多效唑在水体中光化学降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多效唑是一种应用非常广泛的植物生长调节剂,有关其在稻田环境中的降解研究以及在水环境中的化学行为报道很少,本论文通过研究多效唑在水环境中的化学行为以及在稻田环境中的降解行为,包括多效唑残留量检测方法、多效唑在稻田环境中的降解、光降解及其影响因子和多效唑模拟废水的处理,为多效唑的合理使用、评价其环境安全性和开展生态环境修复提供科学依据,也能为多效唑农药生产废水处理工艺研究提供参考。论文主要内容如下:
     第一章为绪论,主要对农药在稻田环境中的残留消解、在水体中的光化学降解以及Fenton试剂处理农药废水等方面的相关概念、理论和国内外研究现状以及多效唑各方面的研究进展进行了简要的介绍和评述,同时指出了本研究的内容、意义以及目标。
     第二章研究并建立了多效唑在稻田环境中的残留检测方法,并用该方法研究了多效唑在稻田水土环境中的残留降解行为,结果表明:(1)建立了一种稻田环境中多效唑GC残留检测和分析方法。该方法选用丙酮水混合溶液(1/1,v/v)提取土壤中的多效唑,二氯甲烷提取植株中的多效唑,提取液用二氯甲烷萃取三次,再用石油醚与丙酮混合液(4/1,v/v)作淋洗液填有2cm厚无水硫酸钠+3g硅镁吸附剂+约2cm厚无水硫酸钠的层析柱净化,在优化的高效气相色谱条件下检测。在多效唑添加浓度范围内,样品中添加平均回收率在91.40%—106.90%,变异系数在2.52%—5.78%之间。稻田水、土样和植株中的最低检出浓度分别为:0.001mg/L、0.025mg/kg、0.05mg/kg。(2)15%多效唑可湿性粉剂按高剂量处理,其在稻田水、土壤和植株中的半衰期分别为5.50d、15.75d、2.93d(湖南);8.88d、15.13d、2.36d(天津)。(3)按使用剂量处理,在水稻收获时,在湖南、天津两地土壤、稻米及稻壳中均未检出多效唑;按高剂量处理,在水稻收获时,在湖南和天津土壤中的残留量分别为0.034mg/kg和0.025mg/kg。
     第三章研究了多效唑在水中的光化学降解行为,结果表明:(1)多效唑在不同光源下,其光降解速率有较大的差异,光降解速率顺序为:高压汞灯>紫外灯>太阳光;(2)在高压汞灯下,多效唑光降解速率随着初始浓度的增大而减慢。在同一初始浓度下,随着时间的延长,多效唑光降解率的变化逐渐减慢;(3)多效唑水溶液采用三种不同的通气方法处理,其光降解速率顺序为:通O_2>不通气>通N_2,表明多效唑在水中的光降解主要是光氧化降解;(4)在几种不同水质中多效唑光降解速率为:去离子水>井水>河水>池塘水>稻田水,各种不同水质的水中所含溶解性有机物和无机物以及电导率的不同是造成多效唑光降解差异的主要原因;(5)在pH缓冲溶液中,pH值对多效唑的光降解速度影响较大,多效唑的光降解速率在pH6和pH7中降解最快,在酸性和碱性环境中不利于多效唑的光降解。(6)多效唑在不同金属离子溶液中的实验表明,Fe~(3+)离子对多效唑具有敏化作用,敏化效应随离子浓度增加呈上升趋势,Cu~(2+)和Ca~(2+)对多效唑具有猝灭作用,且其光降解半衰期与Cu~(2+)和Ca~(2+)添加浓度呈正相关;(7)从四种化肥对多效唑光降解试验可知,磷酸二氢钾对多效唑的光降解有微弱的敏化作用,其半衰期与添加浓度呈负相关,在添加10mg/L时对多效唑光解的影响最大。而尿素、碳酸氢铵和氯化钾表现出猝灭作用;(8)在高压汞灯下,胡敏酸和富里酸的存在使多效唑的光降解速率降低,表现出了显著的光猝灭效应。(9)H_2O_2对多效唑的光降解表现出很强的敏化作用。在高压汞灯下,随H_2O_2浓度增大,多效唑光降解速率不断加快,当H_2O_2浓度达到20mg/L时,敏化效率不再提高。
     第四章研究了几种因素对多效唑模拟废水降解研究,比较了UV/Fenton、UV/类Fenton和UV/H_2O_2等几种光氧化体系对多效唑模拟废水处理的效果,结果表明:(1)在对多效唑模拟废水初步研究的基础上,确定了初步试验操作条件:[H_2O_2]为0.1 mol·L~(-1),[Fe~(2+)]为7mmol·L~(-1),反应pH值为4,反应时间为80min:(2)在正交实验的基础上,对多效唑模拟废水的四种影响因素进行优化,结果表明,多效唑随H_2O_2用量、pH、Fe~(2+)浓度和反应时间的增加,降解率不断增大,COD去除率也不断增大,当H_2O_2用量为0.2mol/L、pH 4、Fe~(2+)浓度为7mmol·L~(-1)和反应时间达到80min时,多效唑降解的最多,COD的去除效果最好,其去除率达到85%以上,之后COD去除率基本维持稳定。(3)比较了UV、UV/H_2O_2、UV/Fenton、UV/类Fenton四种光氧化体系对多效唑模拟废水的处理。在相同光照条件下,经过150min的反应,UV/Fenton、UV/类Fenton、Fenton体系多效唑废水CODcr的去除率达到了85%以上。
     第五章对本研究工作进行了总结和讨论,并提出了本研究的创新点和有待进一步研究的内容。
Paclobutrazol {(+/-R~*, R~*)-B-[(4-Chlorophenyl) methyl]-alpha-(1, 1-dimethylethyl)-1H-1, 2,4-thiazol-1-ethanol}is one kind of Plant Growth Regulator, which is popularized to use all overthe world today, but little information is available about its degradation behavior in the paddy andchenmical behavior in aqueous solution. In order to comprehensively evaluate environmentalsecurity of Paclobutrazol and for its reasonab application and ecological environmental restoration,and to provide referrence for production wastewater processing craft of Paclobutrazol, this paperaims to study the degradation of Pachlobutrazol in the paddy and photolysis of Paclobutrazol inaquatic environment, including the determination of Paclobutrazol, the degradation ofPaclobutrazol in the paddy and photolysis of Paclobutrazol in in aquatic environment, theinfluence as factors and disposed of pesticide wasterwater. The main results obtained were asfollows.
     Chapter one was introduction, in which the basic concepts, theories and current advances athome and abroad were reviewed briefly on residue degradation in the paddy enviroment,photolysis and the disposed of pesticide wasterwater with Fenton reagent. In addition, researchadvance of Paclobutrazol was summarized concisely. The contents and significances of thisresearch was also included in this chapter.
     In the chapter two,it studies and builds up the method of residual detemination of PlantGrowth Regulator 15%Paclobutrazol WP in the water, soil and paddy, and the degradation ofPaclobutrazol in the paddy. The results showed:(1)A new analytical method for deteminingresidues of Paclobutrazol in water, soil and paddy by GC was developed. The soil samples wereextracted with acetone water solution(1/1,v/v), and the paddy sample extracted withdichoromethane, then the extract re-extracted three times with dichoromethane, choose petroleumplus acetone(4/1,v/v) for pour solution. The quantification of the Paclobutrazol residue wasestablishied by GC. The results showed that the average recoveries of the method was from91.40%—106.90%at the fortified levels of 0.05~1.0mg/kg ( water sample mg/L) for the samples,and coefficient of variation was in range of 2.52%—5.78%. The minimun detectable limits inwater, soil and paddy were 0.001mg/L、0.025mg/kg、0.05mg/kg, respectively. The parameterssuch as accuracy, sensitivity, precision for the method were good to satisfy the essential rules ofpesticide residue determination. (2) At the application rate of 6000g/hm~2, the half-life ofPaclobutrazol in the water, soil and paddy were 5.5d, 15.75d, 2.93d(Hunan), 8.88d, 15.13d, 2.36d(Tianjin), respectively. (3) At the application rate of 3000g/hm~2, during the rice harvest, itdidn't detected Paclobutrazol among the rice and rice busk in Hunan and Tianjin. At theapplication rate of 6000g/hm~2, during the rice harvest, the final residual was 0.034mg/kg and0.025mg/kg, respectively, in Hunan and Tianjin.
     Chapter three was Studies on the photochenmical degradation of Paclobutrazol in aqueoussolution. The results showed that: (1) In natural water, the photolysis rate of Paclobutrazol hasgreat disparity under high-pressured mercury lamp, ultraviolet lamp and sunlight. Its order is thehigh-pressured mercury lamp>ultraviolet lamp>sunlight. (2) Under the high-pressured mercurylamp, the photolysis rate decreased with the increasing of initial concentration of Paclobutrazol.Under the identical initial concentration, photolysis rate of Paclobutrazol gradually tended to begentle with the extended time. Under the high-pressured mercury lamp, the differentconcentrations of dissolved oxygen in the pure water showed different orders of photolysis rate ofPaclobutrazol in the solutions. Its order was ventilate O_2>not ventilate O_2 and N_2>ventilateN_2. The dissolved oxygen had an important effect on photooxidation of Paclobutrazol. (4) Thephotolytic rates of Paclobutrazol in different aquatic solutions showed the followingsequences: pure water>well water>river water>pond water>paddy water. The main reason to causethe difference of photolysis of Paclobutrazol was the differences of dissolved organic, inorganicmatrix and conductivity in different natural water systems, pH value played an important role inthe photolysis rate of Paclobutrazol in the pH buffer solution. It showed that the photolysis ratewas quicker in pH6 and pH7 than in other buffer solutions. Photolysis of Paclobutrazol was stablein acid water and alkalinity water. (6)in metallic ion solution, Fe3~ made the half-life ofPaclobutrazol reduce, and the effect increases along with the ion concentration increases. Cu~(2+) andCa~(2+) showed photo-quenching effects on photolysis of Paclobutrazol and the photolytic half-lifewas posotively correlated to the concentration of Cu~(2+) and Ca~(2+). (7) From the experiments of fourfertilizers towards photolysis rates of Paclobutrazol under the high-pressured mercury lamp, itshowed that KH2PO4 had photosensitizing effects on Paclobutrazol. Its photolytic half-life wasnegatively correlated to the concentration of KH_2PO_4. When the concentration of KH_2PO_4 reached10mg/L, the photolysis effect of Paclobutrazol is the largest.However, NH_4HCO_3, urea and KClall showed photo-quenching effects on photolysis of Paclobutrazol. (8) under the high -pressuredmercury lamp, the higher concentration of HA and FA could reduce the photolysis rates, and haveremarkable photo-quenching effects on photolysis of Paclobutrazol. (9) under the high-pressuredmercury lamp, the photolysis rate of Paclobutrazol will be accelerated by the concentration ofH_2O_2. the higher the concentration of Paclobutrazol is the quicker the potolysis rate ofPaclobutrazol is. When the concentration of Paclobutrazol reached 20mg/L, photolysis rate didn't increase again.
     In the chapter four, it studied the four effect factors to the treatment wasterwater ofsimulation Paclobutrazol with orthogonal experiment. This paper compared with the treatmenteffects of wastewater containing Paclobutrazol with UV/Fenton(Fe~(2+)), UW/ Fenton(Fe~(3+)) andUV/H_2O_2. The result showed that (1)On the Basis of reasearch on herbicide simulationwastewater, determination the condition of the experiments by charging the amount of initialH_2O_2, Fe~(2+), pH and reaction time were made: [H_2O_2]=0.1mol·L~(-1), [Fe~(2+)]=7mmol·L~(-1), pH=4,reaction time=80min. (2) On the Basis of reasearch on herbicide simulation wastewater, carrieson the optimization to Paclobutrazol simulation wastewater in four kind of influences factor. Withthe increase of H_2O_2 and Fe~(2+) doses, pH value and reaction time, the photolysis rate ofPaclobutrazol increased, then the chemical oxygen demand removal rate increased also. But whenthe doses of H_2O_2 reached 0.2mol/L, the doses of Fe~(2+) reached 7mmol/L, pH value reached 4and the time surpassed 80min, the photolysis rate of Paclobutrazol up to largest, the chemicaloxygen demand removal rate was the largest and it reached 85%. Then the chemical oxygendemand removal rate maintained stable. (3) This paper compared with the treatment effects ofwastewater containing Paclobutrazol using Fenton reagent, UV/Fenton(Fe~(2+)), UV/ Fenton(Fe~(3+))and UV/H_2O_2. Under the same illumination condition, after 150min, the chemical oxygen demandremoval rate of UV/Fenton(Fe~(2+)), UV/ Fenton(Fe~(3+)) and Fenton reagent reached above 85%.
     In the last chapter, a summary was done on the research results, and meanwhile theinnovation of the research and the projects that need to be further studied were suggested.
引文
[1] 束放.2002年我国农药市场预测分析与展望[J].农药科学与管理,2002,23(1):46—47
    [2] 中国农业百科全书.农药卷.农业出版社.1993
    [3] 刘维屏主编.农药环境化学[M].北京:化学工业出版社,2006.1-11
    [4] 王岱峰.浅谈农药残留的控制.辽宁农业科学,2003(3):35
    [5] 张浩,王岩,逯忠斌等.莎阔丹除草剂在稻田环境中的残留动态研究.农药学学报,2003,5(3):64-68
    [6] 杨仁斌,龚道新,郭正元等.三种不同剂型的醚菊酯在稻田的残留降解研究[J].农业环境保护.2002,21(2):146—149
    [7] 张晓红,陈佳瀛.4种农药在稻田水中的残留降解[J].上海环境科学,2000,19(8):402—404
    [8] Eisert R, Levsen K. Determination of organophosphorus,triazine, and 2, 6-dinitroanalyine Pesticides in aqueous samples via SPME and GC with NPD detection[J]. Fresenius'Journal of Analytical Chemistry, 1995, 555-562
    [9] 田明.固相微萃取—气相色谱法测定水中的5种有机磷农药[J].云南环境科学,2001,20(4):60-62
    [10]李莲芳,李国学,杨仁斌等.水稻土中广灭灵残留动态及降解影响因子的研究[J].中国生态农业学报,2004,12(3):112—115
    [11] Baciochi R,Attina M,Lombardi G,et al.Fast determination of phenols in contaminated soiis[J].Journal of Chromatography Analysis, 2001, (1): 135-141
    [12] 郭正元沈丹.好年冬在柑桔及土壤中的残留降解研究[J].湖南农学院学报,1995,21(2):156-160
    [13] 贺德春,杨仁斌,龚道新,郭正元用气相色谱法测定面粉和大米中14种农药残留量[J].湖南农业大学学报(自然科学版),2004,30(2):161-164
    [14] Yang S S,Huang C B,Smetena I. Optimization of headspace sampling using solid-phase microextraction for volatile components in tobacco[J].Journal of Chromatography Analys is, 2001, (1): 33-39
    [15] 陈伟琪,侯小凤,张珞平SPME/GC联用测定蔬菜中残留有机磷农药的方法研究[J].厦门大学学报(自然科学版),2000,39(4):509-515
    [16] Bandara PMS, Tanino KK. Paclobutrazol enhances minituber production in Norland potatoes [J]. J Plant Growth Regul, 1995, 14: 151-155
    [17] Nickell LG. Plant growth regulator[A]. Hedin PA. Proc 18th Ann Mtg Soc. Amer[C]. New York, 1991
    [18] 王熹,陶龙兴.大田作物化控技术研究进展与应用前景[J].中国农业科技导报,2000,2(2):55—57
    [19] 王熹,俞美玉,陶龙兴等.作物化控原理[M].北京:中国农业科技出版社,1997
    [20] 吴晓玲,邵生荣,姚爱兴.植物生长延缓剂和修剪对多年生黑麦草抗寒性和抗热性的影响[J].草业科学.2005,22(7):83—85
    [21] 卜新华,牛柱贞,李笃信等.几种新型植物生长调节剂的药效试验[J].山西农业科学.2002,30(1):64—65
    [22] 于金莲,石登荣,任丽萍.水体中农药降解研究的进展.农业环境科学学报[J],2005,24(增刊):367-370
    [23] 蔡道基.化学农药环境安全性评价实验准则.国家环境保护局.1989.
    [24] 王丹军.氯苯嘧啶醇的光化学降解研究.安徽农业大学硕士学位论.2004.
    [25] 周作明.水体中三唑磷的光化学降解性能研究.湖南农业大学硕士学位论文.2002.
    [26] Choudhry G G, Zepp R G. Extrapolating Photolysis rate from the laboratory to the environment[J].Residue Review. 1983, 85: 89-110
    [27] 朱忠林,李伟,单正军等.吡虫啉的光解、水解和土壤降解[J]-农村生态环境,1997,13(4):25—28
    [28] 石利利,林玉锁,徐亦钢等,毒死蜱农药环境行为研究[J].土壤与环境,2000,9(1):73—74
    [29] 牛军峰,余刚,刘希涛.水相中POPs光化学降解研究进展[J].化学进展,2005,17(5):938—948
    [30] 任丽萍,田芹,周志强等.己唑醇的光化学降解.农药学学报[J],2004,6(4):73-77
    [31] 杨仁斌,刘毅华,郭正元.三唑酮的光化学降解研究.农业环境科学学报[J],2005,24(3):494-497
    [32] 葛利云,吴峰,邓南圣等.水溶液中2,42二氯苯酚的光降解研究.环境科学与技术[J],2004,27(1):27-31
    [33] 刘嫦娥,段昌群,曾清如等.环糊精衍生物(MCD和HPCD)对甲基对硫磷紫外光降解的影响研究.农业环境科学学报[J],2004,23(6):1124-1127
    [34] 胡继业,张文吉,李建中等.烯丙基苯酚在液相中的光化学降解研究.环境科学学报[J],2004,24(5):815-821
    [35] 邹雅竹,龚道新,汪传刚.顺式氯氰菊酯在不同pn值下的光化学降解[J].湖南农业大学学报(自然科学版).2006,32(3):333—335
    [36] 花日茂,程燕,葛世彬等.3种农药对异菌脲的光解影响及相互作用研究.安徽农业大学学报[J],2003,30(4):353-357
    [37] Zepp R. G, Faust B. C., Holgne J., Hydroxyl radical formation in aqueous reactions (pH 3~8) of iron(Ⅱ) with hydrogen peroside: the Photo-Fenton reaction, Environ. Sci. Technol., 1992, 26: 313~319
    [38] Bauer R., Fallmann H., The Photo-Fenton oxidation-A chaep and efficient wasterwater treatment method, Res. Chem. Intermed, 1997, 23: 341-354
    [39] Kim S., Geissen S, Vogelpohl A., Landftll leachate treatment by a photoassisted Fenton reaction, Wat. Sci. Tech., 1997, 35: 239-248
    [40] Bauer R. Waldner G., The Photo-Fenton reaction and TiO2/UV process for waste water treatment- novel development, Catalysis Today, 1999, 53: 131-144
    [41] 邓南圣,吴峰编著.环境光化学[M].北京:化学工业出版社.2003,275—280
    [42] 刘琼玉,李太友,李华禄等.太阳光助Fenton体系氧化降解苯酚废水的研究.重庆环境科学[J],2003,25(4):23—27
    [43] 李太友,刘琼玉,张小英.日光/草酸铁络合物/H_2O_2降解水中2,4-二氯苯酚[J].江汉大学学报(自然科学版),2004,32(2):77-79
    [44] 黄应平,刘德富,张水英等.可见光/Fenton光催化降解有机染料[J].高等学校化学学报,2005,26(12):2273—2278
    [45] 张亚平,韦朝海,吴超飞等.酵母废水的Fenton试剂氧化预处理[J].华南理工大学学报(自然科学版),2005,33(12):19—24
    [46] 程学文,栾金义,王宜军等.pH调节一Fenton试剂氧化法预处理间甲酚生产氧化废水[J].化工环保,2005,25(4):291—294
    [47] 周丹,呼世斌,张涛等.Fenton氧化一粉煤灰处理造纸废水的研究[J].西北农林科技大学 学报(自然科学版),2005,33(6):155—158
    [48] 叶必华,陈金龙,张全兴.Fenton试剂和氨吹脱法处理苯唑醇废水的试验研究[J].环境污染治理技术与设备,2003,4(2):10—13
    [49] 徐劲,孙水裕,蔡河山.Fenton试剂处理选矿废水的实验研究[J].环境科学与技术,2005,28(6):9~12
    [50] 陈传好,谢波,任源等.Fenton试剂处理废水中各影响因子的作用机制[J].环境科学,2000,21(5):93~96
    [51] 贾洪涛.植物生长延缓剂—多效唑[J].农技服务,2004,1:60—61
    [52] 贾洪涛,党金鼎,刘风莲.植物生长延缓剂多效唑的生理作用机理及应用[J].安徽农业科学,2003,31(2):323—324
    [53] 韩德复.多效唑的生理作用及作用机理[J].长春师院学报(自然科学报),1996,2:37—39
    [54] 张百臻主编.农药分析[M].北京:化学工业出版社,2005,108—112
    [55] 周玉萍,郑燕玲,田长恩.脱落酸、多效唑和油菜素内酯对低温期间香蕉过氧化物酶和电导率的影响[J].广西植物,2002,22(5):444—448
    [56] 汪自强,董明远.土壤中多效唑残留效应的研究初报[J].浙江农业学报1991,3(3):147—149
    [57] 于凤义,张萍,杨琇.~(14)C-PP_(333)在土壤及作物中的残留[J].核农学报.1996,10(3):173—176
    [58] 茅积余,李惠君,夏月娥等.多效唑毒性研究[J].浙江化工.1990,21(5):4-6
    [59] 楼小华,粱天锡.25种残留水平的有机磷和有机氮农药的毛细管气相色谱分析[J].农业环境保护.1989,8(2):31—32
    [60] 白桦,邱月明,郝楠等.气象色谱一质谱法测定粮谷中多效唑残留量[J].检验检疫科学.2004,14(3):54—55
    [61] 楼小华,粱天锡.多效唑在稻谷、稻株、土壤和田水中残留分析方法研究[J].农药.1990,20(1):31—32
    [62] 王安群,彭凤仙,邓益群.高效液相色谱法同时测定吡虫啉和多效唑[J].精细化工中间体.2004,34(2):72—73
    [63] 戴蕴青,刘肃,黄卫东等.高效液相色谱法测定苹果中的多效唑含量[J].色谱.1995,13(6):455—457
    [64] 石秋忠.乙草胺、多效唑乳油的气象色谱分析[J].镇江市高等专科学校学报.2000,13(2):67—68
    [65] 白桦,邱月明,郝楠等.气相色谱—质谱法测定粮谷中多效唑残留量[J].检疫检验科学.2004,14(3):54—55
    [66] 于永庆,夏国瑾,秦国宏等.多效唑的气相色谱分析[J].农药.1990,29(5):19—20
    [67] 楼小华,粱天锡.25种残留水平的有机磷和有机氮农药的毛细管气相色谱分析[J].农业环境保护.1989,8(2):31—32
    [68] 于凤义,张萍,杨琇.~(14)C-PP_(333)在土壤及作物中的残留[J].核农学报.1996,10(3):173—176
    [69] 戴蕴青,刘肃,黄卫东等.高效液相色谱法测定苹果中的多效唑含量[J].色谱.1995,13(6):455—457
    [70] 王安群,彭凤仙,邓益群.高效液相色谱法同时测定吡虫啉和多效唑[J].精细化工中间体.2004,34(2):72—73
    [71] 刘乾开,朱国念,施海萍.多效唑在稻田环境中的动态研究[J].浙江农业大学学报,1993, 19(4):413—418
    [72] 陶龙兴,王熹,俞美玉等.环境条件对烯效唑及多效唑在土壤中降解的影响[J]浙江农业学报,1997,9(5):246—250
    [73] 楼书联编.化学试剂配制手册(第一版)[M].南京:江苏科学技术出版社,1993,
    [74] Chouldhry G. G, Roof A. A, M Hutzinger. Mechanism in sensitized photochemistry of environmental chemicals. Toxicol Enviro. Chem, 1979, 2: 259—264
    [75] 李发生,王禹,王敏欣等.异丙草胺光解体系中溶液酸度及电导率变化与降解的协同效应[J].农业环境科学学报.2004,23(2):377—380
    [76] 王禹,李发生,王敏欣等.异丙草胺光解体系中溶解氧的增强效应[J].环境科学.2004,25(4):94—99
    [77] Benkelerg H. J., Warnech P. J. Electrical and chemical potential potentialsin quantum mechanical conductor, Phys. Chem.1995, 199: 5214
    [78] 奚旦立,张裕生,刘秀英编.环境检测[M].北京:高等教育出版社.2002,44—78
    [79] 张莉,杨桂朋.海洋中铁猛铜等过渡金属元素的光化学研究进展.海洋化学,2002,24(10):33—36
    [80] 张莉,杨桂朋.海洋中铁、锰、铜等过渡金属元素的光化学研究进展.海洋科学,2000,24(10):33—36
    [81] 岳永德主编.环境保护学.中国农业出版社.北京,1999
    [82] 李文忠主编.有机化学.上海交通大学出版社,1997,156~158
    [83] 刘中林.苯酚水溶液光催化降解的盐效应[J].中国环境科学,2003,23(5):539—542
    [84] 陈达美.ZiO_2悬浮体系光催化降解染料动力学研究.精细化工.2002,19(1):55—58
    [85] 皮广洁主编.农业资源利用与管理.北京:中国林业出版社.2000,217—218
    [86] Buxton BU. Critical review of rate constants for reactions of hydrated electons, hydrogen atoma and hydroxyl radicals(OH/O-) in aqueous solution.J.Phys. Chem.Ref., 1998, 17: 513—886
    [87] Oliver, C., Zafiriou, J.J.D, Richard, G.Z., etal. Photochemistry of natural waters. Environ. Sci. Technol, 1984, 18 (12): 358—371
    [88] 钱易,汤鸿霄,文湘划等著.水体颗粒物和难降解有机物的特性与控制技术原理下卷难降解有机物,中国环境科学出版社,第一版,2000
    [89] 肖和淼,陈士夫,王其召等.H_2_2、K_2S_2O_8光降解有机磷DDVP的研究[J].淮北煤师院学报,2000,21(2):43—46
    [90] 陈士夫,曹更玉.H_2O_2、金属离子等对Cr(Ⅵ)离子光催化还原及对敌敌畏农药光催化氧化的影响[J].感光科学与光化学.2002,20(6):435—440
    [91] Jorge L. L., Femando, S.G.E., Monica, C.G.et al.Hydroxyl radical initiatrd photodegradation of 4-chloro-dinitrobenzoic acid in aqueous solution.Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137: 177—184
    [92] 周细红,曾清如.紫外光和光氧化剂对水中氯仿及三氯乙烯和四氯乙烯的光降解作用.湖南农业大学学报(自然科学版),2001,27(2):130—133
    [93] 徐中儒.回归分析与试验设计[M].匕京:中国农业出版社,1998
    [94] 袁志发,周静芋.试验设计芋分析[M]北京:高等教育出版社,2000,292—303
    [95] 郭纯孝.计算化学[M]北京:化学工业出版社,2004,315—380
    [96] 陈传好,谢波,任源等.Fenton试剂处理废水中各影响因子的作用机制[J].环境科学,2000,3(21):93—96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700