食品级酿酒酵母高效分泌/展示表达系统构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因工程酵母菌在食品工业中的应用逐渐普遍,但重组菌抗生素抗性标记的存在对食品安全具有潜在隐患。此外,较低的生产成本、简单方便的下游操作技术和高水平的表达量等是工业大规模生产重组蛋白必须具备的特点。
     针对这些问题,本课题根据半乳糖-葡萄糖对GAL基因家族诱导-抑制效应以及GAL4p对GAL基因的调控机制,采用同源重组技术分步敲除了工业多倍体酿酒酵母MS-1染色体上的GAL1基因,并将GAL4基因整合到GALl基因位点,构建了不同GAL基因型的重组酵母SG1、DG115.DPG65和GQ21。同时,选用α-半乳糖苷酶作为食品级选择标记、β-1,3-1,4-葡聚糖酶作为报告基因构建了在GALl启动子和MFαl信号肽控制指导下的食品级分泌表达载体YGMPA-PM:并以α-凝集素C-端320个氨基酸为锚定序列,构建了能够展示表达p-1,3-1,4-葡聚糖酶的食品级展示表达载体YGMPNA-PM.将构建的载体和不同GAL基因型的重组酵母相结合,得到了适合工业化生产的食品级高效分泌表达系统和食品级高效展示表达系统。主要研究结果如下:扩增了GAL4结构基因全长序列,并构建了包含GAL4基因+KanMX表达盒的模板质粒PMD18-TGK.通过同源重组以GAL4+KanMX表达盒替换了工业三倍体酵母MS-1的三个等位的GALl基因中的一个,得到具有双GAL4的重组酵母。以KanMX为敲除框架,敲除了MS-l染色体上的一个GALl基因。利用LFH原理,设计了另外两套基因敲除框架KanMX+GALls和GALlt+KanMX,依次敲除了双GAL4重组菌株染色体上剩余的两个GALl等位基因。考虑到重组菌株应用的安全性,利用Cre/loxP系统切除了构建重组酿酒酵母菌株时使用的KanMX抗性表达盒,并通过传代使Zeocin抗性质粒pSH47/ZEO丢失,得到不同GAL基因型的重组酵母SGl、DG115.DPG65和GQ21。其中,重组菌株GQ21染色体上三个GALl基因全部缺失,且其中一个GALl基因位点被整合了一个GAL4基因拷贝。
     对不同GAL基因型的重组酵母SG1、DG115、DPG65和GQ21在含有不同碳源的培养基中的生长、发酵性能以及抗性和遗传稳定性进行了测试。结果表明,重组酵母的GAL基因型在传代过程中保持稳定,没有发生回复突变且抗性基因已经被彻底删除。GALl基因的缺失对重组菌株对葡萄糖的利用有轻微地影响。不同的培养方式影响重组酵母对半乳糖的利用。在YPG培养基中,GALl基因敲除对酵母利用半乳糖的影响并不明显,MS-1.SGl.DG115在20 h内将培养基中的半乳糖全部消耗完毕,DPG65则在26 h内将半乳糖利用完毕。在YPGL培养基中,MS-1、SG1.DG115和DPG65利用完半乳糖的时间分别为20 h、44 h、44 h和68 h。在两种培养模式中,GQ21培养基中的半乳糖浓度一直维持不变,表明GALl基因确实已经被完全敲除。GALl基因的敲除和GAL4基因拷贝的增加没有改变重组菌株的热致死温度。重组菌株和对照菌株的热致死温度仍然是54℃。构建了PGKl启动子控制下的α-半乳糖营酶表达单元,并将此表达单元克隆到多拷贝质粒YEPlacl 81上构建了食品级克隆载体YPM.YPM转化酵母后得到的重组子可以在以蜜二糖为唯
     碳源的培养基中生长,并能在涂有X-α-gal的培养上显蓝色,表明α-半乳糖苷酶已经被有效表达。重组酵母/YPM在YPD培养基和MSD培养基中表达的a-半乳糖苷酶酶活最高为104 U/m1和41.72 U/ml;对照菌株安琪酵母表达的α-半乳糖苷酶存在蜜二糖/葡萄糖诱导-抑制效应,在YPD培养基和MSD培养基中的最高酶活为29.79 U/ml和266.38U/mI。在MSD培养基中,安琪酵母12h进入对数生长期,32 h进入稳定期;重组酵母YPM在68 h后才开始快速生长,164 h后进入稳定期。两者在YPD培养基中的生长性能一致,8 h进入对数生长期,32 h达到稳定期。
     扩增了GALl启动子、MFal信号肽以及ADHl终止子基因序列,以p-1,3-1,4-葡聚糖酶为报告基因在克隆载体YPM的基础上构建了食品级分泌表达载体YGMPA-PM.以α-半乳糖苷酶为筛选标记,将载体YGMPA-PM转入所构建的重组酵母菌株SG1、DG115、DPG65和GQ21以及MS-1,在蜜二糖平板(MSD)挑选出了转化子。测定不同GAL基因型酵母中p-1,3-1,4-葡聚糖酶的表达水平。结果表明,SG1、DG115、DPG65和GQ21的β-1,3-1,4-葡聚糖酶最高酶活分别为1523.48 U/ml、2480.43 U/ml、3161.53 U/ml和3991.00 U/ml,为MS-1 (846.37U/ml)的1.8倍、2.93倍、3.73和4.72倍,说明酵母染色体上GALI基因的敲除和GAL4基因拷贝的增加确实有利于提高外源蛋白表达的水平。重组分泌表达的β-1,3-1,4-葡聚糖酶的最适温度为40℃,最适pH为6.0。50℃保温2 h后p-1,3-1,4-葡聚糖酶残留酶活为51.90%;60℃保温2 h后的活力下降为初始酶活的20.14%。在pH4-6的范围内于4℃放置24 h,酶活仍能保持80%以上。
     扩增了编码α-凝集素C-末端320个氨基酸的基因序列并在载体YGMPA-PM的基础上构建了食品级展示表达载体YGMPNA-PM.将其与不同GAL基因型的重组酵母相结合构建了食品级展示表达系统。此展示表达系统将p-1,3-1,4-葡聚糖酶成功展示表达在酿酒酵母细胞表面。通过平板鉴定和酶活测定确证了β-1,3-1,4-葡聚糖酶的正确定位。SG1、DG115、DPG65和GQ21展示表达的β-1,3-1,4-葡聚糖酶最高酶活分别为84.98 U/ml、118 U/ml、161.55 U/ml和201.87 U/ml,分别为MS-1 (45.10 U/ml)的1.88倍、2.62倍、3.56倍和4.48倍。展示表达的β-1,3-1,4-葡聚糖酶的酶学性质发生改变。最适温度变为60℃,热稳定性也被增强。50℃保温3 h对酶活几乎没有影响;60℃保温1 h残留酶活为初始酶活的129.2%,60℃保温3 h后的酶活为初始酶活的64.6%。70℃保温1 h,酶活增加到初始酶活的109.2%,3 h后残留酶活仅为初始酶活的35.8%。展示表达的β-1,3-1,4-葡聚糖酶最适pH为6.0,在pH4-7的范围内稳定性较好。
The application of the genetically-modified yeasts in food industry becomes more and more popular. However, the presences of antibiotic genes for the selection of yeast transformation make it undesirabl traits for the recombinant yeast. Besides, it is necessary for industrialisation to be provided with lower production costs, simple and convenient downstream processions and higher expression levels of foreign proteins.
     Based on the above problems, according to the induction-repression effects of galactose-glucose on the GAL family and the regulation mechanisms of GAL4 gene, the GAL1 genes in the genome of industrial yeast MS-1 were disrupted by homologous recombination and a duplicate GAL4 gene was integrated into one of the GAL gene loci in this paper, yielding different GAL yeasts SG1, DG115, DPG65 and GQ21. Meanwhile, the food-grade secretion vector YGMPA-PM under the control of GAL1 promoter and MFal signal peptide was constructed using a-galactosidase as selection marker andβ-1,3-1,4-glucanase as reporter gene. The food-grade display vector YGMPNA-PM was also constructed using a-agglutinin as anchor protein. The combination of constructed vectors and recombinant yeasts formed the high-efficient food-grade secretion/display systems, which could meet the industrial criteria. The main results are listed as following.
     The full-length sequence of GAL4 structure gene was amplified and the template plasmid PMD18-TGK containing GAL4 gene and KanMX expression cassette was constructed. One of the GAL1 genes in MS-1 genome was replaced by GAL4+KanMX, producing yeast DG115 with double GAL4 in genome. According to LFH theory, the other two gene-disruption cassettes, KanMX+GALls and GALlt+KanMX, were designed to knockout the rest of two GAL1 genes in yeast DG115. Considering the safety of the recombinant yeast in the application of industry, the KanMX expression cassette in the recombinant yeast was removed by Cre/loxP system using plasmid pSH47/ZEO. The resulting yeasts with different GAL genotypes were denominated as SGI (yeast with one disrupted-GALI gene), DG115 (yeast with one GAL1 gene replaced by GAL4), DPG65 (yeast with one GAL1 gene replaced by GAL4 and the other one disrupted) and GQ21 (double GAL4 yeast without GAL1 gene), respectively.
     The physiological characteristics and the genetic stability of GAL genotype of the recombinant yeasts in medium containing various carbon sources were evaluated. The results showed that the GAL genotypes were stable during cultivation and no recovery mutation occured. The ability of yeast to ferment glucose was slightly affected by the deficiency of GAL1 genes and the cultivation modes had also impacts on galactose utilization of the recombinant yeasts. In YPG medium, galactose was exhausted within 20 h by MS-1, SGI and DG115 and within 26 h by DPG65, while the depletion time of galactose of MS-1, SGI, DG115 and DPG65 in YPGL medium was 20 h,44 h,44 h and 68 h, respectively. In both cultivation modes, the galactose concentration of GQ21 in medium was constant, indicating that GAL1 genes were completely knockouted. However, the deletion of GAL1 genes and the insertion of GAL4 gene had no effects on the heat-resistance temperature of yeast.
     We constructedα-galactosidase expression cassette under the control of PGK1 promoter and then cloned it into multicopy plasmid YEPlac181 to create food-grade cloning vector YPM. The transformants harbouring YPM could be grown in the media containg melibiose as a sole carbon source, and the colonies could turn into blue in X-a-gal-containing plate. The highest activity of a-galactosidase of the recombinant/YPM in YPD medium and MSD medium was 104 U/ml and 41.72 U/ml, respectively. For Anqi yeast, donor strain of a-galactosidase gene, the highest activity of a-galactosidase in YPD medium and MSD medium was 29.79 U/ml and 266.38 U/ml, which maybe involved the induction-repression effect of galactose-glucose on the native a-galactosidase. In MSD medium, the growth of Anqi yeast and the recombinant yeast/YPM were influenced by the expression of a-galactosidase, which resulted in the growth lag of yeast/YPM. But in YPD medium, the growth for Anqi yeast was similar to yeast/YPM due to the independence of expression of a-galactosidase.
     The sequences of GALI promoter, MFal signal peptide and ADHl terminator were amplified using MS-1 genomic DNA as template. The gene encodingβ-1,3-1,4-glucanase from Bacillus subtilis mutant ZJF-1A5 was cloned. Subsequently, the food-grade serection vector YGMPA-PM was constructed using YPM as backbone vector and a-galactosidase as selection marker. YGMPA-PM was then introduced into yeast SGI, DG115, DPG65, GQ21 and MS-1 and the transformants were screened in MSD plate. Theβ-1,3-1,4-glucanase activities secreted by different GAL yeasts were measured. The highest activity ofβ-1,3-1,4-glucanase in SGI, DG115, DPG65 and GQ21 was 1523.48 U/ml,2480.43 U/ml,3161.53 U/ml and 3991.00 U/ml, respectively, which was 1.8-fold,2.93-fold,3.7-fold and 4.72-fold of MS-1(846.37 U/ml). The enhancedβ-1,3-1,4-glucanase activity in the recombinant yeasts indicated the beneficial effect of GALI genes disruption and the increased GAL4 gene copy on the expression of heterologous proteins. The optimal temperature and pH of secretedβ-1,3-1,4-glucanase was 40℃and 6.0. After incubation for 2 h at 50℃and 60℃, the residual avtivity was 51.90%and 20.14%of the initial activity and was hardly detected at 70℃after the 2 h incubation. When the secreted enzyme was incubated for 24 h in pH ranging from 4-6 at 4℃, the residual activity was still above 80%.
     The cell surface-display of enzymes is one of the most attractive applications in yeasts. To construct food-grade display vector YGMPNA-PM, a-agglutinin gene containing the 3'half of the region encoding 320 amino acids and a 238-bp flanking region was amplified, ligated withβ-1,3-1,4-glucanase gene and cloned into YGMPA-PM. The recombinant GAL yeasts were transformed by YGMPNA-PM to form food-grade display systems.β-1,3-1,4-glucanase was successfully immobilized on the cell wall of yeast/YGMPNA-PM by a-agglutinin anchor system and could hydrolyzeβ-glucan efficiently. The highest activity ofβ-1,3-1,4-glucanase in cells of SGI, DG 115, DPG65 and GQ21 was 84.98 U/ml,118 U/ml,161.55 U/ml and 201.87 U/ml, respectively, which was 1.88-fold,2.62-fold, 3.56-fold and 4.48-fold of MS-1 (45.10U/ml). The properties of displayed enzyme changed. The optimal temperature and pH of displayed enzyme was 60℃and 6.0. The thermal stability ofβ-1,3-1, 4-glucanase displayed in the recombinant yeast cells was enhanced compared to the free enzyme. The residual activity ofβ-1,3-1,4-glucanase in yeast/YGMPNA-PM cells increased with incubation time and reached 129.2% at 60℃and 109.2% at 70℃at 1 h, and then gradually decreased. After incubation for 3 h at 60℃and 70℃, the enzyme activity still remained at 64.6% and 35.8%, respectively, which indicated an improved thermostability.
引文
亚当斯.A,戈特斯林.D.E,凯泽.C.A,斯特恩斯.T.酵母遗传学方法实验指南[M].北京:科学出版社,2000
    Ademark, P., de Vries, R., Hagglund, P., Stalbrand, H. and Visser, J. Cloning and characterization of Aspergillus niger genes encoding an [alpha]-galactosidase and a [beta]-mannosidase involved in galactomannan degradation [J]. Eur. J. Biochem.2001.268(10):2982
    Ahuatzi, D., Riera, A., Pelaez, R., Herrero, P. and Moreno, F. Hxk2 regulates the phosphorylation state of Migl and therefore ilts nucleocytoplasmic distribution [J]. J. Biol. Chem.2007.282(7): 4485-4493
    Ailor, E. and Betenbaugh, M. Modifying secretion and post-translational processing in insect cells [J]. Current opinion in biotechnology.1999.10(2):142-145
    Baker, S. M., Johnston, S. A., Hopper, J. E. and Jaehning, J. A. Transcription of multiple copies of the yeast GAL7 gene is limited by specific factors in addition to GAL4[J]. Molecular and General Genetics MGG.1987.208(1):127-134
    Bergkamp, R. J. M., Kool, I. M., Geerse, R. H. and Planta, R. J. Multiple-copy integration of the a-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis [J]. Curr. Genet.1992.21(4):365-370
    Bhat, P. J. and Murthy, T. V. S. Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae:mechanism of galactose-mediated signal transduction[J]. Mol. Microbiol.2001.40(5):1059-1066
    Blank, T., Woods, M., Lebo, C, Xin, P. and Hopper, J. Novel Gal3 proteins showing altered Gal80p binding cause constitutive transcription of Gal4p-activated genes in Saccharomyces cerevisiae [J]. Mol. Cell. Biol.1997.17(5):2566-2575
    Botstein, D. and Fink, G. R. Yeast:an experimental organism for modern biology[J]. Science.1988. 240(4858):1439-1443
    Boucher, I., Parrot, M., Gaudreau, H., Champagne, C. P., Vadeboncoeur, C. and Moineau, S. Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis[J]. Appl. Environ. Microbiol.2002.68(12):6152-6161
    Brake, A. J., Merryweather, J. P., Coit, D. G. Heberlein, U. A., Masiarz, F. R., Mullenbach, G. T., Urdea, M. S., Valenzuela, P. and Barr, P. J. alpha-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisia [J]. Proc. NatL Acad. Sci. USA.1984.81(15): 4642-4646
    Brede, D. A., Lothe, S.. Salehian, Z., Faye, T. and Nes,I. F. Identification of the propionicin F bacteriocin immunity gene (pcfl) and development of a food-grade cloning system for Propionibacterium freudenreichii [J]. Appl. Environ. Microbiol.2007.73(23):7542-7547
    Bro, C, Knudsen, S., Regenberg, B., Olsson, L. and Nielsen, J. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase:example of transcript analysis as a tool in inverse metabolic engineering [J]. Appl. Environ. Microbiol. 2005.71(11):6465-6472
    Bron, P. A., Benchimol, M. G., Lambert, J., Palumbo, E., Deghorain, M., Delcour, J., de Vos, W. M., Kleerebezem, M. and Hols, P. Use of the alr gene as a food-grade selection marker in Lactic Acid Bacteria[J]. Appl. Environ. Microbiol.2002.68(11):5663-5670
    Cantwell, B. A., Brazil, G., Murphy, N. and McConnell, D. J. Comparison of expression of the endo-β-l,3-1,4-glucanase gene from Bacillus subtilis in Saccharomyces cerevisiae from the CYC1 and ADH1 promoters [J]. Curr. Genet.1986.11(1):65-70
    Chen, J.-L., Tsai, L.-C., Wen, T.-N., Tang, J.-B., Yuan, H.S. and Shyur, L.-F. Directed mutagenesis of specific active site residues on Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase significantly affects catalysis and enzyme structural stability [J]. J. Biol. Chem.2001.276(21): 17895-17901
    Chiba, Y., Sakuraba, H., Kotani, M., Kase, R., Kobayashi, K., Takeuchi, M., Ogasawara, S., Maruyama, Y., Nakajima, T., Takaoka, Y. and Jigami, Y. Production in yeast of a-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease [J]. Glycobiology.2002.12(12):821-828
    Cho, K. M., Cha, H. J., Yoo, Y. J. and Seo, J. H. Enhancement of recombinant glucoamylase expression by introducing yeast GAL7 mRNA termination sequence [J]. J. Biotechnol.1997.55(1):9-20
    Choi, E. S., Sohn, J. H. and Rhee, S. K. Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol.1994.42(4):587-594
    Chung, B. H., Seo, D. J. and Nam, S. W. High-level secretory production of recombinant human lipocortin-1 by Saccharomyces cerevisiae [J]. Process Biochemistry.1999.35(1-2):97-101
    Chung, B. H., Seo, D. J., Nam, S. W., Na, J. G. and Chang, Y. K. Optimization of feeding strategy for overproduction of human lipocortin-I in Saccharomyces cerevisiae controlled by the GAL10 promoter [J]. J. Ferment. Bioeng.1997.84(5):466-470
    De Jongh, W. A., Bro, C, Ostergaard, S., Regenberg, B., Olsson, L. and Nielsen, J. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae [J]. Biotechnol. Bioeng.2008.101(2):317-326
    Dickely, F., D. Nilsson, E. B. Hansen and Johansen, E. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector [J]. Mol. Microbiol.1995.
    Diderich, J. A., Raamsdonk, L. M., Kruckeberg, A. L., Berden, J. A. and Van Dam, K. Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted [J]. Appl. Environ. Microbiol.2001.67(4):1587-1593
    Diep, C. Q., Tao, X., Pilauri, V., Losiewicz, M., Blank, T. E. and Hopper, J. E. Genetic evidence for sites of interaction between the Gal3 and Gal80 Proteins of the Saccharomyces cerevisiae GAL gene switch [J]. Genetics.2008.178(2):725-736
    Dunham, M. J., Badrane, H., Ferea, T., Adams, J., Brown, P. O., Rosenzweig, F. and Botstein, D. Characteristic genome rearrangements in experimental evolution of Saccharomycescerevisiae. Genetics [J].2002.99(25):16144-16149
    Dustin, M. L., Selvaraj, P., Mattaliano, R. J. and Springer, T. A. Anchoring mechanisms for LFA-3 cell adhesion glycoprotein at membrane surface [J]. Nature.1987.329(6142):846-848
    El Demerdash, H. A. M., Heller, K. J. and Geis, A. Application of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for Lactic Acid Bacteria [J]. Appl. Environ. Microbiol.2003.69(8):4408-4412
    Emr, S. D., Schekman, R., Flessel, M. C. and Thorner, J. An MFalpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast [J]. Proc. NatL Acad. Sci. USA.1983.80(23):7080-7084
    Enevoldsen, B. Demonstration of melibiase in non-pasteurized lager beers and studies on the heat stability of the enzyme [J]. Carlsberg Res Comm.1981.46(1):37-42
    Enevoldsen, B. Determining pasteurization units from residual melibiase activity in lager beer [J]. Journal of the American Society of Brewing Chemists (USA).1985.
    Estruch, F. and Prieto, J. A. Construction of a Trp commercial baker's yeast strain by using food-safe-grade dominant drug resistance cassettes [J]. FEMS Yeast Res.2003.4:329-338
    Flint, H. J., Martin, J., McPherson, C. A., Daniel, A. S. and Zhang, J. X. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens [J]. J. Bacteriol.1993.175(10):2943-2951
    Gai, S. A. and Wittrup, K. D. Yeast surface display for protein engineering and characterization [J]. Curr. Opin. Struct. Biol.2007.17(4):467-473
    Gasent-Ramirez, J. M., Codon, A. C. and Benitez, T. Characterization of genetically transformed Saccharomyces cerevisiae baker's yeasts able to metabolize melibiose [J]. Appl. Environ. Microbiol.1995.61(6):2113-2121
    Gennadi, N., Hilkka, T., Elena, N., Sirpa, A. and Matti, K. A new family of polymorphic genes in Saccharomyces cerevisiae:a-galactosidase genes MEL1-MEL7 [J]. Molecular and General Genetics MGG.1990.224(1):119-128
    German, J. A., Chan, W. and Gorman, J. W. Repeated use of GALl for gene dsruption in Candida albicans [J]. Genetics.1991.129:19-24
    Geymonat, M., Spanos, A. and Sedgwick, S. G. A Saccharomyces cerevisiae autoselection system for optimised recombinant protein expression [J]. Gene.2007.399(2):120-128
    Giga-Hama, Y, Tohda, H., Okada, H., Owada, M. K.., Okayama, H. and Kumagai, H. High-level expression of human lipocortin I in the fission yeast Schizosaccharomyces pombe using a novel expression vector [J]. Nat Biotech.1994.12(4):400-404
    Gitzelmann, R. Galactose-1-phosphate in the pathophysiology of galactosemia [J]. Eur. J. Pediatr.1995. 154(0):S45-S49
    Giuseppin, M. F., Almkerk, J. w., Heistek, J. C. and Verrips, C. T. Comparative study on the production of guara-galactosidase by Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2 in continuous cultures [J]. Appl. Environ. Microbiol.1993.59(1):52-59
    Gorgens, J. F, Planas, J., van Zyl, W. H., Knoetze, J. H. and Hahn-Hagerdal, B. Comparison of three expression systems for heterologous xylanase production by S. cerevisiae in defined medium [J]. Yeast.2004.21(14):1205-17
    Gosalbes, M. A. J., Esteban. C. D., Galan, J. and Perez-Martines, G. Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei [J]. Appl. Environ. Microbiol.2000. 66(11):4822-4828
    Greger, I. H. and Proudfoot, N. J. Poly (A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae [J]. The EMBO Journal.1998.17:4771-4779
    Griggs, D. W. and Johnston, M. Promoter elements determining weak expression of the GALA regulatory gene of Saccharomyces cerevisiae [J]. Mol. Cell. Biol.1993.13(8):4999-5009
    Guarente, L., Yocum, R. R. and Gifford, P. A GAL10-CYC1 hybrid yeast promoter identifies-the GAL4 regulatory region as an upstream site [J]. Proc. NatL Acad. Sci. USA.1982.79:7410-7414
    Guerra,O. G., Rubio, I. G. S., Filho, C. G. d. S., Bertoni, R. A., Govea, R. C. d. S. and Vicente, E. J. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes [J]. J. Microbiol Methods.2006.67:437-445
    Guldener, U., Heck, S., Fielder, T., Beinhauer, J. and Hegemann, J. H. A new efficient gene disruption cassette for repeated use in budding yeast [J]. Nucleic Acids Res.1996.24(13):2519-2524
    Han, Z.-l., Han, S.-y., Zheng, S.-p. and Lin, Y. Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface [J]. Appl Microbiol Biotechnol.2009.
    Hanic-Joyce, P. J. and Joyce, P. B. M. A high-copy-number,ADE2-bearing plasmid for transformation of Candida glabrata [J]. Gene.1998.211(2):395-400
    Hansen, E. B. Commercial bacterial starter cultures for fermented foods of the future [J]. Int. J. Food Microbiol.2002.78:119-131
    Henrich, B., Klein, J. R., Weber, B., Delorme, C, Renault, P. and Wegmann, U. Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl. Environ. Microbiol.2002. 68(11):5429-5436
    Herai, S., Hashimoto, Y., Higashibata, H., Maseda, H., Ikeda, H., Omura, S. and Kobayashi, M. Hyper-inducible expression system for streptomycetes [J]. Proc. Nat. Acad. Sci USA.2004. 101(39):14031-14035
    Hinchliffe, E. and Box, W. G. Expression of the cloned endo-l,3-l,4-β-glucanase gene of Bacillus subtilis in Saccharomyces cerevisiae [J]. Curr. Genet.1984.8(6):471-475
    Hinnen, A., Hicks, J. B. and Fink, G. R. Transformation of Yeast [J]. Proc Nat Acad Sci.1978.75(4): 1929-1933
    Hisashi Yazawa, H. I., Hiroshi Uemura,. Disruption of URA7and GAL6 improves the ethanol tolerance and fermentation capacity of Saccharomyces cerevisiae [J]. Yeast.2007.24(7):551-560
    HP, H. and NA, D. S. An autoselection system in recombinant KlUyveromyces lactis enhances cloned gene stability and provides freedom in medium selection [J]. Appl. Microbiol. Biotechnol. 1998 49(2):147-152
    Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K.., Bumgarner, R., Goodlett, D. R., Aebersold, R. and Hood, L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network [J]. Science.2001.292(5518):929-934
    Ikushima, S., Fujii, T. and Kobayashi, O. Efficient gene disruption in the high-ploidy yeast Candida utilis using the Cre-loxP system [J]. Bioscience, Biotechnology, and Biochemistry.2009. 73(4):879-884
    Iwakiri, R., Noda, Y, Adachi, H. and Yoda, K. Isolation of the YAP1 homologue of Candida utilis and its use as an efficient selection marker [J]. Yeast.2005.22:1079-1087
    Jeong, D.-W., Lee, J.-H., Kimc, K. H. and Lee, H. J. A food-grade expression/secretion vector for Lactococcus lactis that uses an a-galactosidase gene as a selection marker [J]. Food Microbiol. 2006.23:468-475
    Johnston, M. and Davis, R. W. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae [J]. Mol. Cell. Biol.1984.4(8):1440-1448
    Kaji, A. and Yoshihara, O. Purification and properties of a-galactosidase produced by Corticium rolfsii [J]. Agr. Biol. Chem.1972.36:1335-1342
    Kang, H. A., Kang, W. K., Go, S.-M., Rezaee, A, Krishna, S. H., Rhee, S. K. and Kim, J.-Y. Characteristics of Saccharomyces cerevisiae gall and gall hxk2 mutants expressing recombinant proteins from the GAL promoter [J]. Biotechnol. Bioeng.2005.89(6):619-629
    Kasahara, T. and Kasahara, M. Three aromatic amino acid residues critical for galactose transport in yeast Gal2 transporter [J]. J. Biol. Chem.2000.275(6):4422-4428
    Khaw, T., Katakura, Y., Koh, J., Kondo, A., Ueda, M. and Shioya, S. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch [J]. Appl. Microbiol. Biotechnol.2006.70(5):573-579
    Khaw, T. S., Katakura, Y., Ninomiya, K., Moukamnerd, C, Kondo, A., Ueda, M. and Shioya, S. Enhancement of ethanol production by promoting surface contact between starch granules and arming yeast in direct ethanol fermentation [J]. J. Biosci. Bioeng.2007.103(1):95-97
    Kim, D.-H., Kim, G. S., Yun, C. H. and Lee, Y. C. Functional conservation of the glutamine-rich domains of yeast Gall 1 and human SRC-1 in the transactivation of glucocorticoid receptor Tau 1 in Saccharomyces cerevisiae [J]. Mol. Cell. Biol.2008.28(3):913-925
    Kim, M. D., Lee, T. H., Lim, H. K. and Seo, J. H. Production of antithrombotic hirudin in GALI-disrupted Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol.2004.65(3): 259-262
    King, M., White, B., Blaschek, H., Chassy, B., Mackie, R. and Cann, I. Purification and characterization of a thermostable alpha-galactosidase from Thermoanaembacterium polysacchrolyticum [J]. J. Agric. Food Chem.2002.50(20):5676-5682
    Kjeldsen, T., Brandt, J., Andersen, A. S., Egel-Mitani, M., Hach, M.. Pettersson, A. F. and Vad, K. A removable spacer peptide in an alpha-factor-leader/insulin precursor fusion protein improves processing and concomitant yield of the insulin precursor in Saccharomyces cerevisiae [J]. Gene.1996.170(1):107-112
    Klabunde, Klabunde, J., Diesel, Diesel, A., Waschk, Waschk, D., Gellissen, Gellissen, Q, Hollenberg, Hollenberg, C, Suckow and Suckow. M. Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha [J]. Appl. Microbiol. Biotechnol.2002.58(6):797-805
    Kondo, A., Shigechi, H., Uyama, M. A. K., Matsumoto, T., Takahashi, S., Ueda, M., Tanaka, A., Kishimoto, M. and Fukuda, H. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase [J]. Appl. Microbiol. Biotechnol.2002.58(3):291-296
    Kondo, A. and Ueda, M. Yeast cell-surface display-applications of molecular display [J]. Appl. Microbiol. Biotechnol.2004.64(1):28-40
    Kumar, P. R., Yu, Y, Sternglanz, R., Johnston, S. A. and Joshua-Tor, L. NADP regulates the yeast GAL induction system [J]. Science.2008.319(5866):1090-1092
    Kurjan, J. and Herskowitz, I. structure of a yeast pheromone gene (MFalpha):a putative alpha-factor precursor contains four tandem copies of mature alpha-factor [J]. cell.1982.30:933-943
    Kuroda, Kuroda, K., Ueda, Ueda, M., Shibasaki, Shibasaki, S., Tanaka and Tanaka, A. Cell surface-engineered yeast with ability to bind, and self-aggregate in response to copper ion [J]. Appl. Microbiol. Biotechnol.2002.59(2):259-264
    Labrie, S., Bart, C, Vadeboncoeur, C. and Moineau, S. Use of an a-galactosidase gene as a food-grade selection Marker for Streptococcus thermophilus [J]. J. Dairy Sci.2005.88:2341-2347
    Laughon, A., Driscoll, R., Wills, N. and Gesteland, R. F. Identification of two proteins encoded by the Saccharomyces cerevisiae GAL4 gene [J]. Mol. Cell. Biol.1984.4(2):268-275
    Lee, S. Y., Choi, J. H. and Xu, Z. Microbial cell-surface display. Trends Biotechnol.2003.21(1):45-52
    Leenhouts, K., Bolhuis, A., Venema, G. and Kok, J. Construction of a food-grade multiple-copy integration system for Lactococcus lactis [J]. Appl. Microbiol. Biotechnol.1998.49(4): 417-423
    Li, J., Wang, S., VanDusen, W. J., Schultz, L. D., George, H. A., Herber, W. K., Chae, H. J, Bentley, W. E. and Rao, G. Green fluorescent protein in Saccharomyces cerevisiae:Real-time studies of the GAL1 promoter [J]. Biotechnol. Bioeng.2000.70(2):187-196
    Li, L., Shen, S., Jiang, P, Hong, J., Fan, J. and Huang, W. Usage of an intronic promoter for stable gene expression in Saccharomyces cerevisiae [J]. Lett. Appl. Microbiol.2005.40(5):347-352
    Liljestrom-Suominen, P. L., Joutsjoki, V. and Korhola, M. Construction of a stable α-galactosidase-producing baker's yeast strain [J]. Appl. Environ. Microbiol.1988.54(1): 245-249
    Johr, D., Venkov, P. and Zlatanova, J. Transcriptional regulation in the yeast GAL gene family:a complex genetic network [J]. The FASEB Journal.1995.9:777-787
    Loison, G., Nguyen-Juilleret, M., Alouani, S. and Marquet, M. Plasmid-transformed ura3 furl double-mutants of S. cerevisiae:an autoselection system applicable to the production of foreign proteins [J]. Nature Biotech.1986.4(5):433-437
    Long, R. M., Mylin, L. M. and Hopper, J. E. GAll (SPT13), a transcriptional regulator of diverse yeast genes, affects the phosphorylation state of GAL4, a highly specific transcriptional activator [J]. Mol. Cell. Biol.1991.11(4):2311-2314
    Lopes, T. S., de Wijs, I. J., Steenhauer, S. I., Verbakel, J. and Planta, R. J. Factors affecting the mitotic stability of high-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae [J]. Yeast.1996.12(5):467-477
    Lopes, T. S., Hakkaart, G.-J. A. J., Koerts, B. L., Raue, H. A. and Planta, R. J. Mechanism of high-copy-number integration of pMlRY-type vectors into the ribosomal DNA of Saccharomyces cerevisiae [J]. Gene.1991.105(1):83-90
    Lopes, T. S., Klootwijk, J., Veenstra, A. E., van der Aar, P. C, van Heerikhuizen, H., Raue, H. A. and Planta, R. J. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae:a new vector for high-level expression [J]. Gene.1989.79(2):199-206
    Lu, C. F., Kurjan, J. and Lipke, P. N. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin [J]. Mol Cell Biol.1994.14(7):4825-4833
    Manivasakam, P., Weber, S., McElver, J. and Schiestl, R. Micro-homology mediated PCR targeting in Saccharomyces cerevisiae [J]. Nucleic Acids Res.1995.23(14):2799-2800
    Marie-Therese, Dall Jean-Marc, N. and Claude, G. Multiple-copy integration in the yeast Yarrowia lipolytica [J]. Curr. Genet.1994.26(1):38-44
    Martegani, E., Brambilla, L., Porro, D., Ranzi, B. M. and Alberghina, L. Alteration of cell population structure due to cell lysis in Saccharomyces cerevisiae cells overexpressing the GALA gene [J]. Yeast.1993.9(6):575-582
    Martin, M. C., Alonso, J. C, Suarez, J. E. and Alvarez, M. A. Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination [J]. Appl. Environ. Microbiol. 2000.66(6):2599-2604
    Mateo, C, Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M. and Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques [J]. Enzyme Microb. Technol.2007.40(6):1451-1463
    Matsumoto, T., Fukuda, H., Ueda, M., Tanaka, A. and Kondo, A. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flolp flocculation functional domain [J]. Appl. Environ. Microbiol.2002.68(9):4517-4522
    Melcher, K., Sharma, B., Ding, W. V. and Nolden, M. Zero background yeast reporter plasmids [J]. Gene.2000.247(1-2):53-6]
    Meldgaard, M. and Svendsen,1. Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3-1,4)-beta-glucanases secreted from yeast [J]. Microbiology.1994. 140(1):159-166
    Muller, S., Sandal, T., Kamp-Hansen, P. and Dalbge, H. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha,Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica [J]. Yeast.1998.14:1267-1283
    Mylin, L. M. and Hopper, J. E. Inducible expression cassettes in yeast:GAL4 [J].1997.62:131-148
    Navas, L., Esteban, M and Delgado, M. A. KAR1-mediated transformation of brewing yeast [J]. J. Inst. Brew.1991.97:115-18
    Nevalainen, K. M. H., Te'o, V. S. J. and Bergquist, P. L. Heterologous protein expression in filamentous fungi [J]. Trends Biotechnol.2005.23(9):468-474
    Nishizawa, K., Shimoda, E. and Kasahara, M. Substrate recognition domain of the Gal2 galactose transporter in yeast Saccharomyces cerevisiae as revealed by chimeric galactose-glucose transporters [J]. J. Biol. Chem.1995.270(6):2423-2426
    van Ooyen, A., Dekker, P., Huang, M, Olsthoorn, M., Jacobs, D., Colussi, P. and Taron, C. Heterologous protein production in the yeast Kluyveromyces lactis [J]. FEMS Yeast Res.2006. 6(3 Kluyveromyces lactis, a model and a tool):381-392
    Orr-Weaver, T., Szostak, J. and Rothstein, R. Yeast transformation:a model system for the study of recombination [J]. Proc Nat Acad Sci.1981.78(10):6354-6358
    Ozdamar, T. H., Senturk, B., Yilmaz, O. D. and Calik, G. Expression system for recombinant human growth hormone production from Bacillus subtilis [J]. Biotechnol. Progr.2009.25(1):75-84
    Papamichos-Chronakis, M., Gligoris, T. and Tzamarias, D. The Snfl kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tupl co-repressor [J]. EMBO reports.2004.5(4):368
    Park, K. S. and Kim, J. S. Engineering of GALl promoter-driven expression system with artificial transcription factors [J]. Biochem. Biophys. Res. Commun.2006.351(2):412-417
    Park, S., Xu, Y., Stowell, X. F., Gai, F., Saven, J. G. and Boder, E. T. Limitations of yeast surface display in engineering proteins of high thermostability [J]. Protein Eng. Des. Sel.2006.19(5): 211-217
    Pedersen, M., Iversen, S., Sorensen, K. and Johansen, E. The long and winding road from the research laboratory to industrial applications of lactic acid bacteria [J]. FEMS Microbiol. Rev.2005.29: 611-624
    Petes, T. D. Yeast ribosomal DNA genes are located on chromosome XII [J]. Proc. Nat. Acad. Sci. USA. 1979.76(1):410-414
    Planas, A. Bacterial 1,3-1,4-beta-glucanases:structure, function and protein engineering [J]. BBA-Protein Structure Mol Enzym.2000.1543(2):361-382
    Platt, A. and J.Reece, R. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex [J]. The EMBO Journal 1998.17(14):4086-4091
    Platteeuw, C, van Alen-Boerrigter, I., van Schalkwijk, S. and de Vos, W. M. Food-grade cloning and expression system for Lactococcus lactis [J]. Appl. Environ. Microbiol.1996.62(3): 1008-1013
    Post-Beittenmiller, M. A., Hamilton, R. W. and Hopper, J. E. Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae [J]. Mol. Cell. Biol.1984.4(7):1238-1245
    Pronk, J. T. (2002). Auxotrophic Yeast strains in fundamental and applied research [J]. Appl. Environ. Microbiol.68:2095-2100.
    Qiao, J., Dong, B., Li, Y, Zhang, B. and Cao, Y. Cloning of a β-1,3-1,4-glucanase gene from Bacillus subtilis MA139 and its functional expression in Escherichia coli [J]. Appl. Biochem. Biotechnol.2008.
    Quintero, M., Maya, D., Arevalo-Rodriguez, M., Cebolla, A. and Chavez, S. An improved system for estradiol-dependent regulation of gene expression in yeast [J]. Microb Cell Fact.2007.6(1): 10
    Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G, Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L, Wilson. C. J, Bell, S. P. and Young, R. A. Genome-wide location and function of DNA binding proteins [J]. Science.2000.290(5500):2306-2309
    Richard, G. B. and Bruce, G. A. Induction and genetics of two a-galactosidase activities in Saccharomyces cerevisiae [J]. Molecular and General Genetics MGG.1981.182(1):77-81
    Romanos, M. A., Scorer, C. A. and Clare, J. J. Foreign gene expression in yeast:a review [J]. Yeast. 1992.8(6):423-488
    Roy, A., Lu, C. F., Marykwas, D. L., Lipke, P. N. and Kurjan, J. The AGAl product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin [J]. Mol. Cell. Biol.1991.11(8):4196-4206
    Ruohola, H., Liljestrom, P. L., Torkkeli, T., Kopu, H., Lehtinen, P., Kalkkinen, N. and Korhola, M. Expression and regulation of the yeast MELl gene [J]. FEMS Microbiol. Lett.1986.34(2): 179-185
    Sakai, Y, Rogi, T., Yonehara, T., Kato, N. and Tani, Y. High-level ATP production by a genetically-engineered Candida yeast [J]. Nat Biotech.1994.12(3):291-293
    Samiha, S., Bertrand, A., Ines, K., Slim, S., Samir, B. and Lotfi, M. Integrative gene cloning and expression system for Streptomyces sp. US 24 and Streptomyces sp. TN 58 bioactive molecule producing strains [J]. J. Biomed. Biotechnol.2009.2009:1-10
    Schlessinger, D. and Nagaraja, R. Impact and implications of yeast and human artificial chromosomes [J].Ann. Med.1998.30(2):186
    Schreuder, M. P., Brekelmans, S., van den Ende, H. and Klis, F. M. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae [J]. Yeast.1993.9(4):399-409
    Schreuder, M. P., Mooren, A. T., Toschka, H. Y, Verrips, C. T. and Klis, F. M. Immobilizing proteins on the surface of yeast cells [J].Tibtech April.1996.14(4):115-20
    Schultz, L. D., Hofmann, K. J., Mylin, L. M., Montgomery, D. L., Ellis, R. W. and Hopper, J. E. Regulated overproduction of the GAL4 gene product greatly increases expression from galactose-inducible promoters on multi-copy expression vectors in yeast [J]. Gene.1987. 61(2):123-133
    Sellick, C. A., Campbell, R. N., Reece, R. J. and Kwang, W. J.. International review of cell and molecular biology [M], Academic Press:2008. Volume 269:111-150
    Sellick, C. A. and Reece, R. J. Contribution of aminoacid side chains to sugar binding specificity in a galactokinase, Gallp, and a transcriptional inducer, Gal3p [J]. J. Biol. Chem.2006.281(25): 17150-17155
    Shaw KJ, F. B., Anagnost JA, Narula S, Leibowitz PJ. Regulated secretion of MuGM-CSF in Saccharomyces cerevisiae via GAL1:MF alpha 1 prepro sequences [J]. DNA.1988 7(2): 117-26
    Shibasaki, S., MAEDA, H. and UEDA, M. Molecular display technology using yeast-arming technology [J]. Anal. Sci.2009.25:41-49
    Shibasaki, S., Ninomiya, Y., Ueda, M., Iwahashi, M., Katsuragi, T., Tani, Y., Harashima, S. and Tanaka, A. (EYFP, ECFP) Intelligent yeast strains with the ability to self-monitor the concentrations of intra-and extracellular phosphate or ammonium ion by emission of fluorescence from the cell surface [J]. Appl. Microbiol. Biotechnol.2001.57(5):702-707
    Shibuya, H., Kobayashi, H., Yoshida, S., Kaneko, S., Park, G. G. and Kusakabe, I. Purification and characterization of recombinant Mortierella vinacca a-galactosidases 1 and 2 expressed in Saccharomyces cerevisiae [J]. biosci.biotechnol.biochem.1999.63(6):1096-1099
    Shibuya, H., Nagasaki, H., Kaneko, S., Yoshida, S., Park, G. G, Kusakabe, I. and Kobayashi, H. Cloning and high-level expression of a-galactosidase cDNA from Penicillium purpurogenum [J]. Appl. Environ. Microbiol.1998.64(11):4489-4494
    Shiraga, S., Kawakami, M., Ishiguro, M. and Ueda, M. Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents:potential as a whole-cell biocatalyst in organic solvents [J]. Appl. Environ. Microbiol.2005.71(8):4335-4338
    Shiraga, S., Kawakami, M. and Ueda, M. Construction of combinatorial library of starch-binding domain of Rhizopus oryzae glucoamylase and screening of clones with enhanced activity by yeast display method [J]. J. Mol. Catal. B:Enzym.2004.28(4-6):229-234
    Sil, A. K., Xin, P. and Hopper, J. E. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch:applications to galactose-regulated high-level production of proteins [J]. Protein E\pression Pnrif.2000.18(2):202-212
    Silvestroni, A., Connes, C, Sesma, F., de Giori, G. S. and Piard, J.-C. Characterization of the melA locus for alpha-galactosidase in Lactobacillus plantarum [J]. Appl. Environ. Microbiol.2002. 68(11):5464-5471
    Slepak, T., Tang, M., Addo, F. and Lai. K. Intracellular galactose-1-phosphate accumulation leads to environmental stress response in yeast model [J]. Mol. Genet. Metab.2005.86(3):360-371
    Srensen, K., Larsen, R., Kibenich, A., Junge, M. P. and Johansen, E. A food-grade cloning system for industrial strains of Lactococcus lactis [J]. Appl. Environ. Microbiol.2000.66(4):1253-1258
    Sridhar, V, Smeianov, V. and Steele, J. Construction and evaluation of food-grade vectors for Lactococcus lactis using aspartate aminotransferase and a-galactosidase as selectable markers [J].J. Appl. Microbiol.2006.101(1):161-171
    Stagoj, M. and Komel, R. The GAL induction response in yeasts with impaired galactokinase Gallp activity [J]. World J. Microbiol. Biotechnol.2008.24(10):2159-2166
    Stagoj, M. N., Comino, A. and Komel, R. (2005). Fluorescence based assay of GAL system in yeast Saccharomyces cerevisiae [J].244:105-110.
    Stagoj, M. N., Comino, A. and Komel, R. A novel GAL recombinant yeast strain for enhanced protein production [J]. Biomol. Eng.2006.23:195-199
    Starwalt, S. E., Masteller, E. L., Bluestone, J. A. and Kranz, D. M. Directed evolution of a single-chain class Ⅱ MHC product by yeast display [J]. Protein Eng. Des. Sel.2003.16(2):147-156
    Steensma, H. Y. and Linde, J. J. M. T. Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis [J]. Yeast.2001.18:469-472
    Stephen A. Parent, C. M. F. K. A. B. Vector systems for the expression, analysis and cloning of DNA sequence in S. cerevisiae [J]. Yeast.1985.1(2):83-138
    Park, S. M, Ohkuma, M., Masuda, Y., Ohta, A. and Takagi, M. Galactose-inducible expression systems in Candida maltosa using promoters of newly-isolated GAL1 and GAL10 genes [J]. Yeast.1997.13(1):21-29
    Porta, C. and Lomonossoff, G. Viruses as vectors for the expression of foreign sequences in plants. Biotechnology & genetic engineering reviews.2002.19:245-291
    Suzuki, Y, Nogi, Y, Abe, A. and Fukasawa, T. GALll protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae [J]. Mol. Cell. Biol.1988.8(11):4991-4999
    Tanino, T., Fukuda, H. and Kondo, A. Construction of a Pichia pastoris cell-surface display system using Flolp anchor system [J]. Biotechnol. Progr.2006.22(4):989-993
    Teng, D., Fan, Y, Yang, Y.-l., Tian, Z.-g., Luo, J. and Wang, J.-h. Codon optimization of Bacillus licheniformis β-l,3-l,4-glucanase gene and its expression in Pichia pastoris [J]. Appl. Microbiol. Biotechnol.2007.74(5):1074-1083
    Teunissen, A. W., Holub, E., van der Hucht, J., van den Berg, J. A. and Steensma, H. Y. Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae [J]. Yeast.1993.9(4): 423-7
    Thoden, J. B., Sellick, C. A., Timson, D. J., Reece, R. J. and Holden, H. M. Molecular structure of Saccharomyces cerevisiae Gallp, a bifunctional galactokinase and transcriptional inducer [J]. J. Biol. Chem.2005.280(44):36905-36911
    Keitel, T., Meldgaard, M. and Heinemann, U. Cation binding to a Bacillus (1,3-1,4)-(3-glucanase geometry, affinity and effect on protein stability [J]. Eur. J. Biochem.1994.222(1):203-214
    Traven, A., Jelicic, B. and Sopta, M. Yeast Gal4:a transcriptional paradigm revisited [J]. Nature.2006. 7(5):496-499
    Tsakiris, S., Marinou, K. and Schulpis, K. The in vitro effects of galactose and its derivatives on rat brain Mg2+-ATPase activity [J]. Pharmacol. Toxicol.2002.91(5):254
    Tuller, G., Prein, B., Jandrositz, A., Daum, G. and Kohlwein, S. D. Deletion of six open reading frames from the left arm of chromosome IV of Saccharomyces cerevisiae [J]. Yeast.1999.15(12): 1275-1285
    Ueda, M. and Tanaka, A. Cell surface engineering of yeast:Construction of arming yeast with biocatalyst [J]. J. Biosci. Bioeng.2000.90(2):125-136
    Vaart, J. M. V. D., Biesebeke, R. T., Chapman, J. W, Toschka, H. Y., Klis, F.M. and Verrips, C. T. Comparison of cell wall proteins of Saccharomyces cerevisiae as anchors for cell surface expression of heterologous proteins [J]. Appl. Environ. Microbiol.1997.63(2):615-620
    Van Rensburg, P., Van Zyl, W. and Pretorius, I. Engineering yeast for efficient cellulose degradation [J]. Yeast.1998.14(1)
    Wach, A., Brachat, A., Pohllmann, R. and Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae [J]. Yeast.1994.10(13):1793-1808
    Wach, A., Brachat, A., Rebischung, C, Steiner, S., Pokorni, K., Te Heesen, S. and Philippsen, P. PCR-based gene targeting in Saccharomyces cerevisiae [J].1998.26:67-81
    Wang, Z., Mathias, A., Stavrou, S. and Neville, D. M., Jr. A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities [J]. Protein Eng. Des. Sel.2005. 18(7):337-343
    Washida, M, Takahashi, S., Ueda, M. and Tanaka, A. Spacer-mediated display of active lipase on the yeast cell surface [J]. Appl. Microbiol. Biotechnol.2001.56(5):681-686
    Wery, J., Gutker, D., Renniers, A. C. H. M, Verdoes, J. C. and van Ooyen, A. J. J. High copy number integration into the ribosomal DNA of the yeast Phaffia rhodozyma [J]. Gene.1997.184(1): 89-97
    Westers, L, Westers, H. and Quax, W. J. Bacillus subtilis as cell factory for pharmaceutical proteins:a biotechnological approach to optimize the host organism [J]. BBA-Mol Cell Res.2004. 1694(1-3):299-310
    Wojciechowicz, D. and Lipke, P. N. alpha-Agglutinin expression in Saccharomyces cerevisiae [J]. Biochem. Biophys. Res. Commun.1989.161(1):46-51
    Wojciechowicz, D., Lu, C. F., Kurjan, J. and Lipke, P. N. Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily [J]. Mol Cell Biol.1993.13(4):2554-2563
    Wood, P. and Weisz, J. Detection and assay of (1→4)-β-D-glucanase, (1→3)-β-D-glucanase, (1→3)(1→4)-β-D-glucanase and xylanase based on complex formation of substrate with congo red [J]. Cereal Chem.1987.64:8-15
    Xia, Y., Chen, W., Zhao, J., Tian, F., Zhang, H. and Ding, X. Construction of a new food-grade expression system for Bacillus subilis based on theta replication plasmids and auxotrophic complementation [J]. Appl. Microbiol. Biotechnol.2007.76(3):643-650
    Yocum, R. R., Hanley, S., West, R. and Ptashne, M. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae [J]. Mol Cell Biol.1984.4:1985-1998
    Zhang, Q., Chen, Q.-h., Fu, M.-l., Wang, J.-l., Zhang, H.-b. and He, G.-q. Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination [J]. J Zhejiang Univ Sci B.2008.9(7):527-535
    Zhang, W., Han, S., Wei, D., Lin, Y. and Wang, X. Functional display of Rhizomucor miehei lipase on surface of Saccharomyces cerevisiae with higher activity and its practical properties [J]. J. Chem. Technol. Biotechnol.2008.83(3)
    Zheng, W., Xu, H. E. and Johnston, S. A. The Cysteine-peptidase bleomycin hydrolase is a member of the galactose regulon in yeast [J]. J. Biol. Chem.1997.272(48):30350-30355
    ZM, S., Li, W., Jeremy, P., K., J. C, Hui, Z., Hans, d. N., Janet, K. and N., L. P. Delineation of functional regions within the subunits of the Saccharomyces cerevisiae cell adhesion molecule a-agglutinin [J]. J. Biol. Chem.2001.276(19):15768-15775
    Zverlov, V. V, Fuchs, K.. P., Schwarz, W. H. and Velikodvorskaya, G. A. Purification and cellulosomal localization of Clostridium thermocellum mixed linkage β-glucanase LicB (1,3-1,4-β-D-glucanase) [J]. Biotechnol. Lett.1994.16(1):29-34
    戴斐,张雍容,江正兵,魏东芝.酿酒酵母表面展示脂肪酶LipB52的酶学性质[J].华东理工大学学报(自然科学版).2007.33(2):177-182
    邸娜,姜树原,李国婧.利用植物表达外源蛋白需解决的几个关键问题[J].生物技术.2005.15(2):88-91
    韩晶,李宝坤,李开雄,贺家亮.β-葡聚糖酶的特性与应用研究[J].中国酿造.2008.17(194):4-8
    何国庆,张秀艳,陈启和,阮辉,汤兴俊.枯草芽孢杆菌ZJF-1A5β-葡聚糖酶基因的克隆、序列分析和表达[J].农业生物技术学报.2006.14(1):147-148
    何国庆,郑晓冬,吴金鹏,叶文育.β-葡聚糖对啤酒易滤性影响的研究[J].浙江农业大学学报.1992.18(2):105-109
    桓明辉,陈飞,吴红艳,陈兵.一株优良啤酒酵母茵的筛选及性能检测[J].微生物学杂志.2005.25(6):104-105
    黄登峰,潘志友,林影,韩双艳,郑穗平.酿酒酵母表面展示南极假丝酵母脂肪酶B的酶学性质研究[J].现代食品科技.2008.24(7):627-630
    侯庆华,侯英奇,梁念慈.杆状病毒表达系统的应用及展望[J].广东医学院学报.2006.24(6):628-631
    梁海燕.β-葡聚糖在啤酒酿造过程中的变化及其影响[J].啤酒科技.2004.12:44-45
    李孝辉,陈声明.微生物源α-半乳糖苷酶的研究进展[J].微生物学通报.2002.29(2):71-76
    刘波,马清钧,吴军.乳酸克鲁维酵母表达外源蛋白研究进展[J].生物技术通讯.2007.18(6):1039-1043
    刘彩琴,阮晖,傅明亮,周兵,陈启和,何国庆.α-半乳糖苷酶的液体发酵条件和酶学性质研究[J].中国食品学报,2008.8(1):27-33
    李孝辉,钱玉英,沙恩泳.大麦饲料的开发及p-葡聚糖酶的应用[J].粮食与饲料工业.1997.8:19-20
    卢雅薇,沈文涛,唐清杰,周鹏.植物病毒载体系统研究进展[J].遗传.2007.29(1):29-36
    刘定燮,周晓巍,黄培堂.哺乳动物细胞表达系统及其研究进展[J].生物技术通讯.2003.14(4):308-312
    彭清忠,张睢村,朱厚础.枯草杆菌表达系统的研究进展[J].生物技术通讯.2001.12(3):220-226
    孙柏欣,刘长远,陈彦,赵华,赵彤华,李柏宏.基因表达系统研究进展[J].现代农业科技.2008.2:205-209
    肖朝庭,傅衍,田勇.酿酒酵母细胞表面工程应用研究新进展[J].微生物学报.2005.45(5):812-817
    解庭波.大肠杆菌表达系统的研究进展[J].长江大学学报(自然科学版).2008.5(3):77-83
    熊向华,刘志敏,陈惠鹏.多形汉逊酵母研究进展[J].生物技术通讯.2006.17(5):771-775
    杨汝德主编.基因工程[M],广州:华南理工大学出版社,2003:1-5
    尹长城,刘晶,黄华粱.昆虫表达系统及其在基因工程抗体中的应用[J].生物工程进展.2001.21(3):66-71
    赵新元.浅议大麦和麦芽β-葡聚糖的变化[J].啤酒科技.2006.11
    赵鹤云,黄瑛,杨江科,徐莉,闫云君.解脂耶氏酵母表达系统研究进展[J].生物加工过程. 2008.6(3):10-17
    张学文,唐香山,张金谌,章怀云.α-半乳糖苷酶基因Mell在毕赤酵母中的组成型表达[J].农业生物技术学报.2006.14(2):269-272
    郑晓冬,何国庆,何友永,尹原明,胡政.一株优良啤酒酵母的筛选及其生产性能试验[J].浙江大学学报(农业与生命科学版).1999.25(6)599-602

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700