耐热β-半乳糖苷酶的克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-半乳糖苷酶(EC.3.2.1.23)俗称乳糖酶,该酶能水解β-1,4糖苷键在乳品加工中常用于水解牛奶中的乳糖制备低乳糖奶,可有效缓解人体乳糖不耐症,促进乳品工业的发展。耐热β-半乳糖苷酶,或称高温乳糖酶,以其良好的热稳定性和较高温度下的水解特性使之具有常温乳糖酶无法比拟的优越性。近年来,高温乳糖酶尤其是细菌来源的中性、耐热乳糖酶成为研究的热点。
     本文围绕一种来源于嗜热脂肪芽孢杆菌的耐热β-半乳糖苷酶(bgaB),从基因克隆、表达及分泌等方面进行了较为深入的研究。枯草芽孢杆菌是一种食品级微生物,在食品生产中有很好的应用前景。本文选用实验室已构建的含有不同信号肽的枯草芽孢杆菌质粒,将bgaB基因插入到四种质粒表达单元中进行重组表达,其中重组菌株WB600-pMAwprA-bgaB摇瓶发酵的最高酶活达到0.37 U/mL,实现了bgaB在枯草芽孢杆菌中的表达。
     本文尝试了bgaB在毕赤酵母中的表达。构建pPIC9k-bgaB重组质粒,电转化到毕赤酵母GS115中构建重组转化子,用含G418的YPD平板筛选多拷贝转化子,并验证重组转化子的正确性后,用甲醇诱导发酵表达目的基因。结果在发酵后的菌液破壁上清液中检测到耐热乳糖酶的酶活,最高活性为0.26 U/mL,SDS-PAGE电泳也在70 kD处检测到目的条带,表明bgaB基因在毕赤酵母中得到了表达。
     乳酸克鲁维酵母表达系统也是近年来研究的热点,本文构建重组质粒pKLAC1-bgaB,电转化到乳酸克鲁维酵母GG799中构建重组转化子,验证重组转化子正确性后进行发酵表达。结果在发酵后的菌液破壁上清液中检测到耐热乳糖酶的酶活,最高活性为0.068 U/mL,SDS-PAGE电泳也在70 kD处检测到目的条带,表明bgaB基因在乳酸克鲁维酵母中得到了表达。
     本文研究了bgaB基因在三种不同表达系统中的表达情况,结果表明bgaB基因在枯草芽孢杆菌中的表达效果要优于真核表达系统,达到了0.371 U/mL,并首次实现了bgaB基因在真核表达系统中的表达。
β-Galactosidase (EC.3.2.1.23), also called lactase which can hydrolyzeβ-1,4-D-galactosidic linkage, are industrially important for their applications in producing lactose-free milk which can eliminate the lactose-intolerance of human beings.
     Compared to the mesophilic enzyme from Kluyveromyces lactis, thermostableβ-galactosidases from bacterium with optimum pH value near neutral are preferable with their good thermophilicity and thermostability in practice to prevent microbial contamination, to save energy and equipment and, to make operations within one shift. In this paper, the gene bgaB from Bacillus stearothermophilus encoding the thermostableβ-galactosidase was cloned and expressed in several systems. The enzyme properties and the fermentation conditions of the recombinant strains were also discussed in details.
     Bacillius subtilis is a food grade expression system. bgaB gene was inserted into the four different shuttle expression vectors and the recombinant plasmids were transformed into Bacillius subtilis WB600 by electroporation. Recombinant strains were obtained through LB plate screening with kanamycin. The enzyme activity of the recombinant strain WB600 pMAwprA-bgaB reached to 0.37 U/mL, and the SDS-PAGE showed that the molecular weight was about 70 kDa.
     In this work,bgaB gene was inserted into the shuttle expression vector pPIC9k to construct recombinant plasmid pPIC9k-bgaB. The recombinant plasmid was transformed into Pichia pastoris GS115 by electroporation. Transformants were obtained through MD plate and G418 plate screening. After the induction of methanol, the enzyme activity of recombinant Pichia pastoris strain reached to 0.26 U/mL, and the SDS-PAGE showed that the molecular weight was about 70 kDa.
     BgaB gene was inserted into the shuttle expression vector pKLAC1 to construct recombinant plasmid pKLAC1-bgaB. The recombinant plasmid was transformed into Kluyveromyces lactis GG799 by electroporation. Transformants were screened. After fermentation, the enzyme activity of recombinant Kluyveromyces lactis strain reached to 0.068 U/mL, and the SDS-PAGE showed that the molecular weight was about 70 kDa.
     In this work, the expression of bgaB was studied in three different expression systems. The results showed that the expression of bgaB in Bacillus subtitles system was better than eukaryotic expressing system, the enzyme activity reached to 0.371 U/mL, and this work realized the expression of bgaB in eukaryotic expression system for the first time.
引文
1. Kurt Wallenfels, Rudolf Weil.β-Galactosidase [A].In: The Enzymes (Bayer P. D, ed. ), 3rd edition, Vol.7: 617-663. Academic Press, New York (1972).
    2. Alvarez,A., and J. Sas.β-Galactosidase changes in the developing intestinal tract of the rat[J].Nature, 1961, 190: 826.
    3. Cajori, F.A. The lactase activity of the intestinal mucosa of the dog and some characteristics of intestinal lactase[J].J. Biol. Chem. 1935, 109: 159.
    4. Pressey R.β-Galactosidase in ripening tomatos[J]. Plant Physiol. 1983, 71:132.
    5. Biswas T.K.β-galactosidase activity in the germinating seeds of Vignasinensis[J].Phytochem 1985, 24:2831.
    6. Gong Xiao-hai, Sun Ce, Junko Amano, Akira Kobata. Purification and characterization ofβ-galactosidase from vicia faba[J]. Acta Biochim Biophys. 1991, 23 (2): 158-162.
    7. Konno H, Yamasaki Y, Katoh K. Characteristics ofβ-galactosidasepurified from cell suspension cultures of carrot[J].Plant Physiol. 1986, 68: 46.
    8. M.L.Richmond, J.I.Gray, C.M.Stine. Beta-galactosidase: Review of recent research related to technological application, nutritional concerns, and immobilization[J].J. Dairy Science, 1980, 64: 1759-1771.
    9. Gary R.Craven,Edward Steers, Christian B.Anfinsen. Purification, Composion, and Molecular Weight of theβ-Galactosidase of Escherichia coli K12 [J].Journal of Biological Chemistry, 1965, 240(6): 2468-2477.
    10. Peck RM, Markey F, Yudkin MD. Effect of 5-fluorouracil on beta-galactosidase synthesis in an Escherichia coli mutant resistant to catabolite repression of the lacoperon[J].FEBS Lett. 1971, 15;16(1):43-44.
    11. P.J.Anema. Purification and some properties ofβ-Galactosidase of Bacillus subtilis[J].Biochim. Biophys. Acta, 1964, 89: 495-502.
    12. Daniel RA, Haiech J, Denizot F, et al. Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR[J].J Bacteriol. 1997, 179(17): 5636-8.
    13. S.R.Rohlfing, I.P.Crawford. Partial purification and physical properties of Bacillus megateriumβ-Galactosidase[J].Journal of Bacteriology, 1966, 92(4): 1258-1259.
    14. Otto E. Landman. Properties and induction ofβ-Galactosidase. in Bacillus megaterium[J].Biochemical Biophysical ACTA, 1957, 23: 558-569.
    15. Garman J, Coolbear T, Smart J. The effect of cations on the hydrolysis of lactose and the transferase reactions catalysed by beta-galactosidase from six strains of lactic acid bacteria[J].Appl Environ Microbiol. 1996, 46(1):22-27.
    16. Kim JW, Rajagopal SN. Isolation and characterization of beta-galactosidase from Lactobacillus crispatus[J].Folia Microbiol . 2000, 45(1):29-34.
    17. Mayo B, Gonzalez B, Arca P, Suarez JE. Cloning and expression of the plasmid encoded beta-D-galactosidase gene from a Lactobacillus plantarum strain of dairy origin[J].FEMS Microbiol Lett. 1994 Sep 15;122(1-2):145-51.
    18. Molotov SV, Duzhii DE, Danilevich VN, Sukhodolets VV. Cloning the gene of beta-galactosidase from the industrial strain of Streptococcus lactis 111 in E. coli cells and conjugated transfer of this gene to Streptococcus thermophilus cells[J].Mol Gen Mikrobiol Virusol. 1991, (4):3-7.
    19. Boizet B, Villeval D, Slos P, et al. Isolation and structural analysis of the phospho-beta-galactosidase gene from Streptococcus lactis Z268[J].Gene. 1988, 62(2):249-61.
    20. Hung MN, Lee BH. Purification and characterization of a recombinant beta-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96[J].Appl Microbiol Biotechnol. 2002, 58(4):439-445.
    21. Hung MN, Xia Z, Hu NT, et al. Molecular and biochemical analysis of two beta-galactosidases from Bifidobacterium infantis HL96[J].Appl Environ Microbiol. 2001, 67(9):4256-63.
    22. Rabiu BA, Jay AJ, Gibson GR, et al. Synthesis and fermentation properties of novel galacto-oligosaccharides by beta-galactosidases from Bifidobacterium species[J].Appl Environ Microbiol. 2001, 67(6):2526-30.
    23. Martinez A, Ramirez OT, Valle F. Improvement of culture conditions to overproduce beta-galactosidase from Escherichia coli in Bacillus subtilis[J].Appl Microbiol Biotechnol. 1997, 47(1):40-5.
    24. Ganeva V, Galutzov B, Eynard N, et al. Electroinduced extraction of beta-galactosidase from Kluyveromyces lactis[J].Appl Microbiol Biotechnol. 2001, 56(3-4):411-3.
    25. Coenen TM, Bertens AM, de Hoog SC, et al. Safety evaluation of a lactase enzyme preparation derived from Kluyveromyces lactis[J].Food Chem Toxicol. 2000, 38(8): 671-7.
    26. Kim SH, Lim KP, Kim HS. Differences in the hydrolysis of lactose and other substrates by beta-D-galactosidase from Kluyveromyces lactis[J].J Dairy Sci. 1997 , 80(10):2264-9.
    27. Poch O, L'Hote H, Dallery V, et al. Sequence of the Kluyveromyces lactis beta-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis[J].Gene. 1992, 118(1):55-63.
    28. Fiedurek J, Szczodrak J. Selection of strain, growth conditions, and extraction procedures for optimum production of lactase from Kluyveromyces fragilis[J].J Dairy Sci. 1975 , 58(11):1620-9.
    29. Huo K, Li Y. Cloning and expression of Kluyveromyces fragilis LAC4 gene[J]. Sci China B. 1995, 38(11):1332-40.
    30. Ladero M, Santos A, Garcia-Ochoa F. Kinetic modeling of lactose hydrolysis with an immobilized beta-galactosidase from Kluyveromyces fragilis[J].Enzyme Microb Technol. 2000, 27(8):583-592.
    31. Manzanares P, de Graaff LH, Visser J. Characterization of galactosidases from Aspergillus niger: purification of a novel alpha-galactosidase activity[J].Enzyme Microb Technol. 1998, 22(5):383-90.
    32. Domingues L, Teixeira JA, Penttila M, et al. Construction of a flocculent Saccharomyces cerevisiae strain secreting high levels of Aspergillus niger beta-galactosidase[J].ApplMicrobiol Biotechnol. 2002, 58(5):645-50.
    33. de Vries RP, van den Broeck HC, Dekkers E, et al. Differential expression of three alpha-galactosidase genes and a single beta-galactosidase gene from Aspergillus niger[J].Appl Environ Microbiol. 1999, 65(6):2453-60.
    34. Yanahira S, Suguri T, Yakabe T,et al. Formation of oligosaccharides from lactitol by Aspergillus oryzae beta-D-galactosidase[J].Carbohydr Res. 1992 , 232(1):151-9.
    35. Ito Y, Sasaki T, Kitamoto K, et al. Cloning, nucleotide sequencing, and expression of the beta-galactosidase-encoding gene (lacA) from Aspergillus oryzae[J].J Gen Appl Microbiol. 2002, 48(3):135-42.
    36. Albayrak N, Yang ST. Production of galacto-oligosaccharides from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth[J].Biotechnol Bioeng. 2002, 77(1):8-19.
    37. Pisani FM, Rella R, Raia CA, et al. Thermostable beta galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties [J].Eur. J. Biochem., 1990, 187(2):321-328.
    38. Jadwiga Maciunska, Beata Czyz, Jozef Synowiecki. Isolation and some properties ofβ-galactosidase from the thermophilic bacterium Thermus thermophilus[J].Food Chemistry, 1998, 63(4): 441-445.
    39. Koyama Y, Okamoto S, Furukawa K. Cloning of alpha- and beta-galactosidase genes from an extreme thermophile, Thermus strain T2, and their expression in Thermus thermophilus HB27[J].Appl Environ Microbiol. 1990, 56(7):2251-2254.
    40. Vian A, Carrascosa AV, Garcia JL, Cortes E. Structure of the beta-galactosidase gene from Thermus sp. strain T2: expression in Escherichia coli and purification in a single step of an active fusion protein[J].Appl Environ Microbiol. 1998, 64(6):2187-2191.
    41. Molotov SV, Duzhii DE, Danilevich VN, Sukhodolets VV. Cloning of the Streptococcus thermophilus beta-galactosidase gene and its expression in Escherichia coli and Bacillus subtilis cells[J].Mol Gen Mikrobiol Virusol. 1990, (4):10-14.
    42. Gey MH, Unger KK. Calculation of the molecular masses of two newly synthesized thermostable enzymes isolated from thermophilic microorganisms[J].J Chromatogr B Biomed Appl. 1995 Apr 7;666(1):188-93.
    43. Batra N, Singh J, Banerjee UC, Patnaik PR, Sobti RC. Production and characterization of a thermostable beta-galactosidase from Bacillus coagulans RCS3[J].Biotechnol. Appl. Biochem., 2002, 36(1):1-6.
    44. Yoshiyuki Ito, Takashi Sasaki. Cloning and characterization of the gene encoding a novel beta-galactosidase from Bacillus circulans[J].Biosci. Biotech. Biochem., 1997, 61(8): 1270-1276.
    45. Gekas V, Lopez-leiva M. Hydrolysis of Lactose: A literature review [J].Process Biochemistry, 1985, 2: 2-12.
    46.欧阳立明,张惠展,张嗣良.巴斯德毕赤酵母的基因表达系统研究进展[J].生物化学与生物物理进展[J],2000,27(2):151-154.
    47.葛佳佳,陈卫,张灏.耐热β-半乳糖苷酶基因在大肠杆菌中的表达[J].无锡轻工大学学报,2002,21(3):296-298.
    48.傅晓燕,陈卫,张灏.耐热β-半乳糖苷酶基因在枯草芽孢杆菌中的克隆和表达[J].中国酿造,2004,137(8):16-18.
    49.张灏,夏雨,傅晓燕等.耐热β-半乳糖苷酶基因bgaB在枯草芽孢杆菌中的整合表达[J],食品与生物技术学报,2003,22(6):1-5.
    50. Gang-Ping Xue, Jennifer S Johnson,Brian, P Dalrymple. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis[J]. Journal of Microbiological Methods, 1999, 34:183–191.
    51. J萨姆布鲁克,D拉塞尔.分子克隆实验指南(第三版)[M].黄培堂译,北京:科学出版社,2002:96-99,1713-1720.
    52.施特尔马赫B.酶的测定方法[M],钱嘉译.北京:中国轻工业出版社,1992,199-201.
    53. H Li,Y Ma,T Su,Y Che,et al.Expression, purification, and characterization of recombinant human neurturin secreted from the yeast Pichia pastoris[J].Protein Expression and Purification,2003,30:11–17.
    54. YJ Kim,YK Oh,W Kang,et al.Production of human caseinomacropeptide in recombinant Saccharomyces cerevisiae and Pichia pastoris[J].Ind Microbiol Biotechnol,2005,32:402–408.
    55. J Zhang,F Li,Z Wang,J Xiang.Expression,purification,and characterization of recombinant Chinese shrimp crustin-like protein (CruFc) in Pichia pastoris[J].Biotechnol Lett,2007,29:813–817.
    56. HIRATA H,S Negoro,H Okada,et al.High production of thermostableβ-galactosidase of Bacillus stearothermophilis in Bacillus subtilis[J].Appl Environ Microb,1985,49(6):1547-1549.
    57. S Macauley Patrick,ML Fazenda,B McNeil,et al.Heterologous protein production using the Pichia pastoris expression system[J].Yeast,2005,22:249–270.
    58. Joan Lin Cereghino , James M. Cregg.Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J].Microbiology Reviews,2000,24:45-66.
    59. Bailey Michael, et al. J. Biotechnol. 1990, 16 (1-2):57-66.
    60. Roberts R.H, Farret F.E. The chromatographic observation of oligosaccharides formed during the lactase hydrolysis of lactose[J]. J. Dairy Sci., 1953, 36: 620-632.
    61. Becarra M, Gonzalez Siso, Maria Isabel. Yeastβ-galactosidase in solid-state fermentation[J].Enzyme Microb. Technol, 1996, 19(1): 39-44.
    62. Gonzalez Siso, Maria Isabel et al.β-galactosidase manufacture with Kluyveromyces cultured on solid substrate[J].Span-Es 2102975, 1997.
    63.李玉强.丝状真菌β-半乳糖苷酶的研究[D].天津轻工业学院硕士论文,天津:天津轻工业学院,2000.
    64.何梅,杨月欣,边立华,等.外源性乳糖酶对健康成人乳糖吸收和乳糖不耐受症状的影响[J].基础医学与临床,2000,20(4):96.
    65. Sandra S. Hount. Lactose intolerance [J].Food Technol., 1988, 42:110-113.
    66.额纪贤.正常成年人对牛奶和酸牛奶中乳糖吸收程度和不耐受程度的调查[J].营养学报,1987,9(20):22-24.
    67. Dennisa Savvivno, Michael D. Levit. Milk intolerance and microbe-containing dairy foods [J]. J. Dairy Science, 1987, 70: 397-406.
    68.张少辉,骆承庠.应用固定化乳糖酶生产乳清糖浆的研究[J].中国乳品工业,1991,19(6):242-246.
    69.孙泽辉,欧明仪.乳糖及乳糖酶的应用[J].四川制糖与发酵,1991,(1):35-39.
    70.高焕春.乳糖酶的特性及其在乳品工业中的应用[J].中国乳品工业,1996,24:19-21.
    71.陈小真,陈惠萍,郭杰炎.乳糖酶水解牛乳的乳酸菌发酵研究[J].工业微生物,1998,28(1):18-21.
    72. Roberts R.H, Farret F.E. The chromatographic observation of oligosaccharides formed during the lactase hydrolysis of lactose[J].J. Dairy Sci., 1953, 36: 620-632.
    73.归莉琼,魏东芝.生物化学物质-低聚半乳糖[J].中国乳品工业,1998,26(4).
    74.欧阳平凯.生物化工产品[M].北京:化学工业出版社,1999.
    75.于国平,于广吉,赵敏等.酶法测定乳糖[J].中国乳品工业,1998,27:9-12.
    76.毕平安,陈劲松,朱国利.应用半乳糖苷酶法测定血清钠[J].江西医学检验,2000,18(1):29-30.
    77.曾贞元,刘明.大肠杆菌β-半乳糖苷酶的纯化与鉴定[J].微生物学通报,1987,(1):10.
    78. Haruhisa Hirata, Seiji Negoro, Hirosuke Okada. High production of thermostableβ-Galactosidase of Bacillus stearothermophilus in Bacillus subtilis[J].Applied and Environmental Microbiology, 1985, 49(6): 1547-1549.
    79. Swinkels BW, van Ooyen AJJ, Bonekamp FJ. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression[J]. Antonie van Leeuwenhoek, 1993, 64(2):187—190.
    80. Fang Ren, Bao-Cun Li, Na-Na Zhang, et al. Expression, purification and characterization of anti-BAFF antibody secreted from the yeast Pichia pastoris[J]. Biotechnol Lett,(2008) 30:1075—1080.
    81.王崧,王军平,陈默等.重组融合蛋白rTMP2GH在巴斯德毕赤酵母中表达的研究[J].第三军医大学学报,2008,30(21):2037—2040.
    82.复旦大学博士后研究工作报告,蔡显鹏, 2003.
    83. Colussi. P A, Taron. C H. Kluyveromyces lactis LAC4 Promoter Variants That Lack Function in Bacteria but Retain Full Function in K. lactis[J] Appl. Environ.Microbiol, 2005, 71: 7092–7098.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700