共振光散射测定辣根过氧化物酶及功能化碳纳米管在生化分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是由细胞产生的具有催化功能的蛋白质,酶分析在生命科学研究中具有重要的意义,已深刻影响到生物、化学等领域。但是传统的酶检测方法,如放射性标记、酶标记法等,往往操作繁杂,这在一定程度上限制了酶分析的研究。随着生命科学的发展,如何对酶进行快速、简便、高效检测,已经成为研究的热点问题。辣根过氧化物酶是应用最为广泛的一种酶制剂。碳纳米管是90年代发现的一种新型材料,其独特的物理和化学性能,已成为众多领域的研究热点。本文分为两部分,就这两种应用广泛的物质作了研究,为发展其在环境微生物免疫分析中得到更广泛的应用。
     第一部分,基于苯酚与H2O2的氧化反应共振光散射技术测定辣根过氧化物酶。
     本文建立了一种高灵敏度的测定辣根过氧化物酶的共振光散射分析方法。HRP催化苯酚和H2O2反应生成酚类共轭聚合物,导致共振光散射信号在200~700 nm之间有很大的增强,并在313 nm处达到最大值。基于此现象,建立了一种灵敏的检测HRP的方法。测定HRP的标准曲线的线性范围是0.05~5.0×10-7g/mL,检出限是1.1×10-10 g/mL。
     第二部分,碳纳米管的化学修饰及DNA分子功能化。
     本文利用简单的方法使羧基化修饰的碳纳米管通过共价作用与单链DNA进行结合,利用具有较强的荧光共轭聚合物PFP与DNA的静电结合作用,实现对碳纳米管DNA分子功能化的验证,建立了一种简便的碳纳米管功能化的方法,为碳纳米管作为功能化荧光探针在免疫分析中的应用打下了基础,发展了碳纳米管在环境微生物的免疫分析方面的应用。
Enzyme is a protein which has catalytic activity and the enzyme analysis has great influence in the field of life science research. But the traditional methods to detect enzyme, such as the radioactive label and the enzyme label, generally have complex operations that has limited the advanced research in enzyme in some degree. With the development of life science research, how to establish rapid, simple and highly effective methods to detect enzyme has been becoming a hot topic. HRP (Horseradish Peroxidase) is one of the enzymes which are most widely used. CNT (Carbon Nanotube) is becoming a hot topic for its unique physical and chemical properties after the 90th. Based on above, this paper is divided into two parts to research the HRP and CNT and prospect on the application in the field of the environmental microbiological immunoassay.
     Part one:Determination of HRP based on the oxidation reaction of phenol with H2O2 by using resonance light scattering technique.
     A new assay of HRP is proposed by using of resonance light scattering (RLS). The oxidation reaction of phenol with hydrogen peroxide (H2O2) catalyzed by HRP results in a great enhancement of RLS intensity in the wavelength range from 200 nm to 700 nm characterized by the RLS peak around 313 nm. The enhanced intensity of RLS at 313 nm is proportional to the concentration of HRP in the range of 0.05~5.0×10-7 g/mL and the detection limit is 1.1×10-10 g/mL. Therefore, a simple and sensitive method for HRP determination is established.
     Part two:Chemical modified CNT and DNA molecular functional CNT.
     We developed applications of CNT in the detection of DNA by using high sensitive fluorescence assay. The amount of signal was proportional to the concentration of target oligonucleotide. At the same time, we lay a good foundation for the application of PFP (cationic conjugated polymer) in process of hybridization reaction. If we design other suitable probes and complementary sequences, this assay could be used for other DNA hybridization and SNP analysis.
引文
[1]王镜岩,朱圣庚,许长法.生物化学[M].北京:高等教育出版社,2002.319.
    [2]张东霞.HRP催化合成可溶性聚苯胺的研究[D].硕士论文,西北师范大学:1.
    [3]林丽钦.山葵、辣根、芥末的辛辣成分及功能[J].福建轻纺,1999(9):1-4.
    [4]李囡.辣根过氧化物酶在食品分析中的应用[D].硕士论文,天津商业大学:1.
    [5]季钟煜,费锦鑫.中性辣根过氧化物酶制法新进展[J].生命的化学,1996,16(3):36.
    [6]罗贵民.酶工程[M].北京:化学工业出版社,2003:1.
    [7]Veitch N C. Horseradish peroxidase:a modern view of a classic enzyme[J]. Phytochemistry,2004,65: 249-259.
    [8]Mceldoon J P, Dordick J S. Unusual thermal stability of soybean peroxidase[J]. Biotechnol. Prog.,1996, 12:555-558.
    [9]Bechtold U, Otterbach J T, Pasternack R, et al. Enzymic Preparation of Protein G-peroxidase Conjugates Catalysed by Transglutaminase[J]. J. Biochem.,2000,127:239-245.
    [10]Kenausis G, Chen Q, Heller A. Electrochemical Glucose and Lactate Sensors Based on "Wired" Thermostable Soybean Peroxidase Operating Continuously and Stably at 37℃[J]. Anal. Chem.,1997, 69:1054-1060.
    [11]Gajhede M, Schuller D J, Henriksen A, et al. Crystal structure of horseradish peroxidase C at 2.15 angstrom resolution[J]. Nature Struct,1997,4:1032-1038.
    [12]张东霞.HRP催化合成可溶性聚苯胺的研究[D].硕士论文,西北师范大学:8.
    [13]李囡.辣根过氧化物酶在食品分析中的应用[D].硕士论文,天津商业大学:9.
    [14]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002:320-323.
    [15]Dunford, H B. Horseradish peroxidase:Structure and kinetic properties[M]. Peroxidases in chemistry and biology.1991,2:1-24.
    [16]Dunford H B, Stillman J S. On the function and mechanism of action of peroxidase[J]. Coordination Chemical Reviews,1976,19:187-251.
    [17]Buchanan I D, Nicell J A. A simplified model of peroxidase-catalyzed phenol removal from aqueous solution[J]. Journal of Chemical Technology and Biotechnology,1999,74:669-674.
    [18]Hewson W D, Dunford H B. Stoichiometry of the reaction between horseradish peroxidase and p-cresol[J]. Journal Biological Chemistry,1976,251:6043-6052.
    [19]程俊.层柱粘土固定辣根过氧化物酶及其在含酚废水处理中的应用[D].硕士论文,合肥工业大学:12.
    [20]Karamyshev A V, Shleev Sy V, Koroleva O V. Yaroplov A I, Sakharov Y I, Laccas-catalyzed Synthesis of Cnoducting Polyaniline[J]. Enzyme and Microbial Technology,2003,13:556-564.
    [21]Gorss R A, Kumar A, Kalra B. Polymer Synthesis by Vitro Enzyme Catalysis[J]. Chem. Rev.,2001, 101:2097-2124.
    [22]Nagarajan R, TriPathy S, Kumar J, et al. An Enzymatically Synthesized Conducting Molecular Complex of Polyaniline and Poly(vinylphosphonic acid) [J]. Macromolecules,2000,33:9542-9547.
    [23]Kobayashi S, Kaneko I. Enzymatic Oxidation Polymerization of o-Phenylenediamine[J]. Chem. Lett.,1992:393-394.
    [24]Kalar B, Gorss R A. Horseradish Peorxidase Mediated Free Radical Polymerization of Methyl Methacrylate[J]. Biomacromtolecules,2000,1:501-505.
    [25]蔡智奇,孙建中,周其云,等.辣根过氧化物酶酶促体系引发丙烯酸胺聚合的研究[J].功能高分子学报,2004,17(1):81-86.
    [26]Durand A, Lalot T, Brigodiot M, et al. Enzyme-mediated initiation of acrylamide polymeriaztion: reaction mechanism[J]. Polymer,2000,41:8183-8192.
    [27]张书圣,焦奎.DPDAP-H2O2-HRP显色光度法测定HRP的研究[J].青岛化工学院学报,1996,17(1):1-5.
    [28]Rad A M, Ghourchian H, Movahedi A M, et al. Spectrophotometric assay for horseradish peroxidase activity based on pyrocatechol-aniline coupling hydrogen donor[J]. Anal. Biochem.,2007,362(1): 38-43.
    [29]Bhattacharya R, Bhattacharya D, Dhar T K. A novel signal amplification technology based on catalyzed reporter deposition and its application in a Dot-ELISA with ultra high sensitivity[J]. Journal of Immunological Methods,1999,227:31-39.
    [30]Tang B, Wang Y, Liang H, et al. Studies on the oxidation reaction of tyrosine (Tyr) with H2O2 catalyzed by horseradish peroxidase (HRP) in alcohol-water medium by spectrofluorimetry and differential spectrophotometry[J]. Spectrochimica Acta Part A.2006,63(3):609-613.
    [31]Raffa D, Leung K T, Battaglini F. A Microelectrochemical Enzyme Transistor Based on an N-Alkylated Poly(Aniline) and Its Application to Determine Hydrogen Peroxide at Neutral pH[J]. Anal. Chem.2003,75(19):4983-4987.
    [32]Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer[J]. Anal.Chim.Acta.,1999, 391(1):73-82.
    [33]左国防,陈晶,卢小泉.自组装技术在金表面固定辣根过氧化物酶的研究进展[J].化学通报,2006,69:1-6.
    [34]Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G[J]. Immunochemistry,1971,8(9):871-874.
    [35]施文正,汪之和.酶联免疫吸附分析法在食品分析中的应用[J].食品研究发展,2003,24(6):84-87.
    [36]张寒琦译.光谱化学分析[M].长春:吉林大学出版社,1996,530-559.
    [37]胡小莉.共振瑞利散射测定核酸和抗生素的新方法研究[D].硕士论文,西南师范大学,2001.
    [38]Shenoy D, Fu W, Li J, et al. Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery[J]. Int J Nanomedicine,2006,1(1): 51-58.
    [39]Pasternack R F, Bustamante C, Collings P J, et al. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique[J]. J. Am. Chem. Soc.,1993,115:5393-5399.
    [40]Anglister J, Steinberg I Z. Measurment of the deporlarization ratio of Rayleigh scattering at absorption bands[J]. J. Chem. Phys.,1981,74(2):786-791.
    [41]de Paula J C, Robblee J H, Pasternack R F. Aggregation of chlorophyll a probed by resonance light scattering spectroscopy[J]. Biophys, J.1995,68:335-341.
    [42]Anglister J, Steinberg I Z. Depolarized rayleigh light scattering in absorption bands measured in lycopene solution[J]. Chem. Phys. Lett,1979,65:50-54.
    [43]Carvlin M J, Fiel R J. Intercalative and nonintercalative binding of large cationic porphyrin ligands to calf thymus DNA[J]. Nucl. Acid. Res.,1983,11:6121-6139.
    [44]Huang C Z, Li K A, Tong S Y. Determination of Nucleic Acids by a Resonance Light-Scattering Technique with β-Tetrakis[4-(trimethylammoniumyl) phenyl] porphine[J]. Anal. Chem.,1996,68: 2259.
    [45]Huang C Z, Li K A, Tong S Y. Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the cobalt(Ⅱ)/4-[(5-Chloro-2-pyridyl) azo]-1,3-diaminobenzene complex[J]. Anal. Chem.,1997,69 (3):514-520.
    [46]Liu Y, Ma C Q, Li K A. Simple and sensitive assay for nucleic acids by use of Rayleigh light scattering technique with rhodamine B[J]. Anal. Chim. Acta.,1999,379:39-44.
    [47]Huang C Z, Li K A, Tong S Y. Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique[J]. Anal. Chim. Acta.,1998,375:89-97.
    [48]吴会灵,李文友,何锡文,等.罗丹明6G与核酸作用的共振光散射光谱及其分析应用[J].分析科学学报,2002,18(2):94-99.
    [49]Huang C Z, Li K A. Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the Cobalt(Ⅱ)/4-[(5-Chloro-2-pyridyl) azo]-1,3-diaminobenzene complex[J]. Anal. Chem,1997,69:514-520.
    [50]Li Z P, Li K A, Tong S Y. Determination of nucleic acids in acidic medium by enhanced light scattering of large particles[J]. Talanta,2000,51:63-70.
    [51]Li Z P, Li K A, Tong S Y. Nephelometric determination of microamounts of nucleic acids with protamine sulfate[J]. Analyst,1999,124 (6):907-910.
    [52]Du X Y, Sasaki S, Nakamura H, et al. The determination of DNA based on light scattering of a complex formed with histone[J]. Talanta,2001,55:93-98.
    [53]Huang C Z, Li Y F, Feng P, et al. Determination of proteins by their enhancement of resonance light scattering by fuchsine acid[J]. Fresenius J Anal Chem,2001,371(7):1034-1036.
    [54]Li Y F, Huang C Z, Li M. A resonance light-scattering determination of proteins with fast green FCF[J]. Anal. Sci.,2002,18(2):177-178.
    [55]Wang L, Chen H, Li L, et al. Quantitative determination of proteins at nanogram levels by the resonance light-scattering technique with macromolecules nanoparticles of PS-AA[J]. Spectrochim Acta A,2004,60(4):747-750.
    [56]Zhao G C, Zhang P, Wei X W, et al. Determination of proteins with fullerol by a resonance light scattering technique[J]. Anal Biochem,2004,334(2):297-302.
    [57]Feng S, Pan Z, Fan J. Determination of trace proteins with pyronine Y and SDS by resonance light scattering[J]. Anal. Bioanal. Chem.,2005,383(2):255-260.
    [58]Liu S P, Luo H Q, Li N B, et al. Resonance Rayleigh Scattering Study of the Interaction of Heparin with Some Basic Diphenyl Naphthylmethane Dyes[J]. Anal. Chem,2001,73:3907-3914.
    [59]Luo H Q, Liu S P, Li N B, et al. Resonance Rayleigh scattering, frequency doubling scattering and second-order scattering spectra of the heparin-crystal violet system and their analytical application[J]. Anal. Chim. Acta,2002,468:275-286.
    [60]Zhang S Z, Zhao F L, Li K A, et al. A study on the interaction between concanavalin A and glycogen by light scattering technique and its analytical application[J]. Talanta,2001,54:333-342.
    [61]Zhang S Z, Zhao F L, Li K A, et al. Determination of glycogen by Rayleigh light scattering[J]. Anal. Chim. Acta,2001,431:133-139.
    [62]孔玲.共振瑞利散射及共振非线性散射测定某些生物碱和水溶性聚合物的新方法[D].硕士学位论文,西南师范大学,2000.
    [63]Liu S P, Feng P. Resonance Rayleigh scattering for the determination of berberine in tablet form with some acidic xanthene fluorescent dyes[J]. Microchim. Acta,2002,140:189-193.
    [64]奉萍.蛋白质和抗菌类药物在液/液界面吸附行为的全内反射光散射研究[D].博士论文,西南师范大学,2003.
    [65]Liu S P, Liu Z F. Studies on the resonant luminescence spectra of rhodamine dyes and their ion-association complexes[J]. Spectrochim. Acta. Part A,1995,51:1497-1500.
    [66]Zhang W J, Xu H P, Xue C X. Resonance light scattering for the determination of nucleic acids with methyl violet[J]. Anal. Lett.,2001,34(4):553-568.
    [67]刘芹.铬(Ⅵ)-碘化钾-结晶紫体系的共振瑞利散射及其分析应用[J].西南师范大学学报.1998,3:269.
    [68]刘绍璞,刘忠芳.汞(Ⅱ)-硫氰酸盐-维多利亚蓝4R体系的共振发光和二级散射光谱及其分析应用[J].高等学校化学学报,1996,17(6):887-892.
    [69]刘绍璞,刘忠芳,李明.离子缔合物二级散射光谱的分析应用Ⅲ.汞(Ⅱ)-硫氰酸盐-罗丹明染料体 系[J].分析化学,1996,24(5):501-505.
    [70]刘绍璞,刘忠芳.阳离子表面活性剂-曙红Y体系的二级散射光谱及其在分析化学上的应用[J].分析化学,1996,24(6):665-668.
    [71]刘绍璞,刘忠芳Resonance luminescence spectra of selenium (Ⅳ)-iodide-rhodamie B system[J]西南师范大学学报(自然科学版),1996,21(6):469-473.
    [72]刘绍璞.分析化学新进展[M].太原:山西科学技术出版社,1997:34.
    [73]刘绍璞,刘忠芳.分析化学新进展[M].太原:山西科学技术出版社,1997:390-391.
    [74]刘芹,刘绍璞.分析化学新进展[M].太原:山西科学技术出版社,1997:394-395.
    [75]Liu S P, Zhou C M, Liu Z F. Resonance Rayleigh scattering for the determiation of cationic surfactants with Eosin Y[J]. Fresenius J. Anal. Chem.,1999,363:651-654.
    [76]Yang C X, Li Y F, Huang C Z. Determination of cationic surfactants in water samples by their enhanced resonance light scattering with azoviolet[J]. Anal. Bioanal. Chem.,2002,374:868-872.
    [77]段新瑞.半胱氨酸和谷胱甘肽的纳米粒子共振光散射探针研究[D].硕士论文,河北大学:10.
    [78]Siegel R. Processing and mechanical behavior of nanocrystalline Fe[J]. Nanostructured Materiasls, 1994,4(1):121.
    [79]程筠,甘仲惟.碳纳米管研究综述[J].高等函授学报,2000,13(2):21-23.
    [80]Mattson M P, Haddon R C, Rao A M, Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth[J]. Mol. Neurosci.,2000,14 (3):175-182.
    [81]Lin Y, Taylor S, Li H, et al. Advances toward bioapplications of carbon nanotubes[J]. J. Mater. Chem., 2004,14 (4):527-541.
    [82]Bianeo A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery[J]. Curr. Opin. Chem. Biol.,2005,9 (6):674-679.
    [83]Kam N, Liu Z, Dai H. Functionalization of Carbon Nanotubes via Cleavable Disulfide Bonds for effieient Intracellular Delivery of siRNA and Potent Gene Sileneing[J]. J. Am. Chem. Soc.,2005,127 (36):12492-12493.
    [84]Gao L Z, Nie L, Wang T H, et al. Carbon nanotube delivery of the GFP gene into mammalian cells[J]. Chem. Bioehem.,2006,7 (2):239-242.
    [85]Klumpp C, Kostarelos K, Prato M, et al. Functionalized carbon nanotubes as emerging nanoveetors for the delivery of therapeuties[J]. Biochim. Biophys. Acta,2006,1758 (3):404-412.
    [86]Liu Z, Cai W, He L, et al. In Vivo Biodistribution and Highly Efficient Tumor Targeting of Carbon Nanotubes in Mice. Nat[J]. Nanotechnol.,2007,2:47-52.
    [87]Colvin V L. The Potential environmental impact of engineered nanomaterials[J]. Nature Biotech,2003, 21:1166-1170.
    [88]Dowling A, Clift R, Grobert N. Nanoscience and nanotechnologies:opportunities and uncertainties[M]. London:The Royal Society & The Royal Academy of Engineering Report,2004.
    [89]Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward appications[J]. Science,2002,297:787-792.
    [90]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [91]曹肇基,解思深.碳纳米管研究的最新进展[J].物理,1998,27(12):707-709.
    [92]Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites:a review[J]. Composites Science and Technology,2001,61:1899-1912.
    [93]Smalley R J, Antonia R A, Djenidi L. Self-Preservation of rough-wall turbulent boundary layers[J]. European J. Mechanics,2001,20(5):591-602.
    [94]高尧.碳纳米管的功能化及其在聚合物中的应用[D].硕士论文,西南交通大学:9.
    [95]Britz D A, Khlobystov A N. Noncovalent interactions of molecules with single walled carbon nanotubes[J]. Chemical Society Reviews,2006,35:637-659.
    [96]卢海峰.碳纳米管的高分子化学修饰及其性能研究[D].硕士论文,华中科技大学:6.
    [97]Islam M F, ROjas E, Bergey D M, et al. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water[J]. Nanoletters,2003,3(2):269.
    [98]Chattopadhyay D, Galeska L, Papadimitrakopoulos F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes[J]. J.Am.Chem.Soc.,2003,125(11): 3370-3375.
    [99]Pengfei Q F, Vermesh O, Grecu M, et al. Toward large arrays of multiplex functionalized Carbon nanotube sensors for highly sensitive and selective molecular detection[J]. Nanoletters,2003,3(3): 347-351.
    [100]Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature[J]. Science,1999,286:1127-1129.
    [101]Zhu W, Bower C, et al. Large current density from carbon nanotube field emitters[J]. Appl. Phys. Lett.1999,75(6):873-875.
    [102]Ajayan P M, Iijima S. Capillarity-induced filling of carbon nanotubes[J]. Nature,1993,361: 333-334.
    [103]辛玲,张锐,石广新,等.碳纳米管的性能及应用[J].中国陶瓷工业2005,12(3):38-40.
    [104]毛蕾蕾.羧基碳纳米管在分光光度法中的应用研究[D].硕士论文,青岛大学:12.
    [105]Baker S E, Cai W, Lasseter T L, et al. Covalently bonded adducts of deoxyribonucleic acid(DNA) oligonucleotides with single-wall carbon nanotubes:synthesis and hybridization[J]. Nanoletters, 2002,2(12):1413-1417.
    [106]Wang J, Liu G D, Jan M R. Ultrasensitive electrical biosensing of proteins and DNA: Carbon-Nanotube derived amplification of the recongnition and transduction events[J]. J. Am. Chem. Soc.,2004,126:3010-3011.
    [107]Hu P, Huang C Z, Li Y F, et al. Magnetic Particle-Based Sandwich Sensor with DNA-Modified Carbon Nanotubes as Recognition Elements for Detection of DNA Hybridization[J]. Anal. Chem., 2008,80 (5):1819-1823.
    [108]Guilbault G G, Brignac P J, Zimmer M. Homovanillic acid as a fluorometric substrate for oxidative enzymes. Analytical applications of the peroxidase, glucose oxidase, and xanthine oxidase systems[J]. Anal. Chem.,1968,40(1):190-196.
    [109]Guilbault G G, Brignac P J, Juneau M. Substrates for the fluorometric determination of oxidative enzymes[J]. Anal. Chem.,1968,40(8):1256-1263.
    [110]梁雁,袁津伟.化学发光法测定辣根过氧化物酶浓度的实验条件探讨[J].同济医科大学学报,1998,27:445-447.
    [111]封满良,章竹君,张新荣.增强化学发光酶免疫分析法测定血清中铁蛋白[J].分析化学,1994,22:788-790.
    [112]Huang C Z, Li Y F. Resonance light scattering technique used for biochemical and pharmaceutical analysis[J]. Anal. Chim. Acta.,2003,500:105-117.
    [113]Huang C Z, Li K A. Determination of nanograms of nucleic acids by their enhancement effect on the resonance light scattering of the Cobalt(Ⅱ)/4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene complex[J]. Anal. Chem.,1997,69(3):514-520.
    [114]Li Z P, Liu C H. Study on the interaction between protein and 8-anilino-1-naphthalenesulfonic acid by resonance light scattering technique[J]. J. Chem. on Internet,2005,12:83.
    [115]Feng P, Shu W Q, Huang C Z, et al. Total internal reflected resonance light scattering determination of chlortetracycline in body fluid with the complex cation of chlortetracycline-europium-trioctyl phosphine oxide at the water/tetrachloromethane interface[J]. Anal. Chem.,2001,73(17): 4307-4312.
    [116]Pasternack R F, Bustamante C, Collings P J, et al. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique[J]. J.Am. Chem. Soc.,1993,115(13):5393-5399.
    [117]Pasternack R F, Collings P J. The effect is easily detectable in the case of strongly absorbing chromophores, which are able to interact, thus leading to large aggregates[J]. Science,1995,269: 935.
    [118]Duan X R, Li Z P, He F, et al. A sensitive and homogeneous SNP detection using cationic conjugated polymers[J]. J. Am. Chem. Soc.,2007,129:4154-4155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700