胞质以及细胞核中,Gh14-3-3a和Gh14-3-3e蛋白主要分布于细胞质中。
     3.Gh14-3-3基因在棉纤维发育过程中高水平表达
     RT-PCR结果表明,5个Gh14-3-3基因都在棉花纤维中优势或者有较高水平的表达,而在其他组织中的表达水平相对较低。为了研究Gh14-3-3基因与棉花纤维起始发育阶段的关系,比较了Ghl4-3-3基因在无绒无絮棉和野生型棉花开花当天胚珠中的差异表达,结果显示有2个Gh14-3-3基因(Gh14-3-3e和Ghl4-3-3f)在野生型开花当天胚珠中的表达水平显著高于同期无绒无絮棉胚珠中的表达水平,其在野生型中的表达量分别为无绒无絮棉中的2.5倍和2.6倍;另外RT-PCR结果还表明,5个Gh14-3-3基因在棉花纤维中的表达都受到纤维发育时期的调控,其转录产物主要集中在伸长期的棉花纤维中,表达水平从开花后逐渐上升至开花后十天达到最高,之后逐步下降。此外,为了研究Gh14-3-3基因与影响棉花纤维发育的各种激素之间的关系,通过在胚珠离体培养条件下添加各种激素对纤维进行处理并比较了Gh14-3-3基因的表达水平变化,结果显示,Gh14-3-3基因在棉花纤维中的表达水平受到生长素、赤霉素、油菜素内酯等激素水平的影响。以上结果说明,Gh14-3-3基因在棉花纤维起始、伸长以及激素调控过程中可能具有重要的作用。
     4.Gh14-3-3蛋白之间的相互作用具有特异选择性
     为了研究分离得到的5个Gh14-3-3蛋白之间能否形成同源或者异源二聚体,利用酵母双杂交系统分析了5个Gh14-3-3蛋白之间的相互作用。结果显示这5个Gh14-3-3蛋白中有4组蛋白之间可以发生相互作用,然而这种相互作用都发生于不同的Gh14-3-3蛋白之间,各Gh14-3-3蛋白本身都不能形成同源二聚体。这表明Gh14-3-3蛋白相互作用具有特异性,可能以形成异源二聚体的形式作用于棉花纤维的发育过程。
     5.Gh14-3-3蛋白的互作蛋白筛选
     为了研究Gh14-3-3蛋白参与棉花纤维发育调控的机制,选择了酵母双杂交系统从棉花纤维中筛选Gh14-3-3蛋白的互作蛋白。构建了棉花纤维酵母双杂交cDNA文库,分别依次以每个Gh14-3-3蛋白作为诱饵蛋白从棉花纤维酵母双杂交cDNA文库中筛选互作蛋白。通过对阳性克隆的测序和比较分析发现,Gh14-3-3蛋白能够与BZR1、MYB.H+-ATP酶等16种蛋白质发生相互作用。另外,我们还挑选了部分互作蛋白检测了它们与Gh14-3-3蛋白之间互作的选择性,发现多数互作蛋白都能与多个Gh14-3-3蛋白发生相互作用,并且这种相互作用是具有选择性的。提示Gh14-3-3蛋白可能在棉花纤维发育过程中的激素调控、细胞膜调节、基因转录水平调节等过程中发挥一定的作用。
     6.在拟南芥中过量表达Gh14-3-3e提高植株对Brz的敏感性
     为了研究Gh14-3-3蛋白对植物生长发育的影响,构建了Gh14-3-3e基因过量表达载体并转化模式植物拟南芥,获得转基因植株。利用RT-PCR和Western-blot实验分别对Gh14-3-3e基因及其编码蛋白的表达进行了分析。结果表明,在RNA水平和蛋白水平均检测到了Gh14-3-3e在转基因拟南芥中的表达。通过对过量表达纯合体小苗的表型分析发现,与野生型相比,在暗培养条件下转基因拟南芥增强了对BR合成抑制剂Brz的敏感性,说明Gh14-3-3e可能在棉花BR信号转导途径中起到调控作用。对转基因拟南芥中BR信号通路相关基因表达水平的分析有待进一步研究。
     7.Gh14-3-3L和Gh14-3-3e过量表达和RNA i对转基因棉花的影响
     为了研究Gh14-3-3蛋白在棉花纤维发育过程中的功能,首先将Gh14-3-3L、Gh14-3-3a和Gh14-3-3d在酵母细胞中进行过量表达,研究Gh14-3-3基因对单细胞生长发育及形态方面的影响,发现这三个基因的过量表达都导致酵母细胞出现显著的纵向伸长。同时,构建了Gh14-3-3L、Gh14-3-3e基因的过量表达和RNAi载体并用农杆菌介导的方法转化棉花,共获得了108株转基因植株。分析表明,过量表达转基因棉花中Gh14-3-3基因的表达水平明显上升,大多数Gh14-3-3L和Gh14-3-3e过量表达转基因棉花均出现植株矮小,节间变短,叶片成簇生长以及不育等现象,棉铃在开花后3-5天脱落,无法得到转基因成熟种子和纤维。对RNAi转基因棉花中的Gh1l4-3-3基因表达水平分析表明,在RNAi转基因棉花中,Gh14-3-3L和Ghl4-3-3e基因表达水平都受到极大程度的抑制。同时,对转基因棉花纤维中对与纤维发育相关基因的表达情况分析结果表明,Gh14-3-3基因的沉默导致纤维发育相关基因的表达受到一定程度的抑制。另外,对Gh14-3-3e基因RNAi转基因棉花胚珠的切片分析表明,Gh14-3-3e基因沉默导致转基因棉花纤维的起始和伸长迟缓,纤维细胞数量减少,长度变短。
Cotton is one of the most important natural fiber crops in the world, and plays an important role in the national economy of China which is a major cotton producing and consuming country. Cotton fibers, the major product of cotton, are single-celled trichomes differentiated from the ovule epidermal cells. Due to the dependence of the output of production and efficiency on the yield as well as the quality of cotton fibers, improvement of the yield and the quality becomes the critical point of cotton breeding. However, the negative linkage between the yield and quality of cotton fibers limits the synchronous improvement of both of them by traditional methods. Gene engineering provides effective strategies such as transference of target genes to improve the yield and quality of cotton fibers. Therefore, it is significant to figure out the molecular basis for the development of cotton fibers. In addition, cloning the genes related to the yield and quality of cotton fibers, as well as studying the relationship between gene products, is of great theoretical and practical value for the improvement of both the yield and the quality of cotton fibers.
     Proteins of the 14-3-3 family are acid regulatory proteins that are highly conserved in all eukaryotes. They participate in various signal transduction and regulatory processes through binding to a wide range of target proteins, and play important roles in plant growth, development and signal transduction. In order to study the role of 14-3-3 proteins in cotton fiber development, Gh14-3-3 genes were isolated and characterized. The gene structures, expression patterns, as well as subcellular localizations, interactions and functions of the proteins encoded by Gh14-3-3 genes were further studied. The main results are as follows:
     1.Five cDNAs encoding 14-3-3 proteins were isolated from the cotton cDNA library, and designated as Gh14-3-3L, Gh14-3-3a, Gh14-3-3e, Gh14-3-3f and Gh14-3-3 g. Sequence comparison and phylogenetic analysis revealed that the five 14-3-3 proteins can be divided into two groups. Gh14-3-3L and Gh14-3-3a belong to theε-like group, and Gh14-3-3e and Gh14-3-3f belong to the non-εgroup. Four Gh14-3-3 genes were amplified from the cotton genome by PCR. Sequence comparison between the cDNAs and their corresponding genes revealed that all the introns in Gh14-3-3 genes were positioned in conserved residues. Gh14-3-3L and Gh14-3-3a which belong toε-like group contained five introns splitting their ORF into six exons. In contrast, Gh14-3-3e and Gh14-3-3f belonging to the non-εgroup contain three introns splitting their ORF into four exons.
     2. In order to investigate the subcellular localizations of Gh14-3-3 proteins, Gh14-3-3L:eGFP, Gh14-3-3a:eGFP and Gh14-3-3e:eGFP fusion expression vectors were constructed and introduced into cotton cells by transformation. The transformed cotton callus cells were observed under the confocal laser scanning microscopy. The results indicated that Gh14-3-3L was localized in the nucleis and cytoplasm, and Gh14-3-3a and Gh14-3-3e were localized in the cytoplasm.
     3. The results of RT-PCR indicated that the five Gh14-3-3 genes showed fiber-preferential expression patterns or exhibited its relatively high expression level in fibers. The expression levels of Gh14-3-3e and Gh14-3-3f were higher in ODPA ovules of wild type than those in fuzzless-fiberless mutant. The expression of the five Gh14-3-3 genes in fibers exhibit a developmentally regulated pattern, and their transcripts reached the highest levels in the elongation stage of fiber development. In addition, the expression levels of Gh14-3-3 genes were regulated by phytohormones such as IAA, GA3 and eBL. These results indicated that Gh14-3-3 genes might play a role in the differentiation, elongation and phtohormone response of cotton fiber development.
     4. The interactions between Gh14-3-3 proteins were analyzed by yeast two-hybrid. The results indicated that interactions were found in four cotton 14-3-3 protein pairs, but the interaction of the same 14-3-3 proteins was not detected in this study. The results indicated that each of the five Gh14-3-3 proteins might display isoform selectivity in the formation of heterodimers, and played a role as heterodimer in fiber development.
     5. To identify the interaction partners of Gh14-3-3 proteins, yeast two-hybrid analysis was performed using the three of the isolated Gh14-3-3 proteins (Gh14-3-3L、Gh14-3-3a、Gh14-3-3e) as bait to screen the two-hybrid library of cotton fiber cDNAs constructed on the prey vector. Each of the three 14-3-3 proteins was used in a separate screen.16 unique proteins were identified as target proteins of Gh14-3-3s. The targets of Gh14-3-3 proteins were related to various aspects of plant development, metabolism, and signal transduction. The results indicated that Gh14-3-3 proteins may function in the regulation of phytohormone response, plasma membrance and gene expression in fiber development.
     6. Overexpression of the Gh14-3-3e gene in Arabidopsis enhances the plant sensitivity to Brz. Gh14-3-3e was introduced into Arabidopsis plant, and several transgenic plants were obtained. RT-PCR and Western-blot analysis showed that Gh14-3-3e was expressed in plants of each transgenic line, respectively. Overexpression of Gh14-3-3e resulted in the seedlings displaying hypersensitivity to Brz in darkness. In addition, the expression level analysis of the BR-responsive genes in the transgenic lines is under way.
     7. In order to study the role of Gh14-3-3 proteins in cotton fiber development, overexpression and RNAi vectors of Gh14-3-3L and Gh14-3-3e were constructed and introduced into cotton by Agrobacterium-mediated transformation. Over 100 transgenic cotton plants were obtained. RT-PCR analysis showed that the expression level of Gh14-3-3 gene was higher in over-expression transgentic plants than that in wild type plants, and was knocked down in RNAi transgentic plants. The over-expression transgentic plants showed a drawf phenotype, and the branches were shorter, while the leaves were smaller than controls. The boll of over-expression transgentic plants drop within a few days after anthesis. Our results indicated that the expression levels of the genes related to fiber development were declined, resulting in slower initiation and elongation of fiber cells, compared with the wild type.
引文
1.崔娜,李天来,李悦(2007)植物中14-3-3蛋白的主要功能。生物技术,2(86):86-89。
    2.陈良兵,李永起(2004)棉花纤维发育的分子研究进展。Molecular Plant Breeding,2:105-111
    3.陈明,沈文飚,徐朗莱(2002)14-3-3蛋白。生命的化学,22:445-448
    4.潘玉欣,马峙英,方宣钧(2005)棉花纤维发育的遗传机制及分子标记。河北农业大学学报,28:6-11。
    5.张辉,汤文开,谭新,龚路路,李学宝(2007)棉纤维发育及其相关基因表达调控研究进展。植物学通报,24(2):127-133。
    6.于晓红,朱勇清,卢山,张天真,陈晓亚(2000)陆地棉徐-142种子无毛突变体的比较研究。中国科学C辑,30(5):517-522
    7.武耀廷,张恒木,刘进元(2003)棉纤维细胞发育过程中纤维素的生物合成。棉花学报,15(3):174-179。
    8. Abarca D, Majueno F, Martinez-Zapater JM, Salinas J (1999) Dimerization of Arabidopsis 14-3-3 proteins:structural requirements within the N-terminal domain and effect of calcium. FEBS Lett 462:377-382.
    9. Agarwal-Mawal A, Qureshi HY, Cafferty PW, Yuan Z, Han D, Lin R, Paudel HK (2003) 14-3-3 connects glycogen synthase kinase-3 beta to tau within a brain microtublule-associated tau phosphorylation complex. J Biol Chem 278:12722-12728.
    10. Aitken A (1996) 14-3-3 and its possible role in coordinating multiple signaling pathways. Trends Cell Biol 6:353-358.
    11. Aitken A (2002) Functional specificity in 14-3-3 isoform interactions through dimmer formation and phosphorylation. Chromosome location of mammalian isoforms and variants.50: 993-1010.
    12. Aitken A, Howell S, Jones D, Madrazo J, Patel Y (1995) 14-3-3 alpha and delta are the phosphorylated forms of raf-activating 14-3-3 beta and zeta. In vivo stoichiometric phosphorylation in brain at a Ser-Pro-Glu-Lys MOTIF. J Biol Chem 270:5706-5709.
    13. Babakov AV, Chelysheva VV, Klychnikov OI, Zorinyanz SE, Trofimova MS, De Boer AH (2000) Involvement of 14-3-3 proteins in the osmotic regulation of H+-ATPase in plant plasma membranes. Planta 211:446-448.
    14. Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007). Functions of OsBZRl and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A 104:13839-13844.
    15. Beasley CA, Ting IP (1974) The effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. American Journal of Botany 61:188-194.
    16. Borch J, Bych K, Roepstorff P, Palmgren MG, Fuglsang AT (2002) Phosphorylation-independent interaction between 14-3-3 protein and the plant plasma membrane H+-ATPase.Biochem Soc Trans 30:411-415.
    17. Boston P F, Jackson P, Thompson R J (1982) Human 14-3-3 proteinradioimmunoassay, tissuedistribution, andcerebrospinalfluidlevelsinpatientswithneurologicaldisorders. J Neurochem 38:1475-1482
    18. Boston P F, Jackson P, Kynoch P A, Thompson RJ (1982) Purification, properties, and immunohistochemical localization of human brain 14-3-3 protein. J Neurochem 38: 1466-1474.
    19. Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S, Eklund M, Christiernin M, Teeri TT, Sundberg B, Mellerowicz EJ (2002) Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 14:3073-3088.
    20. Brandt J, Thordal-Christensen H, Vad K, Gregersen PL, Collinge DB (1992) A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant J 2:815-820.
    21. Bridges D, Moorhead GB (2005) 14-3-3 proteins:a number of functions for a numbered protein. Sci STKE 2005:rel0.
    22. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (19-99) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857-868.
    23. Bunney TD, Van walraven HS, de Boer AH (2001) 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci U S A 98:4249-4254.
    24. Camoni L, Harper JF, Palmgren MG (1998) 14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). FEBS Lett 430:381-384
    25. Carles C, Bies-Etheve N, Aspart L, Leon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes:role of ABI5. Plant J 30: 373-383.
    26. Casaretto J, Ho TH (2003) The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15:271-284.
    27. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401:616-620.
    28. Chaudhri M, Scarabel M, Aitken A (2003) Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimmers in vivo. Biochem Biophys Res Commun 300:679-685.
    29. Chelysheva W, Smolenskaya IN, Trofimova MC, Babakov AV, Muromtsev GS (1999) Role of the 14-3-3 proteins in the regulation of H+-ATPase activity in the plasma membrane of suspension-cultured sugar beet cells under cold stress. FEBS Lett 456:22-26.
    30. Chen F, Li Q, Sun L, He Z (2006) The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res 13:53-63.
    31. Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001)ABPl is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15:902-911.
    32. Chen Z, Fu H, Liu D, Chang PF, Narasimhan M, Ferl R, Hasegawa PM, Bressan RA (1994) A NaCl-regulated plant gene encoding a brain protein homology that activated ADP ribosyltransferase and inhibits protein kinase C. Plant J 6:729-740.
    33. Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111: 671-678.
    34. Clouse SD, Sasse JM (1998) BRASSINOSTEROIDS:Essential Regulators of Plant Growth and Development. Annu Rev Plant Physiol Plant Mol Biol 49:427-451.
    35. DeLille JM, Sehnke PC, Ferl RJ (2001) The arabidopsis 14-3-3 family of signaling regulators. Plant Physiol 126:35-38
    36. Daugherty CJ, Rooney MF, Miller PW, Ferl RJ (1996) Molecular organization and tissue-specific expression of an Arabidopsis 14-3-3 gene. Plant Cell 8:1239-1248.
    37. Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117:1875-1884.
    38. Giles N, Forrest A, Gabrielli B (2003) 14-3-3 acts as an intramolecular bridge to regulate cdc25B localization and activity. J Biol Chem 278:28580-28587.
    39. Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, Williams LT (1994) Activation of Raf-1 by 14-3-3 proteins. Nature 371:612-614.,
    40. Ferl RJ, Lu G, Bowen BW (1994) Evolutionary implications of the family of 14-3-3 brain protein homologs in Arabidopsis thaliana. Genetica 92:129-138.
    41. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl:S15-S45.
    42. Finni C, Andersen CH, Borch J, Gjetting S, Christensen AB, de Boer AH, Thordal-Christensen H, Collinge DB (2002) Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?. Plant Mol Biol 49:137-147.
    43. Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem. J.282: 821-828.
    44. Fu H, Subramanian RR, Masters SC (2000) 14-3-3 proteins:structure, function, and regulation. Annu Rev Pharmacol Toxicol 40:617-647.
    45. Fu H, Xia K, Pallas DC, Cui C, Conroy K, Narsimhan RP, Mamon H, Collier RJ, Roberts TM (1994) Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266: 126-129.
    46. Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A, Mattei B, Jensen ON, Aducci P, Palmgren MG (1999) Binding of 14-3-3 protein to the plasma membrane H(+)-ATPase AHA2 involves the three C-terminal residues Tyr(946)-Thr-Val and requires phosphorylation of Thr(947). J Biol Chem 274:36771-36780.
    47. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103: 1988-1993.
    48. Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM, Chen H, Shibagaki N, Ferl RJ, Ehrhardt D, Chong K, Burlingame AL, Wang ZY (2007) An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell 13:177-189.
    49. Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol.139:1319-1334.
    50. Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1-19.
    51. Gohla A, Booch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12:1704-1710.
    52. Grove md, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Jr Steffen GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from brassica napus pollen. Nature 281:216-217.
    53. Halbach T, Scheer N, Werr W (2000) Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Res.28: 3542-3550.
    54. Henriksson ML, Francis MS, Peden A, Aili M, Stefansson K, Palmer R, Aitken A, Hallberg B (2002) A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo. Eur J Biochem 269:4921-4929.
    55. Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470-479.
    56. Ishida S, Fukazawa J, Yuasa T, Takahashi Y (2004) Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell 16:2641-2651.
    57. Ishida S, Yuasa T, Nakata M, Takahashi Y (2008) A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell 20:3273-3288.
    58. Igarashi D, Ishida S, Fukazawa J, Takahashi Y (2001) 14-3-3 proteins regulate intracellular localization of the BZIP transcriptional activator RSG. Plant Cell 13:2483-2497.
    59. Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC, Zhu YX (2003) Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res 31:2534-2543.
    60. John ME, Stewart JMcD (1992) Genes for jieans:biotechnological advances in cotton. Trends Biotechnology 10:165-170.
    61. John ME, Crow LJ (1992) Gene expression in cotton (Gossypium hirsutum L.) fiber:cloning of the mRNAs. Proc Natl Acad Sci USA 89:5769-5773.
    62. John ME, Keller G (1995) Characterization of Mrna for a praline-rich protein of cotton fiber. Plant Physiol 108:669-676.
    63. Johansson P, Brumer H 3rd, Baumann MJ, Kallas AM, Henriksson H, Denman SE, Teeri TT, Jones TA (2004) Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell 16:874-886.
    64. Jones D H, Ley S, Aitken A (1995). Isoforms of 14-3-3 protein can form homo-and heterodimers in vivo and in vitro:implications for function as adapter proteins. FEBS Lett. 368:55-58.
    65. Kidou S, Umeda M, Kato A, Uchimiya H (1993) Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene. Plant Mol Biol 21:191-194.
    66. Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254-1260.
    67. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis. Plant Cell 11:2075-2086.
    68. Krishna P (2003) Brassinosteroid-Mediated Stress Responses. J Plant Growth Regul 22: 289-297.
    69. Kumagai A, Dunphy WG (1999) Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev 13:1067-1072.
    70. Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391-1401.
    71. Li L, Yu X, Thompson A, Guo M, Yoshida S, Asami T, Chory J, Yin Y (2009) Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J 58:275-286.
    72. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929-938.
    73. Li W, SKOULAKIS em, Davis RL, Perrimon N (1997) The Drosophila 14-3-3 protein Leonardo enhances Torso signaling through D-Raf in a Ras 1-dependent manner. Development 24:4163-4171
    74. Liang XE, Suo JE, Xue YB (2002) Characterizaiton of members of the MYB gene family expressed in coton ovules. The Third ICGI Workship pp 59 (Abstract).
    75. Li XB, Fan XP, Wang XL, Cai L, Yang WC (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17:859-875.
    76. Liu D, Bienkowska J, Petosa C, Collier RJ, Fu H, Liddinqton R (1995) Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376:191-194.
    77. Loguercio LL, Zhang JQ, Wilkins TA (1999) Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet 261:660-670.
    78. Mandava N B (1988) Plant growth-promoting brassinosteroids. Ann. Rev. Plant Physiol. Plant Mol. Biol.39:23-52.
    79. Mayumi K, Shibaoka H (1995)A possible double role for brassinolide in the reorientation of cortical microtubules in the epidermal cells of Azuki bean epicotyls. Plant Cell Physiol 36: 173-181.
    80. Michailidis G, Argiriou A, Darzentas N, Tsaftaris A (2009) Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. J Plant Physiol 166: 403-416.
    81. Moor BW, Perez VJ (1967) Specific proteins of the nervous system. In:Carlson F, ed. Physiological and Biochemical Aspects of Nervous integration Woods Hole, MA:Prentice-Hall,343-591.
    82. Morrison D (1994) 14-3-3:modulators of signaling proteins?. Science 266:56-57.
    83. Munoz FJ, Labrador E, Dopico B (1998) Brassinolides promote the expression of a new Cicer arietinum beta-tubulin gene involved in the epicotyl elongation. Plant Mol Biol 37:807-817.
    84. Muslin, AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84:889-897.
    85. Muslin AJ, Xing H (2000) 14-3-3 proteins:regulation of subcellular localization by molecular interference. Cell Signal 12:703-709.
    86. Masters SC, Pederson KJ, Zhang L, Barbieri JT, Fu H (1999) Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38:5216-5221.
    87. Nakata M, Yuasa T, Takahashi Y, Ishida S (2009) CDPK1, a calcium-dependent protein kinase, regulates transcriptional activator RSG in response to gibberellins. Plant Signal Behav 4:372-374.
    88. Petosa C, Masters SC, Bankston LA, Pohl J, Wang B, Fu H, Liddington RC (1998) 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273:16305-16310.
    89. Pearson RB, Kemp BE (1991) Protein kinase phosphorylation site sequences and xonsensus specificity motifs:tabulations. Methods Enzymol 200:62-81.
    90. Peng CY, Graves PR, Ogg S, Thoma RS, Byrnes MJ 3rd, Wu Z,,Stephenson MT, Piwnica-Worms H (1998) C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ 9:197-208.
    91. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control:regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501-1505.
    92. Pu L, Li Q, Fan X, Yang W, Xue Y (2008) The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180:811-820.
    93. Rittinger K, Budman J, Xu J, Volinia S, Cantley LC, Smerdon SJ, Gamblin SJ, Yaffe MB (1999) Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell 4:153-166.
    94. Rober-Kleber N, Albrechtova JT, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131: 1302-1312.
    95. Roberts MR (2003) 14-3-3 proteins find new partners in plant cell signaling. Trends Plant Sci.8: 218-223.
    96. Rohde A, De Rycke R, Beeckman T, Engler G, Van Montagu M, Boerjan W (2000) ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings. Plant Cell 12:35-52.
    97. Rommel C, Radziwill G, Lovric J, Noeldeke J, Heinicke T, Jones D, Aitken A, Moelling K (1996) Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene 12:609-619.
    98. Rooney MF, Ferl RJ (1995) Sequences of three Arabidopsis general regulatory factor genes encoding GF14 (14-3-3) proteins. Plant Physiol 107:283-284.
    99. Rosenquist M, Alsterfjord M, Larsson C, Sommarin M (2001) Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol 127:142-149.
    100. Rosenquist M, Sehnke P, Ferl RJ, Sommarin M, Larsson C (2000) Evolution of the 14-3-3 protein family:does the large number of isoforms in multicellular organisms reflect functional specificity?. J Mol Evol 51:446-458.
    101.Ruan YL, Chourey PS, Delmer DP, Perez-Grau L (1997) The Differential Expression of Sucrose Synthase in Relation to Diverse Patterns of Carbon Partitioning in Developing Cotton Seed. Plant Physiol 115:375-385.
    102.Ruan YL, Chourey PS (1998) A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol 118:399-406.
    103.Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47-60.
    104.Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS (2005) The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. J Exp Bot 56:977-984.
    105. Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19:2749-2762.
    106. Ryu H, Cho H, Kim K, Hwang I (2010) Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling. Mol Cells 29: 283-290.
    107. Samuel Yang S, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Jeffrey Chen Z (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761-775.
    108. Santoro MM, Gaudino G, Marchisio PC (2003) The MSP receptor regulates alpha6beta4 and alpha3betal integrins via 14-3-3 proteins in keratinocyte migration. Dev Cell 5:257-271.
    109. Schumacher K, Vafeados D, McCarthy M, Sze H, Wilkins T, Chory J (1999) The Arabidopsis det3 mutant reveals a central role for the vacuolar H(+)-ATPase in plant growth and development. Genes Dev 13:3259-3270.
    110.Schoonheim PJ, Veiga H, Pereira Dda C, Friso G, van Wijk KJ, de Boer AH (2007) A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. Plant Physiol 143:670-683.
    111.Schoonheim PJ, Sinnige MP, Casaretto JA, Veiga H, Bunney TD, Quatrano RS, de Boer AH (2007) 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J 49:289-301.
    112. Schoonheim PJ, Costa Pereira DD, De Boer AH (2009) Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signaling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ 32:439-447.
    113.Schulta TF, Medina J, Hill A, Quatrano RS (1998) 14-3-3 proteins are part of an abscisic acid-VIVIPAROUS1(VP1) response complex in the Em promoter and interact with VP1 and EmBP1. Plant Cell 10:837-847.
    114. Sehnke PC, DeLille JM, Ferl RJ (2002) Consummating signal transduction:the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14: S339-S354.
    115. Seimiya H, Sawada H, Muramatsu Y, Shimizu M, Ohko K, Yamane K, Tsuruo T (2000) Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J 19: 2652-2661.
    116. Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651-664.
    117. Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998) Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol 116:1539-1549.
    118. Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46:1384-1391.
    119. Sun Y Allen RD (2005) Functional analysis of the BIN2 genes of cotton. Mol Genet Genomics 274:51-59.
    120. Sun Y, Fokar M, Asami T, Yoshida S, Allen RD (2004) Characterization of the brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol 54:221-232.
    121. Suo J, Liang X, Pu L, Zhang Y, Xue Y (2003) Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta 1630:25-34.
    122. Suzuki M, Kao CY, McCarty DR (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9:799-807.
    123. Tang SJ, Suen TC, McInnes RR, Buchwald M (1998) Association of the TLX-2 homeodomain and 14-3-3eta signaling proteins. J Biol Chem 273:25356-25363.
    124. Takahashi T, Gasch A, Nishizawa N, Chua NH (1995) The DIMINUTO gene of Arabidopsis is involved in regulating cell,elongation. Genes Dev 9:97-107.
    125. Takahashi Y, Kinoshita T, Shimazaki K (2007) Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA. Plant Cell Physiol 48:1182-1191.
    126.Tanji M, Horwitz R, Rosenfeld G, Waymire JC (1994) Activation of protein kinase C by purified bovine brain 14-3-3:comparison with tyrosine hydroxylase activation. J Neurochem 63:1908-1916.
    127. Testerink C, van der Meulen RM, Oppedijk BJ, de Boer AH, Heimovaara-Dijkstra S, Kijne JW, Wang M (1999) Differences in spatial expression between 14-3-3 isoforms in germinating barley embryos. Plant Physiol 121:81-88.
    128. Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH, Dobyns W, Ledbetter D, Hirotsune S, Wynshaw-Boris A (2003) 14-3-3epsilon is important for neuronal migration by binding to NUDEL:a molecular explanation for Miller-Dieker syndrome. Nat Genet 34:274-285.
    129. Turley RB, Ferguson DL (1996) Changes of ovule proteins during early fiber development in a normal and a fiberless line of cotton (Gossypium hirsutum L.). J Plant Physiol,149:695-702.
    130. Twari SC, Wilkins TA (1995) Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can J Bot 73:746-757.
    131.Tzivion G, Avruch J (2002) 14-3-3 proteins:active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 277:3061-3064.
    132. van Heusden GP, van der Zanden AL, Ferl RJ, Steensma HY (1996) Four Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal yeast bmhl bmh2 double disruption. FEBS Lett 391:252-256.
    133.Verslues PE, Zhu JK (2005) Before and beyond ABA:upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans 33: 375-379.
    134. Wang B, Yang H, Liu YC, Jelinek T, Zhang L, Ruoslahti E, Fu H (1999) Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38: 12499-12504.
    135. Wang HY, Yu Y, Chen ZL, Xia GX (2005) Functional characterization of Gossypium hirsutum profiling 1 gene (GhPFN1) in tobacco suspension cells. Characterization of in vivo functions of a cotton profiling gene. Planta 222:594-603.
    136. Wang W, Shakes DC (1996) Molecular evolution of the 14-3-3 protein family. J Mol Evol 43: 384-398.
    137.Watanabe M, Isobe T, Ichimura T, Kuwano R, Takahashi Y, Kondo H, Inoue Y (1994) Molecular cloning of rat cDNAs for the zeta and theta subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain. Brain Res Mol Brain Res 25:113-121.
    138. Wilczynski G, Kulma A, Szopa J (1998) The expression of 14-3-3 isoforms in potato is developmentally regulated. J Plant Physiol 153:118-126.
    139. Wilkins TA (1993) Vacuolar H(+)-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum) ovules. Plant Physiol 102:679-680.
    140. Wu K, Rooney MF, Ferl RJ (1997) The Arabidopsis 14-3-3 multigene family. Plant Physiol 114:1421-1431.
    141.Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7:1555-1567.
    142. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. 91:961-971.
    143. Yaffe MB (2002) How do 14-3-3 proteins work?-Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513:53-57.
    144. Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14 lambda in cotton leads to a "stay-green" phenotype-and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 45: 1007-1014.
    145. Yao Y, Du Y, Jiang L, Liu JY (2001) Molecular analysis and wxpression patterns of the 14-3-3 gene family from Oryza sativa. J Biochem Mol Biol 40:349-357.
    146. Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181-191.
    147.Zeng Y, Piwnica-Worms H (1999) DNA damage and replication checkpoints in fission yeast require nuclear exclusion of the Cdc25 phosphatase via 14-3-3 binding. Mol Cell Biol 19: 7410-7419.
    148.Zhai J, Lin H, Shamim M, Schlaepfer WW, Canete-Soler R (2001) Identification of a novel interaction of 14-3-3 with p190RhoGEF. J Biol Chem 276:41318-41324.
    149. Zhang L, Wang H, Liu D, Liddington R, Fu H (1997) Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49. J Biol Chem 272:13717-13724.
    150. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)
    151. Zhao GR, Liu JY (2002) Isolation of a cotton RGP gene:a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. Biochim Biophys Acta 1574: 370-374.
    152. Zurek DM, Clouse SD (1994) Molecular cloning and characterization of brassinosteroid-regulated cDNA from elongating soybean (Glycine max L.) epicotyls. Plant Physiol 104:161-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700