米黑根毛霉β-葡聚糖酶、β-甘露糖苷酶结构与功能和基因组的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗜热真菌是一小类真菌,它们的最高生长温度可高达55-60℃。嗜热真菌也是重要的耐热酶的来源。由于来源于嗜热真菌的酶具有最适温度高、稳定性好的优点,因此被广泛的研究。本论文研究了米黑根毛霉(R. miehei)β-1,3-葡聚糖酶和β-甘露糖苷酶的克隆、表达、酶学性质、晶体结构和催化机理。为了进一步开发米黑根毛霉资源,对米黑根毛霉的基因组与转录组进行了研究。本论文的主要结果如下:
     (1)从米黑根毛霉中克隆表达了一种新的β-1,3-葡聚糖酶((RmLam81A)。该酶可以水解β-1,3-葡聚糖,如昆布多糖、可德兰多糖和酵母葡聚糖。解析了它的两种蛋白结构(Form Ⅰ-native和Form Ⅱ-Se)以及一种酶-昆布五糖复合物(RmLam81A/D475A-G5)的结构,分辨率分别为2.3、2.0和2.7A。RmLam81A由三个结构域构成,包括一个β-sandwich结构域,一个(α/α)6结构域和两者之间的一个小的结构域,与已知的β-1,3-葡聚糖酶结构明显不同。根据复合物的结构推测,Asp475和Glu557分别作为广义酸和广义碱起到催化的作用。酶-底物复合物还揭示,每个(RmLam81A结合三条昆布寡糖糖链,糖链的排列与天然葡聚糖的三股螺旋结构一致,据此推测该酶可以直接结合三螺旋p-葡聚糖。
     (2)从米黑根毛霉中克隆表达了一种GH5家族β-甘露糖苷酶((RmMan5B)。RmMan5B对甘露寡糖具有高的催化能力,高于人工底物pNPM,另外,它还表现出强的转糖苷能力,可以把甘露糖残基转移到果糖或甘露寡糖上。为了深入研究该酶的底物特异性和转糖苷活性,解析了RmMan5B以及它的一种突变蛋白(E202A)与甘露二糖、甘露三糖和甘露果糖复合物的结构,分辩分别为1.3、2.6、2.0和2.4A。和以往的报道一致,RmMan5B呈一种典型的(β/α)8-桶结构。与GH5家族β-甘露聚糖酶相比,一些更长的loops修饰催化位点,使RmMan5B成为外切酶。其中loop354-392,构成-1位结合位点一侧的空间位阻,参与β-甘露糖苷酶的催化口袋的构成。通过比较可以还确定Trp119、Asn260和Glu380,是与β-甘露糖苷酶外切活性相关的重要氨基酸。另外,酶-甘露果糖复合物结构的解析,可以解释RmMan5B可以利用果糖作为转糖昔受体的机理。
     (3)研究了米黑根毛霉CAU432的基因组和转录组。组装完成的基因组共有27.6-million-base (Mb),预测含有10,345个蛋白质编码基因。全基因组和编码基因中的G+C含量分别只有43.8%和47.4%,小于50%,虽然该菌是一种嗜热真菌。进化树显示米黑根毛霉与布拉克须霉进化关系最近,而不是毛霉或根霉。米黑根毛霉基因组中具有大量的蛋白酶编码基因。转录组表明,不少淀粉酶、葡聚糖酶、蛋白酶和脂肪酶基因具有高的转录水平。米黑根毛霉基因组的研究为嗜热真菌的嗜热机制的进一步研究、嗜热酶资源的开发利用及工业化生产提供依据。
Thermophilic fungi are a small assemblage in mycota that have a maximum temperature of growth extending up to55to60℃. They are also potential sources of enzymes with scientific and commercial interests. In the present dissertation, a (3-1,3-glucanase and a β-mannosidase were cloned from thermophilic fungi Rhizomucor miehei and expressed heterologously in E. coli. Purification of the recombinant enzymes and their structural and biochemical characterization was performed. To facilitate future investigations, we sequenced the genome of R. miehei CAU432. The main results are as follows:
     (1) A novel GH family81P-1,3-glucanase gene (RmLam81A) from Rhzmucor miehei was expressed in E. coli. The enzyme can hydrolyze laminarin, curdlan and yeast β-D-glucan. Purified RmLam8lA (Form I-native), its Selenomethionine-derivative (Form Il-Se) and an inactive mutant D475A in complex with laminaripentaose (RmLam81A/D475A-G5) were crystallized and determined at2.3,2.0and2.7A resolution, respectively. The overall structure of GH family81β-1,3-glucanase contains each monomer of the protein is arranged in a β-sandwich domain, a (α/α)6domain and an additional domain between them. Comparison with structures of β-1,3-glucanases from other GH families revealed differences in three-dimensional structure. Asp475and Glu557are proposed to serve as the proton donor and nucleophile, respectively, in a single-displacement mechanism. The structure of RmLam81A with laminaripentaose also showed binding details with three laminari-oligosaccharides, proving that the enzyme can recognize triplex β-glucan. The structure of first crystal structure of a GH family81member will be helpful to study the GH family81proteins and endo-β-1,3-glucanases.
     (2) A first fungal GH family5β-mannosidase(RmMan5B) from R. miehei was functionally and structurally characterized. RmMan5B exhibited much higher activity against mannan oligosaccharides compared with p-nitrophenyl β-D-mannopyranoside (pNPM) and had a transglycosylation action which transferred mannose residue to sugars such as fructose. To investigate its substrate specificity and transglycosylation activities, the crystal structures of RmMan5B and an inactive mutant E202A in complex with mannobiose, mannotriose and mannosyl-fructose have been determined at a resolution of1.3,2.6,2.0and2.4A, respectively. The enzyme adopts the (β/α)8barrel architecture common to the members of GH family5, but shows several differences in the loops around the active site. The extended loop between strand β8and helix a8(residues354-392) forms a "double" steric barrier to "block" the substrate binding cleft at the end of the-1subsite. Comparied with β-mannanases, Trp119, Asn260and Glu380which are involved in the hydrogen bonds contact with-1mannose might be essential for exo-catalytic activity. Moreover, the structure in complex with mannosyl-fructose has provided an evidence for the interactions between the β-mannosidase and the D-fructofuranose, and explains why fructose is an effective transglycosylation acceptor.
     (3) The assembled genome size of R. miehei CAU432is27.6-million-base (Mb) with10,345predicted protein-coding genes. Even being thermophilic, the G+C contents of fungal whole genome (43.8%) and coding genes (47.4%) are less than50%. Phylogenetically, R. miehei is more closerly related to Phycomyces blakesleeanus than to Mucor circinelloides and Rhizopus oryzae. The genome of R. miehei harbors a large number of genes encoding secreted proteases, which is consistent with the characteristics of R. miehei being a rich producer of proteases. The transcriptome profile of R. miehei showed that the genes responsible for degrading starch, glucan, protein and lipid were highly expressed. The genome information of R. miehei will facilitate future studies to better understand the mechanisms of fungal thermophilic adaptation and the exploring of the potential of R. miehei in industrial-scale production of thermostable enzymes.
引文
Adams, P.D., Afonine, P.V., Bunkoczi, G., et al. PHENIX:a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. D,2010,66:213-221.
    Ajisaka, K., Nishida, H., Fujimoto, H. The synthesis of oligosaccharides by the reversed hydrolysis reaction of β-glucosidase at high substrate concentration and at high temperature. Biotechnol. Lett.,1987,9:243-248.
    Ali, U.F., Ibrahim, Z. Production and some properties of fibrinolytic enzyme from Rhizomucor miehei (Cooney & Emerson) Schipper. J. Appl. Sci.,2008,4:892-899.
    Alkhayat, A.H., Kraemer, S.A., Leipprandt, J.R., et al. Human β-mannosidase cDNA characterization and first identification of a mutation associated with human β-mannosidosis. Hum. Mol. Genet., 1998,7:75-83.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res.,1997a,25:3389-3402.
    Amlacher, S., Sarges, P., Flemming, D., et al. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell,2011,146:277-289.
    Aspeborg, H., Coutinho, P.M., Wang, Y., et al. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol. Biol.,2012,12:186.
    Battaglia, E., Benoit, I., van den Brink, J., et al. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae:a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genomics,2011,12:38.
    Bendtsen, J.D., Nielsen, H., von Heijne, G., et al. Improved prediction of signal peptides:SignalP 3.0. J. Mol. Biol.,2004,340:783-795.
    Berka, R.M., Grigoriev, I.V., Otillar, R., et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol.,2011,29:922-927.
    Blattel, V., Larisika, M., Pfeiffer, P., et al. β-1,3-Glucanase from Delftia tsuruhatensis strain MV01 and its potential application in vinification. Appl. Environ. Microb.,2011,77:983-990.
    Boel, E., Huge-Jensen, B., Christensen, M., et al. Rhizomucor miehei triglyceride lipase is synthesized as a precursor. Lipids,1988,23:701-706.
    Bond, C.S. TopDraw:a sketchpad for protein structure topology cartoons. Bioinformatics,2003,19: 311-312.
    Bornscheuer, U.T. Microbial carboxyl esterases:classification, properties and application in biocatalysis. FEMS Microbiol. Rev.,2002,26:73-81.
    Bouquelet, S., Spik, G., Montreuil, J. Properties of a beta-D-mannosidase from Aspergillus niger. Biochim. Biophys. Acta,1978,522:521-530.
    Bourgault, R., Oakley, A.J., Bewley, J.D., et al. Three-dimensional structure of (1,4)-beta-D-mannan mannanohydrolase from tomato fruit. Protein Sci.,2005,14:1233-1241.
    Bowman, S.M., Free, S.J. The structure and synthesis of the fungal cell wall. Bioessays,2006,28: 799-808.
    Cantarel, B.L., Coutinho, P.M., Rancurel, C., et al. The Carbohydrate-Active EnZymes database (CAZy):an expert resource for Glycogenomics. Nucleic Acids Res.,2009,37:D233-238.
    Chauhan, P.S., Puri, N., Sharma, P., et al. Mannanases:microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biot,2012,93:1817-1830.
    Chen, H., Leipprandt, J.R., Traviss, C.E., et al. Molecular Cloning and Characterization of Bovine-Mannosidase. J. Biol. Chem.,1995,270:3841-3848.
    Chen, V.B., Arendall, W.B.,3rd, Headd, J.J., et al. MolProbity:all-atom structure validation for macromolecular crystallography. Acta Cryst. D,2010,66:12-21.
    Colaco, C., Sen, S., Thangavelu, M., et al. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Nat. Biotechnol.,1992,10:1007-1011.
    Couturier, M., Roussel, A., Rosengren, A., et al. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 beta-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharides catalysis. J. Biol. Chem.,2013.288:14624-35
    da Silva Aires, R., Steindorff, A.S., Ramada, M.H.S., et al. Biochemical characterization of a 27kDa 1,3-p-D-glucanase from Trichoderma asperellum induced by cell wall of Rhizoctonia solani. Carbohyd. Polym.,2012,87:1219-1223.
    De Bie, T., Cristianini, N, Demuth, J.P., et al. CAFE:a computational tool for the study of gene family evolution. Bioinformatics,2006,22:1269-1271.
    de Hoog, G.S., Guarro, J., Gene, J., et al. Atlas of clinical fungi[M]. Centraalbureau voor Schimmeleultures (CBS),2000.
    Dean, R.A., Talbot, N.J., Ebbole, D.J., et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature,2005,434:980-986.
    Dhawan, S., Kaur, J. Microbial mannanases:an overview of production and applications. Crit. Rev. Biotechnol.,2007,27:197-216.
    Dias, F.M., Vincent, F., Pell, G., et al. Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J. Biol. Chem.,2004,279:25517-26.
    Dilokpimol, A., Nakai, H., Gotfredsen, C.H., et al. Recombinant production and characterisation of two related GH5 endo-beta-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity. Biochim. Biophys. Acta,2011,1814:1720-1729.
    dos Santos, C.R., Paiva, J.H., Meza, A.N., et al. Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-beta-D-mannanase. J. Struct. Biol.,2012,177: 469-476.
    Dotsenko, G., Semenova, M., Sinitsyna, O., et al. Cloning, purification, and characterization of galactomannan-degrading enzymes from Myceliophthora thermophila. Biochemistry,2012,77: 1303-1311.
    Edgar, R.C. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.,2004,32:1792-1797.
    Ellwood, S.R., Liu, Z., Syme, R.A., et al. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biol.,2010,11:R109.
    Emsley, P., Cowtan, K. Coot:model-building tools for molecular graphics. Acta Cryst. D,2004,60: 2126-2132.
    Eneyskaya, E.V., Sundqvist, G., Golubev, A.M., et al. Transglycosylating and hydrolytic activities of the β-mannosidase from Trichoderma reesei. Biochimie,2009,91:632-638.
    Espagnel, E., Lespinetl, O., MalagnacI, F., et al. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol.,2008,9:R77.
    Evgeny, K., Kim, H. Detection of protein assemblies in crystals. Lect. Notes Comput. Sc,2005,3695: 163-174.
    Fawzi, E.M. Highly thermostable purified xylanase from Rhizomucor miehei NRRL 3169. Ann. Microbiol,2010,60:363-368.
    Fibriansah, G., Masuda, S., Koizumi, N., et al. The 1.3 A crystal structure of a novel endo-beta-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96. Proteins,2007,69:683-690.
    Fliegmann, J., Montel, E., Djulic, A., et al. Catalytic properties of the bifunctional soybean beta-glucan-binding protein, a member of family 81 glycoside hydrolases. FEBS lett.,2005, 579:6647-6652.
    Fontaine, T., Hartland, R.P., Beauvais, A., et al. Purification and characterization of an endo-1,3-beta-glucanase from Aspergillus fumigatus. Eur. J. Biochem.,1997,243:315-321.
    Galagan, J.E., Henn, M.R., Ma, L.-J., et al. Genomics of the fungal kingdom:insights into eukaryotic biology. Genome Res.,2005a,15:1620-1631.
    Galagan, J.E., Calvo, S.E., Borkovich, K.A., et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature,2003,422:859-868.
    Galagan, J.E., Calvo, S.E., Cuomo, C., et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A oryzae. Nature,2005b,438:1105-1115.
    Galatis, B., Apostolakos, P. A new callose function. Plant Signal Behav.,2010,5:1359-1364.
    Gao, Q., Jin, K., Ying, S.-H., et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet.,2011,7: e1001264.
    Goffeau, A., Barrell, B., Bussey, H., et al. Life with 6000 genes. Science,1996,274:546-567.
    Goncalves, A.M., Silva, C.S., Madeira, T.I., et al. Endo-beta-D-1,4-mannanase from Chrysonilia sitophila displays a novel loop arrangement for substrate selectivity. Acta Cryst. D,2012,68: 1468-1478.
    Gouet, P., Robert, X., Courcelle, E. ESPript/ENDscript:Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res.,2003,31:3320-3323.
    Grandpierre, C., Janssen, H.-G., Laroche, C., et al. Enzymatic and chemical degradation of curdlan targeting the production of β-1-3-oligoglucans. Carbohyd. Polym.,2008,71:277-286.
    Hanashima, S., Ikeda, A., Tanaka, H., et al. NMR study of short β-1-3-glucans provides insights into the structure and interaction with Dectin-1. Glycoconjugate J.,2013:1-9.
    Harboe, M.K. Rhizomucor miehei aspartic proteinases having improved properties[M]. Aspartic Proteinases, Springer US,1998:293-296.
    Hartl, F.U., Hayer-Hartl, M. Molecular chaperones in the cytosol:from nascent chain to folded protein. Science,2002,295:1852-1858.
    Hartl, L., Gastebois, A., Aimanianda, V., et al. Characterization of the GPI-anchored endo β-1, 3-glucanase Eng2 of Aspergillus fumigatus. Fungal Genet. Biol.,2011,48:185-191.
    Hartland, R.P., Fontaine, T., Debeaupuis, J.-P., et al. A novel β-(1,2,3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. J. Biol. Chem.,1996,271:26843-26849.
    Hibbett, D.S., Binder, M., Bischoff, J.F., et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res.,2007,111:509-547.
    Hilge, M., Gloor, S.M., Rypniewski, W., et al. High-resolution native and complex structures of thermostable β-mannanase from Thermomonospora fusca substrate specificity in glycosyl hydrolase family 5. Structure,1998,6:1433-1444.
    Hong, T.-Y., Cheng, C.-W., Huang, J.-W., et al. Isolation and biochemical characterization of an endo-1,3-β-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-(3-glucan. Microbiology,2002,148:1151-1159.
    Ishida, T., Fushinobu, S., Kawai, R., et al. Crystal structure of glycoside hydrolase family 55 β-1, 3-glucanase from the basidiomycete Phanerochaete chrysosporium. J. Biol. Chem.,2009,284: 10100-09.
    Johansson, E., Hedbys, L., Mosbach, K., et al. Studies of the reversed a-mannosidase reaction in high concentrations of mannose. Enzyme Microb. Tech.,1989,11:347-352.
    Joseph, S., David, W. Molecular cloning:a laboratory manual[M]. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York,2001,2.
    Kanagawa, M., Satoh, T., Ikeda, A., et al. Structural insights into recognition of triple-helical β-glucans by an insect fungal receptor. J. Biol. Chem.,2011,286:29158-65.
    Kaper, T., van Heusden, H.H., van Loo, B., et al. Substrate specificity engineering of β-mannosidase and β-glucosidase from Pyrococcus by exchange of unique active site residues. Biochemistry, 2002,41:4147-4155.
    Katrolia, P., Jia, H., Yan, Q., et al. Characterization of a protease-resistant a-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides. Bioresource Technol,2012,110:578-586.
    Katrolia, P., Yan, Q., Zhang, P., et al. Gene Cloning and Enzymatic Characterization of an Alkali-Tolerant Endo-1,4-β-mannanase from Rhizomucor miehei. J. Agr. Food Chem.,2013, 61:394-401.
    Kobayashi, T., Abe, K., Asai, K., et al. Genomics of Aspergillus oryzae. Biosci. Biotech. Bioch.,2007, 71:646.
    Kuntothom, T., Luang, S., Harvey, A.J., et al. Rice family GH1 glycoside hydrolases with β-D-glucosidase and β-D-mannosidase activities. Arch. Biochem. Biophys.,2009,491:85-95.
    Larkin, M., Blackshields, G., Brown, N., et al. Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948.
    Latge, J.P. The cell wall:a carbohydrate armour for the fungal cell. Mol. Microbiol.,2007,66:279-290.
    Leah, R., Kigel, J., Svendsen, I., et al. Biochemical and molecular characterization of a barley seed-glucosidase. J. Biol. Chem.,1995,270:15789-97.
    Lechner, E., Achard, P., Vansiri, A., et al. F-box proteins everywhere. Curr. Opin. Plant. Biol.,2006,9: 631-638.
    Li, L., Stoeckert, C.J., Roos, D.S. OrthoMCL:identification of ortholog groups for eukaryotic genomes. Genome Res.,2003,13:2178-2189.
    Liberek, K., Lewandowska, A., Zietkiewicz, S. Chaperones in control of protein disaggregation. EMBO J.,2008,27:328-335.
    Liu, Y., Xu, H., Yan, Q., et al. Biochemical characterization of a first fungal esterase from Rhizomucor miehei showing high efficiency of ester synthesis. PloS One,2013,8:e77856.
    Lombard, V., Ramulu, H.G., Drula, E., et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res.,2014,42:D490-D495.
    Lv, J., Chen, Y, Pei, H., et al. Cloning, expression, and characterization of β-mannanase from Bacillus subtilis MAFIC-S11 in Pichia pastoris. Appl. Biochem. biotech.,2013,169:2326-2340.
    Ma, L.-J., Ibrahim, A.S., Skory, C, et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet.,2009,5:e1000549.
    Maheshwari, R., Bharadwaj, G., Bhat, M.K. Thermophilic fungi:their physiology and enzymes. Microbiol. Mol. Biol. R.,2000,64:461-488.
    Martinez, D., Larrondo, L.F., Putnam, N., et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol.,2004,22:695-700.
    Martinez, D., Berka, R.M., Henrissat, B., et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol.,2008, 26:553-560.
    Mayer, J., Conrad, J., Klaiber, I., et al. Enzymatic production and complete nuclear magnetic resonance assignment of the sugar lactulose. J. Agr. Food Chem.,2004,52:6983-6990.
    McGrath, C.E., Wilson, D.B. Characterization of a Thermobifida fusca beta-1,3-glucanase (Lam81A) with a potential role in plant biomass degradation. Biochemistry,2006,45:14094-14100.
    McIntosh, M., Stone, B., Stanisich, V. Curdlan and other bacterial β-1-3-D-glucans. Appl. Microbiol. Biot,2005,68:163-173.
    Mo, B., Bewley, D.J. β-Mannosidase (EC 3.2.1.25) activity during and following germination of tomato (Lycopersicon esculentum Mill.) seeds. Purification, cloning and characterization. Planta,2002,215:141-152.
    Montero-Barrientos, M., Hermosa, R., Cardoza, R., et al. Functional analysis of the Trichoderma harzianum noxl gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl. Environ. Microb.,2011, 77:3009-3016.
    Mora, C., Tittensor, D.P., Adl, S., et al. How many species are there on Earth and in the ocean? PLoS Biol.,2011,9:e1001127.
    Moreira, L.R., Filho, E.X. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biot,2008,79:165-178.
    Morgenstern, I., Powlowski, J., Ishmael, N., et al. A molecular phylogeny of thermophilic fungi. Fungal Biol,2012,116:489-502.
    Morin, E., Kohler, A., Baker, A.R., et al. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. P. Natl. Acad. Sci., 2012,109:17501-17506.
    Mouyna, I., Hartl, L., Latge, J.-P. β-1,3-glucan modifying enzymes in Aspergillus Jumigatus[M]. Frontiers in microbiology,2013,4.
    Muhlig Nielsen, M., Overgaard, J., Sarensen, J.G., et al. Role of HSF activation for resistance to heat, cold and high-temperature knock-down. J. Insect Physiol.,2005,51:1320-1329.
    Muramats, T., Egami, F. Alpha-mannosidase and beta-mannosidase from liver of turbo cortunus-purification properties and application in carbohydrate research. J. Biochem.,1967,62: 700-709.
    Murshudov, G.N., Skubak, P., Lebedev, A.A., et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst. D,2011,67:355-367.
    Ni, J., Takehara, M., Watanabe, H. Identification of activity related amino acid mutations of a GH9 termite cellulase. Bioresource Technol.,2010,101:6438-6443.
    Nierman, W.C., Pain, A., Anderson, M.J., et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature,2005,438:1151-1156.
    Orbach, M., Vollrath, D., Davis, R., et al. An electrophoretic karyotype of Neurospora crassa. Mol. Cell. Biol.,1988,8:1469-1473.
    Otwinowski, Z., Minor, W. Processing of X-ray diffraction data. Method Enzymol.,1997,276:307-326.
    Park, J.K., Kim, J.-D., Park, Y.I., et al. Purification and characterization of a β-1,3-D-glucanase from Streptomyces torulosus PCPOK-0324. Carbohyd. Polym.,2012,87:1641-1648.
    Parker, K.N., Chhabra, S.R., Lam, D., et al. Galactomannanases Man2 and Man5 from Thermotoga species:Growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol. Bioeng.,2001,75:322-333.
    Pel, H.J., De Winde, J.H., Archer, D.B., et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol.,2007,25:221-231.
    Polaina, J., MacCabe, A.P. Industrial enzymes:structure, function and applications[M]. Springer,2007.
    Punta, M., Coggill, P.C., Eberhardt, R.Y., et al. The Pfam protein families database. Nucleic Acids Res., 2012,40:D290-D301.
    Ramada, M.H.S., Lopes, F.A.C., Ulhoa, C.J., et al. Optimized microplate β-1,3-glucanase assay system for Trichoderma sp. screening. J. Microbiol. Meth.,2010,81:6-10.
    Rao, M.B., Tanksale, A.M., Ghatge, M.S., et al. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. R.,1998,62:597-635.
    Reddy, S.K., Rosengren, A., Klaubauf, S., et al. Phylogenetic analysis and substrate specificity of GH2 β-mannosidases from Aspergillus species. FEBS lett.,2013,587:3444-3449.
    Rodrigues, R.C., Fernandez-Lafuente, R. Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J. Mol. Catal. B-Enzym.,2010,64:1-22.
    Romero, G.O., Simmons, C., Yaneshita, M., et al. Characterization of rice endo-β-glucanase genes (Gns2-Gns14) defines a new subgroup within the gene family. Gene,1998,223:311-320.
    Rosengren, A., Hagglund, P., Anderson, L., et al. The role of subsite+2 of the Trichoderma reesei P-mannanase TrMan5A in hydrolysis and transglycosylation. Biocatal. Biotransfor.,2012,30: 338-352.
    Sorensen, J.G., Kristensen, T.N., Loeschcke, V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett.,2003,6:1025-1037.
    Sabini, E., Schubert, H., Murshudov, G., et al. The three-dimensional structure of a Trichoderma reesei beta-mannanase from glycoside hydrolase family 5. Acta Cryst. D,2000,56:3-13.
    Sakamoto, Y, Nakade, K., Konno, N. Endo-beta-1,3-glucanase GLU1, from the fruiting body of Lentinula edodes, belongs to a new glycoside hydrolase family. Appl. Environ. Microb.,2011, 77:8350-8354.
    Sanderson, M.J. r8s:inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics,2003,19:301-302.
    Sangeetha, R., Arulpandi, I., Geetha, A. Bacterial lipases as potential industrial biocatalysts:an overview. Res. J. Microbiol.,2011,6:1-24.
    Schipper, M.A.A. On the genera Rhizomucor and Parasitella. Stud. Mycol.,1978,17:53-71.
    Schmidt, H.A., Strimmer, K., Vingron, M., et al. TREE-PUZZLE:maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics,2002,18:502-504.
    Seidl, V. Chitinases of filamentous fungi:a large group of diverse proteins with multiple physiological functions. Fungal Biol. Rev.,2008,22:36-42.
    Shi, H., Huang, Y, Zhang, Y., et al. High-level expression of a novel thermostable and mannose-tolerant beta-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli. BMC biotechnol.,2013,13:83.
    Stanke, M., Keller, O., Gunduz, I., et al. AUGUSTUS:ab initio prediction of alternative transcripts. Nucleic Acids Res.,2006,34:W435-W439.
    Stoll, D., Stalbrand, H., Warren, R.A.J. Mannan-Degrading Enzymes from Cellulomonas fimi. Appl. Environ. Microb.,1999,65:2598-2605.
    Su, Y.-c., Xu, L.-p., Xue, B.-t, et al. Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluAl and ScGluDl from sugarcane infected by Sporisorium scitamineum. Plant Cell Rep.,2013,32:1503-1519.
    Sweeney, M.D., Xu, F. Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments. Catalysts,2012,2:244-263.
    Tailford, L.E., Money, V.A., Smith, N.L., et al. Mannose foraging by Bacteroides thetaiotaomicron structure and specificity of the β-mannosidase,BtMan2A. J. Biol. Chem.,2007,282: 11291-11299.
    Tailford, L.E., Offen, W.A., Smith, N.L., et al. Structural and biochemical evidence for a boat-like transition state in p-mannosidases. Nat. Chem. Biol.,2008,4:306-312.
    Tajdini, F., Amini, M.A., Nafissi-Varcheh, N., et al. Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. Int. J. Biol. Macromol.,2010,47:180-183.
    Tang, Y., Yang, S., Yan, Q., et al. Purification and characterization of a novel beta-1,3-1,4-glucanase (lichenase) from thermophilic Rhizomucor miehei with high specific activity and its gene sequence. J. Agr. Food Chem.,2012,60:2354-2361.
    Tankrathok, A., Iglesias-Fernandez, J., Luang, S., et al. Structural analysis and insights into the glycon specificity of the rice GH1 Os7BGlu26 β-D-mannosidase. Acta Cryst. D,2013,69:2124-2135.
    Tarailo-Graovac, M., Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics,2009:11-14.
    Taylor, J.W., Berbee, M.L. Dating divergences in the fungal tree of life:review and new analyses. Mycologia,2006,98:838-849.
    Van Zyl, W.H., Rose, S.H., Trollope, K., et al. Fungal β-mannanases:mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem.,2010,45:1203-1213.
    Vasur, J., Kawai, R., Andersson, E., et al. X-ray crystal structures of Phanerochaete chrysosporium Laminarinase 16A in complex with products from lichenin and laminarin hydrolysis. FEBS J., 2009,276:3858-3869.
    Vergara, I.A., Chen, N. Large synteny blocks revealed between Caenorhabditis elegans and Caenorhabditis briggsae genomes using OrthoCluster. BMC genomics,2010,11:516.
    Wallace, A.C., Laskowski, R.A., Thornton, J.M. LIGPLOT:a program to generate schematic diagrams of protein-ligand interactions. Protein Eng.,1995,8:127-134.
    Wang, L., Feng, Z., Wang, X., et al. DEGseq:an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics,2010,26:136-138.
    Wojtkowiak, A., Witek, K., Hennig, J., et al. Two high-resolution structures of potato endo-1, 3-glucanase reveal subdomain flexibility with implications for substrate binding. Acta Cryst. D, 2012,68:713-723.
    Woo, J.-B., Kang, H.-N., Woo, E.-J., et al. Molecular cloning and functional characterization of an endo-β-1,3-glucanase from Streptomyces matensis ATCC 23935. Food Chem.,2014,148: 184-187.
    Wood, V., Gwilliam, R., Rajandream, M.-A., et al. The genome sequence of Schizosaccharomyces pombe. Nature,2002,415:871-880.
    Wu, S., Cai, R., Sun, Y. Degradation of curdlan using hydrogen peroxide. Food Chem.,2012,135: 2436-2438.
    Yuan, X.-L., van der Kaaij, R.M., van den Hondel, C.A., et al. Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol. Genet. Genomics,2008,279:545-561.
    Zahura, U.A., Rahman, M.M., Inoue, A., et al. Characterization of a β-D-mannosidase from a marine gastropod, Aplysia kurodai. Comp. Biochem. Physiol. B Biochem. Mol. Biol.,2012,162: 24-33.
    Zhang, M., Jiang, Z., Li, L., et al. Biochemical characterization of a recombinant thermostable β-mannosidase from Thermotoga maritima with transglycosidase activity. J. Mol. Catal. B-Enzym.,2009,60:119-124.
    Zhang, Y, Ju, J., Peng, H., et al. Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J. Biol. Chem.,2008,283:31551-58.
    Zhao, Y, Park, R.-D., Muzzarelli, R.A. Chitin deacetylases:properties and applications. Mar. Drugs, 2010,8:24-46.
    Zhu, H., Qu, F., Zhu, L.-H. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res.,1993,21:5279.
    傅彬,赵小明,杜昱光.葡寡糖诱导植物抗病性的研究进展[J].中国生物防治学报,2011,27(2):269-275.
    贾尼特,薛庆中.新一代基因组测序[M].科学出版社,2012.
    柯衡明,陈玉祥,蔡继文.生物大分子的X射线晶体学[M].化学工业出版社,2010.
    刘莉扬,崔鸿飞,田埂.高通量测序技术在宏基因组学中的应用[M].中国医药生物技术,2013,8(3):196-200.
    徐中平,李福川.昆布多糖硫酸酯的抑制血管生成和抗肿瘤作用[J].中草药,1999,30:551-553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700