橙色红曲菌(AS3.4384)SOD基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红曲菌是我国重要的微生物资源,能够产生多种具有生物活性的代谢产物,具有很高的商业价值。但是由于红曲菌产桔霉素问题的存在,对红曲的安全性提出了怀疑。实验室前期研究克隆得到了八条可能与桔霉素产毒相关的EST序列。经生物信息学分析,发现其中一个基因P5编码的蛋白与Mn-SOD高度同源。
     超氧化物歧化酶(superoxide dismutase,SOD)是一类广泛存在于生物体内的金属酶,能够催化超氧阴离子发生歧化反应,具有抗衰老、抗辐射、抗炎等多种生物活性。目前已广泛的应用于医药、食品、化妆品等领域。本研究利用分子生物学技术和方法,初步研究了该基因的功能,主要研究内容如下:
     1.通过PCR技术从橙色红曲菌AS3.4384的Fosmid基因组文库中筛选到含有SOD基因的克隆子Q_5E_4,利用限制性内切酶Sal I将其完全酶切后亚克隆至pUC18质粒Sal I位点,筛选到含有SOD基因及侧翼序列的克隆子pUC18-Q5E4,测序后确定该克隆子为反向插入,含有SOD基因上游907bp及下游356bp序列。
     2.成功构建了插入型SOD基因打靶载体pUC18-Q5E4-hph,该载体同源序列长度约为1.8kb。
     3.将该基因编码框序列插入毕赤酵母分泌表达载体pPIC9K,构建重组表达质粒pPIC9K-SOD,经Sal I酶切线性化后,转化至毕赤酵母GS115(His~-Mut~+)。将经过PCR鉴定整合目的基因且表型为His~+Mut~+的重组菌株进行摇瓶诱导表达。以1%甲醇诱导48h后,重组酵母发酵液上清具有SOD酶活性,初步证实该基因编码SOD。
Monascus, one of the important microorganism resources of China, produces anarray of diverse bioreactive secondary metabolites during the process offermentation. However, it was also noticed that most Monascus strains producecitrinin, a harmful mycotoxin, in the same process. In order to construct Monascusstrain without excreting citrinin by genetic engineering, we have cloned eightputative genes (ESTs) which are gene fragments possibly related to the citrininbiosynthetic pathway in Monascus. Bioinformatics analysis shows that one EST,named P5, is highly homologous to Mn-SOD.
     Superoxide dismutase (SOD), a widely presente metal-containing antioxydativeenzyme, is an important free radical scavenger in vivo and exhibits multiplebiological effects such as antiageing, antiradiation and etc. It is widely used inmedical, food and cosmetic products. In this paper, the function of P5 (SOD) hasbeen analyzed. The main contents are illustrated as following:
     1. A clone named Q_5E_4 which contains SOD gene was isolated from the forsmidgenomic library of M. aurantiacus AS3.4384 by PCR. After completely digested bySal I, the restriction digestion fragments of Q_5E_4 was subcloned into pUC18. ThenpUC18-Q5E4 which contains SOD gene and its flanking region was constructed. Itwas later confirmed that pUC18-Q5E4 contains 907 bp 5'-flanking sequence and356 bp 3'-flanking sequence.
     2. An insertion type of SOD gene targeting plasmid which is composed of a1.8kb homologous fragment and a hygromycin phosphate transferase expressingcassette has been constructed.
     3. According to the SOD gene sequence cloned, a pair of specific primer was designed to clone the open reading frame and then subcloned into the secretionexpression vector pPIC9K. After linearized by Sal I, the expressing vectorpPIC9K-SOD was transformed into P. Pastoris GS115 (His Mut~+). The His~+transformants were verified by PCR with specific primers. The positiverecombinants were cultured in flasks to examine their supematant for SODenzymatic activity after been induced by 1% methanol.
引文
[1] Jose L. Adrio, A.L.D. Fungal biotechnology, Int Microbiol. 2003, 6: 191-199.
    [2] Mishra NC, Tatum EL. Non-Mendelian inheritance of DNA-indueed inositol independence in Neurospora. Proc Natl Acad Sci USA, 1973, 70(12): 3875-9.
    [3] Mishra NC. DNA-mediated genetic changes in Neurospora crassa. J Gen Microbiol, 1979, 113(2):255-9.
    [4] Case ME, Schweizer M, Kushner SR et al. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci USA, 1979, 76(10):5259-63.
    [5] Bull, J. H., and J. C. Wootton. Heavily methylated amplified DNA in transformants of Neurospora crassa. Nature, 1984, 310:701-704.
    [6] Galagan JE, Calvo SE, Borkovich KA et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 442:859-868.
    [7] Wright MC, Philippsen P. Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. Gene, 1991,109(1):99-105.
    [8] Wendland, J., A.Walther. Ashbya gossypii: a model for fungal developmental biology. Nat Rev Microbiol, 2005, 3(5): 421-9.
    [9] Tilbum, J., C. Scazzocchio, G.G.Taylor, J. H. Zabicky-Zissima, R. A. Lockington, and R. W.Davis. Transformation by integration in Aspergillus nidiuIans. Gene, 1983, 26:205-221.
    [10] Galagan JE, Calvo SE, Cuomo C et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A.oryzae. Nature, 2005, 438(7070):1105-15.
    [11] Mattern, I.E., S. Unkles, J. R. Kinghorn, et al. Transformation of Aspergilllus oryzae using the A. niger pyrG gene. Mol Gen Genet, 1987, 210:460-461.
    [12] Machida, M., Asai,K., Sano,M. et al. Genome sequencing and analysis of Aspergillus oryzae.Nature, 2005, 438(7071): 1157-61.
    [13] Tang CM, Cohen, J, Holden DW. An Aspergillu fumigatus alkaline protease mutant constructed by gene disruption is deficient in extracellular elastase activity. Mol Microbiol, 1992,6(12):1663-71.
    [14] William C. Nierman, Amab Pain, Michael J. Anderson et al. Genomie sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005,438(7071):1151-6.
    [15] Goosen, T.,G. Bloemheuvel, C. Gysler et al. Transformation of Asperigilluls niger using the homologous orotidine-5'-phosphatedecarboxylase gene. Curr. Genet, 1987, 11:499-503.
    [16] http://www.dsm.com/en_US/html/dfs/genomics_aniger.htm
    [17] Kim JG, Choi YD, Chang YJ et al. Genetic transformation of Monascus purpureus DSM1379. Biltechnol Lett 2003; 25(18): 1509-14.
    [18] Katz ME, Hynes MJ. Gene function identified by interspecifie transformation. Gene, 1989,78(1):167-71.
    [19] Woloshuk CP, Seip ER, Payne GA et al. Genetic transformation system for the aflatoxin-producing fungus Aspergillus flavus. Appl Environ Microbiol, 1989, 55(1):86-90.
    [20] Kistler, H. C., and U. K. Benny. Genetic transformation of the fungal plant with pathogen Fusarium oxysporum. Curr. Genet, 1988, 13:145-147.
    [21] Whitehead,M.P., Gurr, S.J., Unkles,S.E. et al. Homologous transformation of Cephalosporium acremonium with the mitrate reductase-incoding gene(niaD). Gene, 1990, 90(2):193-8.
    [22] Beri,R.K., G.Turner. Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selective marker. Curr Genet, 1987,11 (8): 639-41.
    [23] Capecchi M.R. Altering the genome by homologous recombination [J]. Science, 1989,224:1288-1292.
    [24] 王军平,张友明.Red/ET重组及其在生物医学中的应用.生物工程学报,2005,21(3):501-506.
    [25] Meselson MS, Radding CM. A general model of genetic recombination[J].Proc Natl Acad Sci USA, 1975, 72:358-361.
    [26] Lin FL, Sperle K, Stember N. Model for homologous recombination during transfer of DNA into mouse L cell: role for DNA ends in the recombination process [J]. Mol Cell Biol, 1984, 4:1020-1034.
    [27] Rao B J, Duter CM. Stable three-stranded DNA model by ReeA protein [J]. Proc Natl Acad Sci USA, 1991, 88:2948-2958.
    [28] Stasiak A.Three-stranded DNA. structure: is this the secret of DNA homologous recombination?[J]. Mol Microbio, 1992, 6:3267-3276.
    [29] 刘红全,戴继勋,于文功等,基因打靶技术的研究进展,遗传,2002,24(6):707-711.
    [30] 阎培生,罗信昌,周启.丝状真菌基因工程研究进展.生物工程进展.1999,19(1):36-41.
    [31] 肖志新,周冀衡,杨虹琦,等.转基因植物选择性标记基因,中国农业导报,2004,6(5)19-22.
    [32] Alcazar-Fuoli L, Mellado E, Garcia-Effron G et al. Aspergillus fumigatus C-5 sterol desaturases Erg3A and Erg3B:role in sterol biosynthesis and antifungal drug susceptibility.Antiramicrob Agents Chemother, 2006, 50(2):453-60.
    [33] Reichard U, Cole GT, Ruchel R. et al. Molecular cloning and targeted deletion of PEP2 which encodes a novel aspartic proteinase from Aspergillus fumigatus. Int J Med Microbiol, 2000,290(1):85-96.
    [34] Suzuki K, Kato A, Sakuraba Y. et al. Srs2 and RecQ homologous cooperate in mei-3-mediated homologous recombination repair of Neurospora crassa. Nucleic Acids Res,2005, 33(6):1848-58.
    [35] Brock M. Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation. Appl Environ Microbiol, 2005, 71(9):5465-75.
    [36] 孙晶,李景鹏,王敖全,等.黑曲霉pepB基因缺失菌株的构建及其功能分析.微生物学报,2004,44(6):766-770.
    [37] Christina SCHLUPEN, Maria A. SANTOS, Ulrike WEBER, et al. Disnlption of the SHM2 gene, encoding one of two sedne hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii. Biochem J,, 2003, 369(Pt2): 263-73.
    [38] Wendland J, Ayad-Durieux Y, Knechtle P et al. PCR-base gene targeting in filamentous fungus Ashbya gossypii. Gene, 2000, 242(1-2):381-91.
    [39] Bird, D., R.Bradshaw. Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet. 1997,255(2):219-25.
    [40] Fincham J.R.S. Transformation in fungi. Microbiol. Rev., 1989, 53(1): 148-170.
    [41] Yu JH, Hamari Z, Han KH et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol, 2004, 41(11):973-81.
    [42] Chaveroehe MK, Ghigo JM, Christophe d'Enfert. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans.Nucleic Acids Research, 2000,28(22):E97.
    [43] Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem ceils: a general strategy for targeting mutations to non-selectable genes. Nature, 1988, 336(6197):348-52.
    [44] Takahashi, T. Hatamoto, O. Koyama, Y. Abe, K. Efficient gene disruption in the koji-mold Aspergillus sojae using a novel variation of the positive-negative method. Mol Genet Genomics, 2004, 272(3): 344-52.
    [45] Cho Y, Davis JW, Kim KH et al. A high throughput targeted gene disruption method for Alternaria brassicicola functional genomics using linear minimal element (LME) constructs. Mol Plant Microbe Interact, 2006, 19(1):7-15.
    [46] Maier F J, Malz S, Losch AP et al. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a ployketide synthase gene as a visible marker.FEMS Yeast Res, 2005, 5(6-7):653-62.
    [47] Langfelder, K., B.Philippe. Jahn,B. et al. Differentral expression of the Aspergillus fumigatus pksP gene detected in vitro and in vivo with green fluorescent protein. Infect Immum, 2001,69(10):6411-8.
    [48] Yuuko Ninomiya, Keiichiro Suzuki, Chizu Ishii, et al. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA, 2004,101(33):12248-53.
    [49] Nayak, T., E. Szewczyk, C. E. Oaklay, et al. A versatile and efficient gene targeting system for Aspergillus nidulans. Genetics, 2005, Dec 30.
    [50] De-Groot MJA, Bundock P, Hooykaas PJJ, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnol, 1998, 16: 839~842.
    [51] Michielse C.B., M. Arentshorst, A.F.J. Ram, et al. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal Genetics and Biology, 2005, 42:9-19.
    [52] 陈惠芳,王琦,付学池,等.超氧化物歧化酶(SOD)的分子生物学,生命的化学,2003,23(4):291~293.
    [53] 杨明琰,张晓琦,沈俭,等.微生物产超氧化物歧化酶的研究进展,微生物学杂志,2004,24(1):49~59.
    [54] Lamarre, C., LeMay, J.D., Deslaufiers, N. and Bourbonnais, Y. Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product)upon the entry and during the stationary phase. J. Biol. Chem. 2001, 276, 43784-43791.
    [55] Loftus, B.J., Fung, E., Roncaglia, P., et al. The genome of thebasidiomycetous yeast and human pathogen Cryptococcus neoformans. Science, 2005, 307, 1321-1324.
    [56] Wintjens R., Noel C., May, A.C., et al. Specificity and phenetic relationships of iron-and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J. Biol. Chem. 2004, 27.9, 9248-9254.
    [57] Frealle.E, Noel.C, Nolard.N, et al. Manganese superoxide dismutase based phylogeny of pathogenic fungi. Mol Phylogenet Evol, 2006, 41 (1): 28-39.
    [58] Narasipura, S.D., Chaturvedi, V. and Chaturvedi, S. Characterization of Cryptococcus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol. Microbiol. 2005, 55, 1782-1800.
    [59] Giles, S.S., Batinic-Haberle, I., Perfect, J.R. and Cox, G.M. Cryptococcus neoformans mitochondrial superoxide dismutase: an essential link between antioxidant function and hightemperature growth. Eukaryot. Cell. 2005, 4, 46-54.
    [60] Frealle E., Noel C., Viscogliosi E, et al. Manganese superoxide dismutase in pathogenic fungi:an issue with pathophysiological and phylogenetic involvements. FEMS Immunol Med Microbiol,2005, 45(3): 411~422.
    [61] 马旭俊,朱大海.植物超氧化物岐化酶(SOD)的研究进展.遗传,2003,25(2):225~231.
    [62] 熊勇华.橙色红曲菌SAGE文库的构建及其与产桔霉素差异表达基因的研究.南昌大学博士论文,2004年.
    [63] 赖卫华,许杨,熊勇华,李燕萍.应用抑制性消减杂交法筛选与红曲菌产桔霉素相关的基因.食品科学,2005,26(3):63~66.
    [64] J.萨姆布鲁克,D.W拉塞尔著,黄培堂等译.分子克隆实验指南(第三版).北京:科学出版社,2002.
    [65] Wintjens, R., Noel, C., May, A.C., Gerbod, D., Dufemez, F., Capron, M., Viscogliosi, E.,Rooman, M.. Specificity and phenetic relationships of iron-and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J.. Biol. Chem. 2004,279, 9248-9254.
    [66] Ishida, H., Y. Hata, et al. Isolation of a novel promoter for efficient protein production in Aspergillus oryzae. Biosci Biotechnol Biochem, 2004, 68(9): 1849-57.
    [67] Hisada, H., M. Sano, et al. Deletion analysis ofthe superoxide dismutase (sodM) promoter from Aspergillus oryzae. Appl Microbiol Biotechnol, 2006, 72(5): 1048-53.
    [68] 纪宗玲,刘继中,陈苏民.基因功能的研究方法.生物工程学报,2002,18(1):117~120.
    [69] 刘楠梅.基因功能研究方法浅介.生物技术通讯,2000,11(3):231~233.
    [70] 王亚馥,戴灼华,主编.遗传学.第一版.北京:高等教育出版社,1999.
    [71] B.Ruiz-Diez. Strategies for the transformation of filamentous fungi. Journal of Applied Microbiology. 2002, 92,189~195.
    [72] 谭文辉,李燕萍,许杨.微生物原生质体制备及再生影响因素.现代食品科技.2006,22(3):263-265,258.
    [73] Steinman HM. Construction of an Escherichia coli K-12 strain deleted for manganese and iron superoxide dismutase genes and its use in cloning the iron superoxide dismutase gene of Legionella pneumophila. Molecular and General Genetics, 1992, 232: 427~430.
    [74] Adolphus PGM, Pesold-Hurt B, Sehatz G. A yeast mutant lacking mitochondrial manganese superoxide dismutase is hypersensitive to oxygen. Proceedings of the National Academy of Science of the United States of America, 1986, 83: 3820~1341.
    [75] Narasipura, S.D., Chaturvedi, V. and Chaturvedi, S. Characterization of Cryptoeoccus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol. Microbiol. 2005, 55, 1782-1800.
    [76] 尚玉磊.植物内生蜡样芽孢杆菌M22超氧化物岐化酶基因克隆及体外表达酶活性分析.浙江大学博士学位论文,2004年。
    [77] 张伍魁,范清林,宋礼华.毕赤酵母表达系统在外源基因表达中的研究进展及应用.中国生物工程杂志.2006,26(1):87~91.
    [78] 赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析.生物工程学报.2005,16(3):308~311.
    [79] 李建武等编.生物化学实验原理和方法(第一版).北京:北京大学出版社,1994.
    [80] 蔡骏,李颖,尹宗宁.邻苯三酚法测定超氧化物歧化酶缓释片中SOD的活性.华西药学杂志,2005,20(1):054~055.
    [81] 赖卫华,许杨,熊勇华.红曲菌cDNA消减文库的构建.菌物系统.2003,22(3):466~473.
    [82] 何炜,袁汉英,高卜渝,等.人类超氧化物岐化酶在酿酒酵母系统中的高效表达.复旦学报(自然科学版).2004,43(2):156~162.
    [83] 施惠娟,陈哲宇,李明峰,等.人Cu/Zn-SOD在酵母系统中的表达.华东理工大学学报.2000,26(6):601~603.
    [84] 凌敏,赖祥进,谢科.人Mn-SOD cDNA的克隆及其在巴斯德毕赤酵母中的表达.生物工程学报.2005,21(3):478~481.
    [85] 王黎明,尚玉磊,王勇军,等.蜡样芽孢杆菌M22锰超氧化物岐化酶基因在毕赤酵母中的表达.农业生物技术学报.2005,13(3):360~164.
    [86] 尚玉磊.植物内生蜡样芽孢杆菌M22超氧化物岐化酶基因克隆及体外表达酶活性分 析.浙江大学博士学位论文,2004年。
    [87] 孙强正,熊衍文,李振军,等.乳酸乳球菌食品级载体的构建及Mn-SOD基因的克隆和表达.中国人兽共患病学报.2006,22(6):498~497.
    [88] 黄勇,张德纯.锰超氧化物岐化酶基因的克隆和在保加利亚乳杆菌中的表达.食品科学.2005,26(5):92~95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700