红景天苷对Aβ_(1-40)所致AD实验模型的干预作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔兹海默病(Alzheimer’s disease,AD)是一种起病隐袭且进行性发展的神经系统退行性疾病,临床上以进行性记忆障碍、失语、失用、失认、视空间损害、执行功能障碍及人格和行为改变为特征。AD的发病机制复杂,至今未有定论,目前人们提出几种假说,如胆碱能神经异常学说、淀粉样蛋白级联学说、自由基与凋亡学说、tau蛋白异常修饰学说、线粒体代谢障碍学说、兴奋性氨基酸毒性学说及基因突变学说等。但以上任何一种学说均不能完全阐明AD的发病机制。经过大量深入的研究,人们发现氧化应激、细胞凋亡、线粒体功能障碍与AD的发病有密切关系。
     AD的主要病理特征是大脑皮质弥漫性萎缩,大量的神经元丧失,细胞内神经纤维缠结和细胞外淀粉样斑块沉积,淀粉样斑块的主要成分是β-淀粉样蛋白(Aβ),它是从淀粉样前体蛋白(amyloid precursor protein,APP)由β-分泌酶和γ-分泌酶通过连续的蛋白水解裂解衍生的。研究表明,β-淀粉样蛋白(β-amyloid, Aβ)在脑内的异常代谢、沉积是AD发病的核心环节,各种原因导致的Aβ生成和清除的代谢失衡,引起Aβ在脑组织中的异常积聚,进而触发了与AD病理生理、生化相关的级联反应。在Aβ的持续刺激下,脑实质内小胶质细胞活化、活性氧(reative oxygen species, ROS)生成增多。众多有害自由基的产生及凋亡因子活化,激活细胞凋亡途径,并诱导氧化应激损伤细胞,如DNA、蛋白质和脂类。然而,Aβ诱导的细胞凋亡具体的信号转导通路并没有被完全阐明。以上各个因素都直接或间接致使中枢神经系统受损。越来越多的研究证实,中枢神经细胞功能紊乱和凋亡可能由神经毒性所致,而这一神经毒性可能恰恰是由于Aβ沉积导致,从而导致痴呆的发生。由此推论脑内氧化应激、细胞凋亡在AD的发病机制中起重要作用,抗氧化、抗凋亡已成为防治AD重要方法之一。
     近年来大量研究已经证实AD发病与脑组织细胞凋亡有关。P53基因作为凋亡通路中的关键蛋白,与基因组的稳定性及细胞周期密切相关。正常情况下,P53基因在机体内环境的稳定和组织重建过程中发挥重要作用,过度表达和累积则会导致一系列的病理生理变化。免疫组织细胞学研究已证实AD大脑的老年斑内和神经纤维缠结中存在大量P53蛋白。那么,它在AD患者中枢神经组织细胞内的表达是否会随病程的延长而表达升高,增高的P53与AD患者的认知能力是否存在某种潜在联系,同时又是哪些因素促进其在患者体内过度表达,本文将就上述问题一一展开分析讨论。
     高原红景天属于景天科红景天属(Rhodiola),广泛存在于我国高原地区,为我国传统藏药之一,对许多疾病都有独特功效。现代研究证实红景天具有较强的抗氧化损伤及清除氧化自由基的能力,可以促进细胞代谢及增强细胞活力。近几年来,红景天在提高脑细胞功能、增强记忆力方面的作用逐渐受到重视。我们课题组动物实验亦表明,红景天在痴呆相关疾病的治疗上可能具有潜在的应用前景。而红景天的主要有效单体成分红景天苷,能否对抗Aβ产生的中枢神经细胞损伤,能否可以改善Aβ所致的认知功能障碍以及通过哪种具体分子机制发挥作用至今尚无系统深入的研究。
     接受Aβ海马内注射的大鼠及接受Aβ刺激的SH-SY5Y细胞,是相对经典的AD动物模型和细胞模型,由于上述两种模型在体内体外较好地模拟AD的病理过程,与其他实验模型相比,更为切实的反应了AD的发病进程。本实验研究通过建立Aβ诱导的AD细胞及动物模型,从行为能力的改变、病理生理代谢产物的生成、生物酶学活性的变化、信号蛋白表达的激活及基因转录翻译调控等诸多层面,系统研究了红景天苷对Aβ1-40所致AD细胞及动物模型内在信号转导机制及认知功能障碍的干预作用。
     第一部分研究红景天苷对Aβ1-40导致的AD大鼠模型认知功能障碍的干预作用
     目的:体内实验部分,建立Aβ1-40诱导的AD大鼠模型,检测红景天苷对Aβ1-40所致AD大鼠认知功能障碍的干预作用。
     方法:大鼠海马内注射Aβ1-40制备AD模型,术后分别灌胃治疗,每日1次给予已定剂量、浓度的红景天苷(50mg·kg-1·d-1),连续21天。自第17天开始,采用Morris水迷宫测试大鼠学习记忆能力,连续5天。数据以xˉ±s表示,用SPSS16.0统计分析软件进行数据处理并分析,组间资料应用重复测量方差分析,计数资料应用非参数秩和检验,以P<0.05判定为有显著性差异。
     结果:监测各组大鼠在Morris水迷宫测试实验中寻找到平台并爬上平台的寻台潜伏期。在测试的5天内所有大鼠的寻台潜伏期都表现为缩短趋势。AD模型组与假手术组相比,AD模型组寻台潜伏期明显延长(P<0.05),结果提示给予Aβ海马内注射后导致学习及记忆功能受损。红景天苷(50mg·kg-1·d-1)治疗组寻台潜伏期均值较模型组明显下降,与AD模型组相比明显缩短(P<0.05)。自第五天的定位航行轨迹显示:假手术组大鼠游泳线路清晰、目标明确,能够在较短时间及距离内找到平台。海马内给予Aβ注射的大鼠寻找目标明显减弱,游泳路线无序、繁乱、盲目,需要经历较长距离及时间才能找到平台。而红景天苷治疗组大鼠找到平台前的游泳距离缩短,寻找目标的能力得以改善。监测撤去平台后各组大鼠在原平台象限活动时间与总时间比值及跨平台次数,与假手术组相比,AD模型组大鼠在原平台所处象限搜索时间所占比值明显降低(P<0.05),搜索能力测试中跨过原平台所在位置的次数也显著减少(P<0.05),红景天苷治疗组(50mg·kg-1·d-1)在原平台所在象限搜索时间所占比值及跨平台次数均较模型组显著升高和增加(P<0.05),但未恢复至正常水平。
     结论:在接受Aβ1-40双侧海马内注射的大鼠,其记忆学习能力显著下降,给予已定量红景天苷治疗的AD大鼠,学习记忆能力的下降逆转。说明课题组已成功建立Aβ1-40双侧海马内注射所诱导的AD实验大鼠模型。提示红景天苷对Aβ1-40诱导的AD实验模型大鼠认知功能障碍具有显著改善作用。
     第二部分红景天苷对Aβ1-40所致AD模型大鼠氧化应激及凋亡的影响
     目的:氧化应激反应是不同刺激因素所诱发神经细胞损伤及多种中枢神经功能退行性紊乱疾病的共同通路。Aβ1-40能通过不同途径激发脑组织细胞内的氧化应激反应,进而产生大量ROS。本部分实验研究通过检测红景天苷对Aβ1-40所导致AD实验模型大鼠海马组织细胞内总ROS生成、血清及海马组织细胞内SOD活性、血清及海马组织细胞内MDA含量来深入研究探讨红景天苷对Aβ1-40所致AD模型大鼠脑内氧化应激损伤的影响。
     方法:Aβ1-40海马内注射制备AD实验大鼠模型,术后给予已定量红景天苷(50mg·kg-1·d-1)灌胃治疗,每日1次共21天。建立模型成功后,采用DCFH-DA作为荧光检测探针,采用流式细胞技术测定AD实验模型大鼠海马组织细胞内总ROS生成,氧化酶法测定AD大鼠模型血清及海马组织细胞内SOD活性,采用硫代巴比妥酸法检测大鼠血清及海马组织细胞内MDA的含量。数据用ˉx±s表示,用SPSS16.0统计分析软件进行统计学数据分析,用方差分析及LSD进行组间比较和两组间比较,以P<0.05为有显著性差异。
     结果:(1)本部分实验研究采用流式细胞技术(FCM)检测各组大鼠海马组织细胞的ROS含量。与假手术组相比,AD模型组大鼠海马组织细胞内ROS含量明显增加(P<0.05)。给予红景天苷(50mg·kg-1·d-1)治疗21天后,AD模型大鼠海马组织细胞内总ROS含量受到显著抑制(P<0.05),虽然未回到正常水平,但与假手术组相比(P>0.05)。(2)按实验要求测定AD模型大鼠血清SOD活性。与假手术组相比,AD模型组大鼠血清内SOD活性显著降低(P<0.05),给予红景天苷(50mg·kg-1·d-1)治疗21天后,大鼠血清SOD活性较AD模型组显著升高(P<0.05),虽然未回到正常水平,但与假手术组相比(P>0.05),海马组织细胞内SOD活性检测结果与血清学检测结果趋势相同。(3)与假手术组相比,AD模型组大鼠血清MDA含量显著升高(P<0.05),给予红景天苷(50mg·kg-1·d-1)治疗21天后,血清MDA含量较AD模型组显著降低(P<0.05),虽然未回到正常水平,但与假手术组相比(P>0.05),海马组织细胞内MDA含量检测结果与血清学检测结果趋势相同。(4)实验研究通过检测AD实验模型大鼠海马组织细胞的凋亡情况。与假手术组相比,AD模型组大鼠海马组织细胞凋亡率显著升高(P<0.05),给予红景天苷(50mg·kg-1·d-1)治疗21天后,实验结果证实经药物干预治疗,AD模型大鼠海马组织细胞凋亡较AD模型组显著降低(P<0.05),但与假手术组相比(P>0.05),仍未回到正常水平,
     结论:红景天苷可能通过有效抑制Aβ1-40所导致的AD大鼠模型海马组织细胞内的总ROS生成、同时提高血清及海马组织细胞内SOD活性并减少血清及海马组织细胞内MDA含量,从局部和整体双向验证红景天苷可以提高AD模型大鼠的抗氧化应激能力并减轻神经细胞因氧化应激所造成的损伤。
     第三部分红景天苷对Aβ1-40所致AD模型大鼠海马NADPH氧化酶-ROS通路的影响
     目的:NADPH氧化酶是组织细胞内ROS产物的主要来源。本部分实验通过观察NADPH氧化酶家族成员亚基的的表达与激活,对红景天苷是否可以抑制AD模型大鼠海马组织细胞内ROS产生的上游通路的潜在机制进行探讨。
     方法:采用Aβ1-40海马内注射制备AD大鼠模型,术后给予已定量的红景天苷(50mg·kg-1·d-1)灌胃治疗,每日1次共21天。建立模型成功后,采用RT-PCR技术和Western blot技术检测大鼠海马组织中gp91phox及其他亚基在mRNA和蛋白水平的表达。数据用ˉx±s表示,用SPSS16.0统计分析软件进行统计学数据分析,采用方差分析及LSD进行组间比较及两组间比较,以P<0.05为有统计学差异。
     结果:(1) Western Blot结果显示,Aβ1-40可导致AD模型大鼠海马组织细胞内p22phox、p67phox、gp9lphox及p47phox蛋白表达明显升高。AD模型组上述各蛋白的含量分别是假手术组的2.16、2.57、3.02及2.71倍(P<0.05)。而给予已定量红景天苷干预治疗后,大鼠海马组织p22phox、p67phox、gp9lphox及p47phox蛋白表达较AD模型组分别降低了24.1%、26.3%、31.1%及34.2%(P<0.05)。(2) RT-PCR检测。研究结果显示,与假手术组相比,AD模型组大鼠海马组织细胞内p22phox、p67phox、gp9lphox及p47phoxmRNA表达显著升高。AD模型组较假手术组mRNA水平分别升高了84.1%、96.3%、101.1%及104.2%(P<0.05)。而给予已定量红景天苷干预治疗后,能够显著抑制Aβ1-40的这种诱导效应。红景天苷干预组较AD模型组分别降低了34.3%、36.1%、33.4%及30.1%(P<0.01)。
     结论:红景天苷可抑制NADPH氧化酶家族成员的亚基进而抑制ROS的产生,此过程可能是通过抑制其家族成员亚基的表达和抑制其亚基激活来实现,或者是两个作用相互协同作用来抑制NADPH氧化酶活化。红景天苷通过对NADPH氧化酶-ROS通路的有效抑制,明显减轻了Aβ1-40所诱导的AD实验模型大鼠脑组织细胞内氧化应激反应。
     第四部分红景天苷对Aβ1-40所致AD模型大鼠海马ROS-P53线粒体凋亡通路的影响
     目的:为了进一步明确ROS导致细胞凋亡率增加的具体机制,我们检测了ROS生成后可能导致细胞凋亡的相关蛋白P53的表达。同时验证在P53基因基础上红景天苷对Bcl-2、Bax及线粒体凋亡通路的影响
     方法:采用Aβ1-40海马内注射制备AD大鼠模型,术后给予已定量的红景天苷(50mg·kg-1·d-1)灌胃治疗,每日1次共21天。建立模型成功后,采用Western-blot检测AD模型大鼠海马组织细胞中细胞凋亡的相关蛋白P53的表达。同时验证在P53基因基础上红景天苷对Bcl-2、Bax及线粒体凋亡通路蛋白的表达,数据用ˉx±s表示,用SPSS16.0统计分析软件进行统计学数据分析,采用方差分析及LSD进行组间比较及两组间比较,以P<0.05为有统计学差异。
     结果:(1) Western Blot结果显示,Aβ1-40可致使AD模型大鼠海马组织细胞核内P53表达,并使其表达显著升高。AD模型组最高细胞核内P53蛋白的含量可达假手术组的5-6倍(P<0.05)。而给予已定量红景天苷干预治疗后,AD模型大鼠海马组织细胞核内P53蛋白表达与AD模型组相比降低近50%(P<0.05)。(2)与假手术组相比,AD实验模型组大鼠海马组织细胞Bax表达显著升高;而AD实验模型组大鼠海马组织细胞Bcl-2的表达明显下调。AD实验模型组较假手术组Bax升高151%(P<0.05);AD实验模型组较假手术组Bcl-2下调近70%(P<0.05)。而给予已定量红景天苷干预治疗后,能够显著抑制Aβ1-40的上述诱导效应。Bax及Bcl-2在红景天苷干预组较AD模型组分别降低和升高了40%及55%(P<0.05)。(3)与假手术组相比,AD实验模型组大鼠海马组织细胞内Caspase-9及Caspase-3表达显著升高;AD实验模型组较假手术组Caspase-9及Caspase-3升高151%及124%(P<0.05),在给予已定量红景天苷干预治疗后,能够显著抑制Aβ1-40的上述诱导效应。Caspase-9及Caspase-3在红景天苷干预组较AD模型组分别降低了40%及55%(P<0.05)。
     结论:红景天苷抑制NADPH氧化酶产生ROS进而抑制P53入核活化从而抑制caspase-9和caspase-3表达,说明红景天苷通过对NADPH氧化酶-ROS-P53-线粒体凋亡途径抑制,减轻了Aβ1-40诱导的AD脑组织细胞内氧化应激及凋亡的发生。
     第五部分红景天苷通过PI3K/Akt/Nrf-2/HO-1信号通路减少P53在细胞核内的表达抑制细胞凋亡
     目的:探讨红景天苷保护神经细胞防止β-淀粉样蛋白损伤的机制。从而为海马内注射β-淀粉样蛋白诱导的AD模型提供了有力的证据。因为接受β-淀粉样蛋白刺激的SH-SY5Y细胞和海马内注射β-淀粉样蛋白大鼠是经典的AD细胞及动物模型,已被广泛用于研究。所以我们研究发现,红景天苷在体外实验中能有效防止SH-SY5Y细胞由于β淀粉样蛋白所诱导的细胞凋亡,从而保护神经细胞免受氧化损伤,其机制可能是通过上调HO-1的表达,降低神经细胞P53的核表达来实现。
     来逆转β-淀粉样蛋白诱导的神经细胞P53的核表达实现。
     方法:Western blot检测蛋白表达;总蛋白(30μg)对每个样品用10%SDS-PAGE分离,并PVDF膜转移过夜,和抗体的特异性结合前采用5%脱脂奶粉或BSA的磷酸盐缓冲盐水封闭。然后检测HO-1、P53、Akt蛋白和Bax、Bcl-2蛋白,活性状态的caspase-9/3或Nrf-2抗体(1:1000)4℃过夜。洗涤三次后,用磷酸盐缓冲盐水(0.1%Tween-20的pH7.4)中和,ARE-荧光素酶活性测定法:SH-SY5Y细胞接种于6孔板中以1×105cells/ml的密度,孵育过夜。在每个样品中,荧光素酶报告质粒构建携带该ARE启动子和β-半乳糖苷酶的表达载体质粒2μg,使用转染试剂以每加入10μl2μg的DNA的比例共转染。根据由制造商提供的方法测定。简而言之,将细胞用冷PBS洗涤,并收获被动裂解缓冲液中。离心后,用于测定荧光素酶活性,取上清液20μl由光度计测定。TUNEL染色:末端脱氧核苷酸转移酶介导的缺口末端标记(TUNEL)法在SH-SY5Y细胞被用来通过检查DNA片段化处理之后的细胞,以评估细胞死亡。简言之,将细胞培养于6孔细胞培养板并如上所述进行处理。处理后,将细胞用PBS洗涤,然后沉淀到显微镜载玻片。残余的PBS中,然后取出,并用95%乙醇固定细胞。用4%不含甲醇的甲醛的PBS中进行第二次的固定。载玻片再次用PBS洗涤,并通过加入荧光素12-dUTP标记的DNA中的带切口端部在凋亡细胞中检测到片段化DNA。玻片在37℃温育1小时,并终止反应用2×SSC。将载玻片在PBS中洗涤,然后用荧光显微镜在400×可视化,和绿色的荧光率与DNA片段化。实验分别分三次重复完成,并TUNEL阳性细胞的百分比进行测定。数据用xˉ±s表示,用SPSS16.0统计分析软件进行统计学数据分析,采用方差分析及LSD进行组间比较及两组间比较,以P<0.05为有统计学差异。
     结果:(1) Aβ1-40可显著降低细胞活力而红景天苷可逆转此现象,(2)红景天苷提高细胞存活率这一现象可被ZnPPIX所抑制。由此表明红景天苷对HO-1的诱导性表达和增加细胞生存能力起着关键性作用,(3)红景天苷通过Nrf-2的激活诱导HO-1表达,同时红景天苷抑制氧化应激诱导的细胞凋亡,而P53活化剂-RITA可以诱导细胞凋亡。
     结论:P53蛋白直接诱导细胞凋亡,从而加重认知功能障碍。因此,P53可视为氧化应激在AD的早期标志。我们发现,在AD脑组织及细胞实验中,红景天苷可激活PI3k/AKT途径激活Nrf-2及HO-1表达,从而著降低P53的核表达,从而抑制细胞凋亡及认知功能障碍的发生。
Alzheimer’s disease (AD) is a insidious progressive neurodegenerativedisease. In clinnical,it is characterised by progressive loss of memory,cognitive dysfunction, agnosia,apraxia,aphasia,execution dysfunction, visionspace damages and personality behavior changes which generalized dementia.The pathogenesis of AD is multitude and complex and not fully understoodyet. Researchers proposed various hypotheses with respect to etiology of AD,such as the cholinergic hypothesis, amyloid hypothesis, the free radicals andapoptosis hypothesis, the tau proteins hypothesis, dysmetabolism hypothesis,the excitatory amino acids hypothesis, the genic mutation hypothesis, et al.However, none of them can fully explain the pathogenesis of AD. With thedevelopment of research, people have come to realize that the oxidative stress,apoptosis and Mitochondrial dysfunction which are general reactions in thebody have inseparable connection with AD.
     Plenty of evidence show that abnormal metabolism of β-amyloid (Aβ)peptides and accumulation of excessive Aβ play critical roles in progress ofAD. The stimulation by Aβ persistently can activate microglia, generatereactive oxygen species (ROS), then produce harmful free radicals andactivate apoptosis molecules, These reactions exert direct or indirect injuriesof nervous system. Increasing evidence demonstrate that Aβ deposition causeda series of neurotoxic effect which cause neuron disfunction, death and furtherlead to dementia. Oxidative stress in the brain and apoptosis played significantroles in this course. The therapy from anti-oxidative and anti-apoptosis hasbecome one of the most important strategies for the prevention of AD.
     In recent years, many studies have confirmed that the incidence of AD isclosely related to tissue and cell apoptosis. P53is a key protein in theapoptosis pathway, the normal and basal expression of P53is closely related to the stability of the genome and cell cycle. Under the normal conditions, italso plays an important role in the body's internal environment of stability andreconstruction process of the organization, the overexpression andaccumulation of P53will lead to a series of pathophysiological changes. Theimmunohistochemical studies have confirmed that the plaques andneurofibrillary tangles in the brain of AD contain a lot of P53protein. So, withthe course of the disease, its expression in the central nervous system of ADwhether reinforcing or not, whether there is a potential link between increasedP53and cognitive abilities in patients with AD or not, and what factorspromote its overexpression, this article will discuss one by one.
     Plateau rhodiola is a perennial plant of Rhodiola family. It was atraditional famous Tibetan medicine. Researches show that rhodiola havespecial effects in preventing oxidative damage, scavenging free radicals,improving cell metabolism and enhancing cell vitality. In the past few years,growing attention has been received on its benefits of enhancing the brainfunction and improving memory. Animal experiments also showed thatrhodiola may have good prospects in the treatment of dementia and relatedfields. However, salidroside as the main effective component of rhodiola, itseffect and mechanism on againsting damages of axoneures by Aβ, improvingcognitive deficit of Alzheimer’s disease is still not clear and need systematicand profound researches.
     The rat received hippocampal injection of Aβ and the SH-SY5Y cellswere stinulated by Aβ are mature models for AD. These models is closer tothe real pathological processes of AD than the others, because of its fulllyresponsed for the courses of Aβ deposition in the brain. This study establishedAβ induced rats and cell models of AD. Systematical investigations were firstundertaken from the aspects of behavior cognitive change, generation ofphysiopathologic metabolism product, enzymology changes in activity,protein expression, transcriptional regulation and so on. The aim to explore thesignal transduction mechanisms and the effects of salidroside on cognitivedysfunction in Alzheimer’s disease model rats induced by Aβ1-40.
     Part1The effects of salidroside on cognitive dysfunction of AD modelrats
     Objective: To establish Aβ1-40induced rat models of AD and observe theeffects of salidroside on cognitive dysfunction of this model.
     Methods: Aβ1-40was injected into bilateral hippocampus to create ADmodel. Rats were administered by gavage with salidroside in settled dose anddensity (50mg·kg-1·d-1) everyday for21days. Morris water maze testingsystem was undertaken since17th day to observe the change of learning andmemory abilities in rats,and continuous5days. Data were presented asˉx±sand analyzed with multi-variate test of repetitive measure ANOVA usingSPSS16.0statistical program. Enumeration data were analyzed with Rank sumtest. A level of P<0.05was considered statistically significant.
     Results: The analysis of the place navigation trial showed that the escapelatency decreased from Day1to Day5in all groups. The AD model ratsdisplayed longer escape latencies than the rats of sham control group(P<0.05).The animals which were treated with salidroside displayed significantly lowerescape latencies than those in AD model group(P<0.05). Representativenavigation paths at day5of training demonstrated that spatial learningacquisition was impaired in the animals of AD model group relative toanimals of salidroside-treated group. In the spatial probe trial, The AD modelrats spent significantly less time in the quadrant where the platform washidden than animals in sham control group(P<0.05). The number of crossingsto the previous location of the platform was decreased in AD model grouprelative to animals in negtive control group(P<0.05). Animals in salidroside(50mg·kg-1·d-1) group spent more time in the target quadrant and showedstatistically more platform-passing times than animals in AD model group(P<0.05).
     Conclusions: In rats with bilateral hippocampal injections by Aβ1-40, thememory, learning ability are significant declined, the therapy with quantitativesalidroside intervention of AD rats and the declined ability of learning and memory reversed.The behavioural data obtained in the Morris water maze testdemonstrate that salidroside is able to protect animals from the memoryimpairments induced by hippocampal injection of Aβ1-40.
     Part2The effects of salidroside on anti-oxidative activities of AD modelrats
     Objective: Oxidative stress can be seen as a neuronal cell injury inducedby different stimuli and a variety of degenerative disorders of central nervousfunction common pathways. In a variety of ways, Aβ1-40can stimulateintracellular oxidative stress in brain tissue reaction, and a large number ofROS produce consequently. The aim of this part is to observe the effects ofsalidroside on the generation of total ROS, the superoxide dismutase (SOD)activity, the malondialdehyde (MDA) level and the in serum and hippocampusof AD model rats to discuss the effect of salidroside on ROS in AD models,then the apoptosis rate was checked.
     Methods: Aβ1-40was injected into bilateral hippocampus to create ADmodel. Rats were administered by gavage with salidroside in settled dose anddensity (50mg·kg-1·d-1) everyday for21days. The generation of total ROS inhippocampus was determined by flow cytomertry technology usingDCFH-DA, the superoxide dismutase (SOD) activity and the malondialdehyde(MDA) level in serum and hippocampus were determined by separatebiochemical kit, last the apoptosis rate was checked by TUNEL. Data werepresented as xˉ±s and analyzed with ANOVA and LSD using SPSS16.0statistical program. A level of (P<0.05) was considered statisticallysignificant.
     Results:(1) This experimental study examined the total ROS productsin the hippocampus cellular of AD model rats. To detect ROS levels in eachgroup of cells by flow cytometry (FCM). Compared with the sham controlgroup, the ROS levels of hippocampus intracellular in AD model groupincreased significantly (P<0.05). AD model rats were treated with salidroside (50mg·kg-1·d-1)for21days, the ROS levels were significantly inhibited(P<0.05), although not back to normal levels, compared with negative controlgroup (P>0.05).(2) According to the experimental requests, to determineSOD activity (content) in serum of AD model rats. Compared with thecontrol group, the serum SOD activity in AD model group decreasedsignificantly (P<0.05), giving Salidroside (50mg·kg-1·d-1) for21days, serumSOD activity was significantly higher compared with the AD model group(P<0.05), although not back to normal levels, but compared with the negativecontrol group (P>0.05), SOD activity in the hippocampus cells the same as theserological results.(3) Compared with the negative control group, serumMDA in AD model group was significantly higher (P<0.05), givingsalidroside (50mg·kg-1·d-1) for21days, serum MDA content decreasedsignificantly compared with the AD model group (P<0.05), although not backto the normal level, but compared with the sham control group (P>0.05),MDA content in hippocampus cells have the same trend with the serologicalresults.(4) To determine apoptosis in hippocampus cells of AD model rats.Compared with the sham control group, the apoptosis rate in hippocampalcells of AD model rats were significantly higher (P<0.05), giving salidroside(50mg·kg-1·d-1) for21days, the apoptosis in hippocampus cells decreasedsignificantly compared with the AD model group (P<0.05), although not backto normal levels, but compared with the sham control group (P>0.05).
     Conclusion: Salidroside can effectively inhibit ROS generate inhippocampal tissue cells of AD model rats,while increase SODactivity(content) in serum and hippocampal tissue cells, and to reduce theMDA levels in serum and hippocampus tissue cells, thus, it was validatedfrom local and global mutual that salidroside can increase the ability ofoxidative stress in AD model rats and reduce damage to nerve cells caused byoxidative stress.
     Part3The impacts of salidroside on NADPH oxidase-ROS pathway inhippocampus of AD model rats induce by Aβ1-40
     Objective: NADPH oxidase is a major source of ROS products in cells.The aim of this part is to discuss the underlying mechanisms that whethersalidroside inhibited ROS upstream passage or not by observing the subunitexpression and activation in NADPH oxidase family members.
     Methods: Aβ1-40was injected into hippocampus to create AD model.Rats were administered by gavage with salidroside in settled dose and density(50mg·kg-1·d-1) everyday for21days. After establishing a successful model,using RT-PCR and Western blot to detect the expressions of gp91phox andother subunits reside in hippocampal tissues in the mRNA and protein Level.Data were presented asˉx±s and analyzed with multi-variate test of repetitivemeasure ANOVA using SPSS16.0statistical program. Enumeration data wereanalyzed with Rank sum test. A level of P<0.05was considered statisticallysignificant.
     Results:(1) Western Blot showed:Aβ1-40may induce p22phox, p67phoxgp9lphox and p47phox protein expression was significantly increased inhippocampus cells of AD model rats. Protein content above-mentioned in ADmodel group were2.16,2.57,3.02and2.71times than the sham control group(P<0.05). But after given quantitative salidroside, the protein expression ofp22phox, p67phox gp9lphox p47phox in hippocampal tissue were lower by24.1%,26.3%,31.1%and34.2%than the AD model group(P<0.05).(2)RT-PCR testing showed that: compared with the sham control group, theexpression of p22phox, p67phox gp9lphox and p47phox mRNA significantlyincreased in AD model rats hippocampus cells. The mRNA levels in ADmodel group were increased by84.1%,96.3%,101.1%and104.2%than thenegative control group (P<0.05). But after given quantitative salidroside, itcan significantly inhibit the effect induced by Aβ1-40. Salidroside interventiongroup decreased by34.3%,36.1%,33.4%and30.1%than AD model group(P<0.01).
     Conclusion: Salidroside inhibits NADPH oxidase family membersthereby inhibiting ROS production, this process may be caused by inhibitingthe expression and activation of family members subunit, or inhibiting NADPH oxidase activation by mutually synergy. Salidroside throughsuppressed NADPH oxidase-ROS pathway effectively, reduced oxidativestress response significantly in brain cells of AD rat model induced by Aβ1-40.
     Part4The impacts of salidroside on ROS-P53mitochondrial apoptoticpathway in hippocampus of AD model rats induce by Aβ1-40
     Objective: To further search the specific mechanism of apoptosis rateafter ROS, we examined the expression of apoptosis-related protein P53afterROS generation. Also verify the impact salidroside on Bcl-2, Bax andmitochondrial apoptotic pathway based on P53gene.
     Methods: Aβ1-40was injected into hippocampus to create AD model.Rats were administered by gavage with salidroside in settled dose and density(50mg·kg-1·d-1) everyday for21days. After establishing the successful models,Western-blot was used to detect the expressions of apoptosis-related proteinsP53. Also verify that the expression salidroside on Bcl-2, Bax andmitochondrial apoptotic pathway basised on P53gene. Data were presented asxˉ±s and analyzed with multi-variate test of repetitive measure ANOVA usingSPSS16.0statistical program. Enumeration data were analyzed with Rank sumtest. A level of P<0.05was considered statistically significant.
     Results:(1) Western Blot showed: Aβ1-40can cause nucleus P53expression in hippocampus cells of AD model rats, and it was significantlyhigher expression. In AD model group, the highest in the nucleus of P53protein up to5-6times than the sham control group(P<0.05). After givenquantitative salidroside, the nuclear P53protein expression in hippocampus ofAD model rats decreased nearly50%compared with the AD model group(P<0.05).(2)Compared with the sham control group, the Bax expression inhippocampal cells of AD model rats significantly increased; while Bcl-2expression in hippocampal tissue cells of AD model rats was significantlyreduced. The Bax increased151%than the sham control group (P<0.05); TheBcl-2in AD model rats down nearly70%than the sham control group (P<0.05). After given quantitative salidroside, it can significantly inhibiteffects induced by Aβ1-40. Bax and Bcl-2in the salidroside intervention groupdecreased and increased by40%and55%than AD model group (P<0.05).(3)Compared with the sham control group, the caspase-9and caspase-3expression was significantly increased in hippocampus cells of AD model rats;The caspase-9and caspase-3in AD model group increased by151%and124%than the sham control group (P<0.05). After given the quantitativesalidroside, it can significantly inhibit the effects induced by Aβ1-40. caspase-9and caspase-3in the intervention group with salidroside decreased by40%and55%compared with AD model group (P<0.05).
     Conclusion: The salidroside can inhibit NADPH oxidase to generateROS, thereby inhibiting P53tranfer into the nucleus to activation, thusinhibiting the expression of caspase-9and caspase-3, it indicated thatsalidroside can inhibit the NADPH oxidase-ROS-P53-mitochondrial apoptosispathway, reducing the oxidative stress and apoptosis in AD brain tissueinduced by Aβ1-40.
     Part5Salidroside reduces p53during Aβ1-40-induced neurotoxicity byinduction of heme oxygenase-1through PI3K/Akt/Nrf-2signal pathways
     Objective: The objective of this study was to investigate how salidrosideprotects neurocytes from Aβ1-40. Animal models of AD induced by injection ofAβ1-40into hippocampus provide numberous evidences for cellular apoptosis.Thus, SH-SY5Y cells stimulated by Aβ1-40and rat received hippocampalinjection of Aβ1-40AD models were used for research in vitro and vivo,respectively. We found that salidroside in vitro experiment could preventAβ1-40-induced apoptosis of SH-SY5Y cells and protect brain in vivo fromoxidative damage and also reduce p53nucleus expression in betaamyloid-induced neurocytes injury through upregulation of HO-1.
     Methods: Total protein (30μg) for each sample was separated by10%SDS-PAGE and transferred overnight to PVDF membranes, and the nonspecific binding of antibodies was blocked by5%nonfat dried milk orBSA in phosphate-buffered saline. Membranes were then probed with HO-1,p53, t-Akt, p-Akt, Bax, Bcl-2, cleaved caspase-9/3or Nrf-2antibody (1:1000)overnight at4C. After three washes with phosphate-buffered saline(0.1%Tween-20PH7.4). The protein bands were visualized using an enhancedchemiluminescence Western blotting detection kit and the results wereanalyzed using imaging densitometer. ARE-luciferase activity assay:SH-SY5Y cells were plated in24well plates at a density of1×104/cells andincubated overnight.2μg of the luciferase reporter plasmid with AREpromoter and the β-galactosidase vector plasmid were co-transfected to eachsample, using transfection reagents at the proportion of2μg DNA per10μl. Tocorrect for the transfection efficiency, phRL-SV40-β-galactosidase was used.2hours later, the luciferase activity was detected according to the methodprovided by the manufacturer. In brief, cells were washed with PBS in4C andharvested with lysis buffer then centrifugated, supernatant (20μl) was used forthe detection of the luciferase activity, which was measured by a luminometer.TUNEL staining: The terminal deoxynucleotidyl transferase dUTP-mediatednicked end labeling (TUNEL) assay in SH-SY5Y cells was used to assess celldeath by examining DNA fragmentation following treatment of cells. Briefly,cells were grown on6well cell culture plates and treated as described above.After treatment, cells were washed with phosphate-buffered saline (PBS), theslides were immersed in4%formaldehyde in PBS at4C and then in3%H2O2and in0.2%Triton X-100for5-10min at room temperature. Equilibrationbuffer (100μl) was added, and the slides were incubated at room temperaturefor10min. TdT reaction mix (50μl) was then added, and the cells wereincubated for60min at37C. The slides were then immersed in2×SSC for15min. Propidium iodide (PI) was added and incubated for15min to stain allcells. The localized green fluorescence of apoptotic cells was detected againsta red background by fluorescence microscopy. For the quantification ofTUNEL-positive (apoptotic) cells, a minimum of200cells was counted pergroup, and the percentage of the positively labeled cells was calculated. All analyses were performed using the SPSS16.0for Windows, statisticaldifferences were checked by ANOVAs correction or Student’s t-tests formultiple comparisons. P﹤0.05were set as statistically significant. All datawere checked for normality and homogeneity of variance previously and wereexpressed as mean±standard error.
     Results:(1) Aβ1-40can inhibit the cell viability,and salidroside can induceHO-1protein expression through PI3K/Akt signals involvement in inductionof HO-1,(2)The effect of salidroside can be reversed by ZnPPIX,(3)Salidroside induces HO-1by Nrf-2activation,Salidroside inhibits oxidativestress-induced apoptosis,Salidroside attenuates cognitive deficits and inhibitsp53nucleus translocation induced by Aβ1-40, P53activator-RITA inducesapoptosis
     Conclusion: In summary, we demonstrated that salidroside protects braincells from Aβ1-40via induction of HO-1. The expression of HO-1bysalidroside was dependent on PI3K/Akt pathway and Nrf-2translocation.Salidroside also attenuated cognitive deficits, LDH release, and P53release inAD rat brain by ZnPPIX-sensitive manner (Fig.7). Thus, salidroside may bean important novel therapeutic agent for treatment of AD.
引文
1Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitivealterations in Alzheimer's disease: synapse loss is the major correlate ofcognitive impairment. Ann Neurol.1991.30(4):572-80.
    2Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment ofAlzheimer disease and related disorders. Consensus statement of theAmerican Association for Geriatric Psychiatry, the Alzheimer'sAssociation, and the American Geriatrics Society. JAMA.1997.278(16):1363-71.
    3Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimerdisease in the US population: prevalence estimates using the2000census.Arch Neurol.2003.60(8):1119-22.
    4Smith MA, Drew KL, Nunomura A, et al. Amyloid-beta, tau alterationsand mitochondrial dysfunction in Alzheimer disease: the chickens or theeggs. Neurochem Int.2002.40(6):527-31.
    5Selkoe DJ. Alzheimer's disease: genotypes, phenotypes, and treatments.Science (80-).1997.275(5300):630-1.
    6Selkoe DJ. Alzheimer's disease results from the cerebral accumulationand cytotoxicity of amyloid beta-protein. J Alzheimers Dis.2001.3(1):75-80.
    7Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science (80-).2002.297(5580):353-6.
    8Gandy S. The role of cerebral amyloid beta accumulation in commonforms of Alzheimer disease. J Clin Invest.2005.115(5):1121-9.
    9Mattson MP. Pathways towards and away from Alzheimer's disease.Nature.2004.430(7000):631-9.
    10Wilquet V, De Strooper B. Amyloid-beta precursor protein processing inneurodegeneration. Curr Opin Neurobiol.2004.14(5):582-8.
    11Gruden MA, Davidova TB, Malisauskas M, et al. Differentialneuroimmune markers to the onset of Alzheimer's diseaseneurodegeneration and dementia: autoantibodies to Abeta((25-35))oligomers, S100b and neurotransmitters. J Neuroimmunol.2007.186(1-2):181-92.
    12Hensley K, Carney JM, Mattson MP, et al. A model for beta-amyloidaggregation and neurotoxicity based on free radical generation by thepeptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A.1994.91(8):3270-4.
    13Butterfield DA, Reed T, Newman SF, Sultana R. Roles of amyloidbeta-peptide-associated oxidative stress and brain protein modificationsin the pathogenesis of Alzheimer's disease and mild cognitive impairment.Free Radic Biol Med.2007.43(5):658-77.
    14Marchenko ND, Zaika A, Moll UM. Death signal-induced localization ofp53protein to mitochondria. A potential role in apoptotic signaling. J BiolChem.2000.275(21):16202-12.
    15Yao M, Nguyen TV, Pike CJ. Beta-amyloid-induced neuronal apoptosisinvolves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. JNeurosci.2005.25(5):1149-58.
    16Marchesi VT. Alzheimer's dementia begins as a disease of small bloodvessels, damaged by oxidative-induced inflammation and dysregulatedamyloid metabolism: implications for early detection and therapy.FASEB J.2011.25(1):5-13.
    17Kanupriya, Prasad D, Sai RM, et al. Cytoprotective and antioxidantactivity of Rhodiola imbricata against tert-butyl hydroperoxide inducedoxidative injury in U-937human macrophages. Mol Cell Biochem.2005.275(1-2):1-6.
    18Li HX, Sze SC, Tong Y, Ng TB. Production of Th1-and Th2-dependentcytokines induced by the Chinese medicine herb, Rhodiola algida, onhuman peripheral blood monocytes. J Ethnopharmacol.2009.123(2):257-66.
    19Diaz LAM, Abad MMJ, Fernandez ML, et al. Lignan andphenylpropanoid glycosides from Phillyrea latifolia and their in vitroanti-inflammatory activity. Planta Med.2001.67(3):219-23.
    20Iaremii IN, Grigor'eva NF.[Hepatoprotective properties of liquid extractof Rhodiola rosea]. Eksp Klin Farmakol.2002.65(6):57-9.
    21Darbinyan V, Kteyan A, Panossian A, Gabrielian E, Wikman G, Wagner H.Rhodiola rosea in stress induced fatigue--a double blind cross-over studyof a standardized extract SHR-5with a repeated low-dose regimen on themental performance of healthy physicians during night duty.Phytomedicine.2000.7(5):365-71.
    22Fintelmann V, Gruenwald J. Efficacy and tolerability of a Rhodiola roseaextract in adults with physical and cognitive deficiencies. Adv Ther.2007.24(4):929-39.
    23Zhang XL, Jiang B, Li ZB, Hao S, An LJ. Catalpol ameliorates cognitiondeficits and attenuates oxidative damage in the brain of senescent miceinduced by D-galactose. Pharmacol Biochem Behav.2007.88(1):64-72.
    24Qu ZQ, Zhou Y, Zeng YS, Li Y, Chung P. Pretreatment with Rhodiolarosea extract reduces cognitive impairment induced byintracerebroventricular streptozotocin in rats: implication ofanti-oxidative and neuroprotective effects. Biomed Environ Sci.2009.22(4):318-26.
    25Lu J, Zheng YL, Luo L, Wu DM, Sun DX, Feng YJ. Quercetin reversesD-galactose induced neurotoxicity in mouse brain. Behav Brain Res.2006.171(2):251-60.
    26Liu L, Lu Y, Kong H, et al. Aquaporin-4deficiency exacerbates brainoxidative damage and memory deficits induced by long-term ovarianhormone deprivation and D-galactose injection. Int JNeuropsychopharmacol.2012.15(1):55-68.
    27Mao GX, Deng HB, Yuan LG, Li DD, Li YY, Wang Z. Protective role ofsalidroside against aging in a mouse model induced by D-galactose.Biomed Environ Sci.2010.23(2):161-6.
    28Mao GX, Deng HB, Yuan LG, Li DD, Li YY, Wang Z. Protective role ofsalidroside against aging in a mouse model induced by D-galactose.Biomed Environ Sci.2010.23(2):161-6.
    29Wu J, Bie B, Yang H, Xu JJ, Brown DL, Naguib M. Activation of theCB2receptor system reverses amyloid-induced memory deficiency.Neurobiol Aging.2013.34(3):791-804.
    30Han M, Liu Y, Tan Q, et al. Therapeutic efficacy of stemazole in abeta-amyloid injection rat model of Alzheimer's disease. Eur J Pharmacol.2011.657(1-3):104-10.
    31Frautschy SA, Baird A, Cole GM. Effects of injected Alzheimerbeta-amyloid cores in rat brain. Proc Natl Acad Sci U S A.1991.88(19):8362-6.
    32Xuan A, Long D, Li J, et al. Hydrogen sulfide attenuates spatial memoryimpairment and hippocampal neuroinflammation in beta-amyloid ratmodel of Alzheimer's disease. J Neuroinflammation.2012.9:202.
    33Alagiakrishnan K, Gill SS, Fagarasanu A. Genetics and epigenetics ofAlzheimer's disease. Postgrad Med J.2012.88(1043):522-9.
    34Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxidemodulates expression and processing of amyloid precursor protein. CircRes.2010.107(12):1498-502.
    35Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science (80-).2002.297(5580):353-6.
    36Kozikowski AP, Miller CP, Yamada F, et al. Delineating thepharmacophoric elements of huperzine A: importance of the unsaturatedthree-carbon bridge to its AChE inhibitory activity. J Med Chem.1991.34(12):3399-402.
    37Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and spermfunction--in sickness and in health. J Androl.2012.33(6):1096-106.
    38Papanicolaou KN, Ngoh GA, Dabkowski ER, et al. Cardiomyocytedeletion of mitofusin-1leads to mitochondrial fragmentation andimproves tolerance to ROS-induced mitochondrial dysfunction and celldeath. Am J Physiol Heart Circ Physiol.2012.302(1): H167-79.
    39Markesbery WR. The role of oxidative stress in Alzheimer disease. ArchNeurol.1999.56(12):1449-52.
    40Diaz LAM, Abad MMJ, Fernandez ML, et al. Lignan andphenylpropanoid glycosides from Phillyrea latifolia and their in vitroanti-inflammatory activity. Planta Med.2001.67(3):219-23.
    41Iaremii IN, Grigor'eva NF.[Hepatoprotective properties of liquid extractof Rhodiola rosea]. Eksp Klin Farmakol.2002.65(6):57-9.
    42Kanupriya, Prasad D, Sai RM, et al. Cytoprotective and antioxidantactivity of Rhodiola imbricata against tert-butyl hydroperoxide inducedoxidative injury in U-937human macrophages. Mol Cell Biochem.2005.275(1-2):1-6.
    43Kucinskaite A, Briedis V, Savickas A.[Experimental analysis oftherapeutic properties of Rhodiola rosea L. and its possible application inmedicine]. Medicina (Kaunas).2004.40(7):614-9.
    44Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev.2001.81(2):741-66.
    45Criteria for the clinical diagnosis of Alzheimer's disease. Excerpts fromthe NINCDS-ADRDA Work Group report. J Am Geriatr Soc.1985.33(1):2-3.
    46McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM.Clinical diagnosis of Alzheimer's disease: report of theNINCDS-ADRDA Work Group under the auspices of Department ofHealth and Human Services Task Force on Alzheimer's Disease.Neurology.1984.34(7):939-44.
    47Iaremii IN, Grigor'eva NF.[Hepatoprotective properties of liquid extractof Rhodiola rosea]. Eksp Klin Farmakol.2002.65(6):57-9.
    48Thangavel R, Sahu SK, Van Hoesen GW, Zaheer A. Loss ofnonphosphorylated neurofilament immunoreactivity in temporal corticalareas in Alzheimer's disease. Neuroscience.2009.160(2):427-33.
    49LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta inAlzheimer's disease. Nat Rev Neurosci.2007.8(7):499-509.
    50Mori C, Spooner ET, Wisniewsk KE, et al. Intraneuronal Abeta42accumulation in Down syndrome brain. Amyloid.2002.9(2):88-102.
    51Ishunina TA, Swaab DF. Increased expression of estrogen receptor alphaand beta in the nucleus basalis of Meynert in Alzheimer's disease.Neurobiol Aging.2001.22(3):417-26.
    52Cancino GI, Toledo EM, Leal NR, et al. STI571prevents apoptosis, tauphosphorylation and behavioural impairments induced by Alzheimer'sbeta-amyloid deposits. Brain.2008.131(Pt9):2425-42.
    53LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta inAlzheimer's disease. Nat Rev Neurosci.2007.8(7):499-509.
    54Bitting L, Naidu A, Cordell B, Murphy GM Jr. Beta-amyloid peptidesecretion by a microglial cell line is induced by beta-amyloid-(25-35) andlipopolysaccharide. J Biol Chem.1996.271(27):16084-9.
    1Goedert M, Spillantini MG. A century of Alzheimer's disease. Science.2006.314(5800):777-81.
    2KIDD M. Paired helical filaments in electron microscopy of Alzheimer'sdisease. Nature.1963.197:192-3.
    3Smid SD, Maag JL, Musgrave IF. Dietary polyphenol-derived protectionagainst neurotoxic beta-amyloid protein: from molecular to clinical. FoodFunct.2012.3(12):1242-50.
    4Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence thatamyloid beta-peptide-induced lipid peroxidation and its sequelae inAlzheimer's disease brain contribute to neuronal death. Neurobiol Aging.2002.23(5):655-64.
    5Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities inAlzheimer's disease. J Neurosci.2001.21(9):3017-23.
    6Darvesh AS, Carroll RT, Bishayee A, Geldenhuys WJ, Van der Schyf CJ.Oxidative stress and Alzheimer's disease: dietary polyphenols as potentialtherapeutic agents. Expert Rev Neurother.2010.10(5):729-45.
    7Ho GJ, Drego R, Hakimian E, Masliah E. Mechanisms of cell signalingand inflammation in Alzheimer's disease. Curr Drug Targets InflammAllergy.2005.4(2):247-56.
    8Smith CD, Carney JM, Tatsumo T, Stadtman ER, Floyd RA, MarkesberyWR. Protein oxidation in aging brain. Ann N Y Acad Sci.1992.663:110-9.
    9Choi DY, Lee YJ, Hong JT, Lee HJ. Antioxidant properties of naturalpolyphenols and their therapeutic potentials for Alzheimer's disease.Brain Res Bull.2012.87(2-3):144-53.
    10Honda K, Smith MA, Zhu X, et al. Ribosomal RNA in Alzheimer diseaseis oxidized by bound redox-active iron. J Biol Chem.2005.280(22):20978-86.
    11Honda K, Smith MA, Zhu X, et al. Ribosomal RNA in Alzheimer diseaseis oxidized by bound redox-active iron. J Biol Chem.2005.280(22):20978-86.
    12Mamelak M. Alzheimer' s disease, oxidative stress andgammahydroxybutyrate. Neurobiol Aging.2007.28(9):1340-60.
    13Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA. Beta-amyloidinhibits integrated mitochondrial respiration and key enzyme activities. JNeurochem.2002.80(1):91-100.
    14Burcham PC. Genotoxic lipid peroxidation products: their DNAdamaging properties and role in formation of endogenous DNA adducts.Mutagenesis.1998.13(3):287-305.
    15Ahmad R, Tripathi AK, Tripathi P, Singh S, Singh R, Singh RK.Malondialdehyde and protein carbonyl as biomarkers for oxidative stressand disease progression in patients with chronic myeloid leukemia. InVivo.2008.22(4):525-8.
    16Greilberger J, Koidl C, Greilberger M, et al. Malondialdehyde, carbonylproteins and albumin-disulphide as useful oxidative markers in mildcognitive impairment and Alzheimer's disease. Free Radic Res.2008.42(7):633-8.
    17Tsan MF. Superoxide dismutase and pulmonary oxygen toxicity. Proc SocExp Biol Med.1997.214(2):107-13.
    18Butterfield DA. Amyloid beta-peptide (1-42)-induced oxidative stress andneurotoxicity: implications for neurodegeneration in Alzheimer's diseasebrain. A review. Free Radic Res.2002.36(12):1307-13.
    19Kuppusamy P, Zweier JL. Characterization of free radical generation byxanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem.1989.264(17):9880-4.
    20Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and themammalian thioredoxin system. Free Radic Biol Med.2001.31(11):1287-312.
    21Anderson AJ, Su JH, Cotman CW. DNA damage and apoptosis inAlzheimer's disease: colocalization with c-Jun immunoreactivity,relationship to brain area, and effect of postmortem delay. J Neurosci.1996.16(5):1710-9.
    22Mullaart E, Boerrigter ME, Ravid R, Swaab DF, Vijg J. Increased levelsof DNA breaks in cerebral cortex of Alzheimer's disease patients.Neurobiol Aging.1990.11(3):169-73.
    23Butterfield DA, Lauderback CM. Lipid peroxidation and proteinoxidation in Alzheimer's disease brain: potential causes andconsequences involving amyloid beta-peptide-associated free radicaloxidative stress. Free Radic Biol Med.2002.32(11):1050-60.
    24Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress andneurodegenerative diseases: a review of upstream and downstreamantioxidant therapeutic options. Curr Neuropharmacol.2009.7(1):65-74.
    25Almog N, Rotter V. Involvement of p53in cell differentiation anddevelopment. Biochim Biophys Acta.1997.1333(1): F1-27.
    26Marchenko ND, Zaika A, Moll UM. Death signal-induced localization ofp53protein to mitochondria. A potential role in apoptotic signaling. J BiolChem.2000.275(21):16202-12.
    27Zemlan FP, Thienhaus OJ, Bosmann HB. Superoxide dismutase activityin Alzheimer's disease: possible mechanism for paired helical filamentformation. Brain Res.1989.476(1):160-2.
    28De Leo ME, Borrello S, Passantino M, et al. Oxidative stress andoverexpression of manganese superoxide dismutase in patients withAlzheimer's disease. Neurosci Lett.1998.250(3):173-6.
    29Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevatedthiobarbituric acid-reactive substances and antioxidant enzyme activityin the brain in Alzheimer's disease. Neurology.1995.45(8):1594-601.
    30Markesbery WR, Lovell MA. Four-hydroxynonenal, a product of lipidperoxidation, is increased in the brain in Alzheimer's disease. NeurobiolAging.1998.19(1):33-6.
    1Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncouplednitric oxide synthase are major sources of glomerular superoxide in ratswith experimental diabetic nephropathy. Am J Physiol Renal Physiol.2005.288(6): F1144-52.
    2Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase.Arch Biochem Biophys.2002.397(2):342-4.
    3Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase.Arch Biochem Biophys.2002.397(2):342-4.
    4Kowluru A. Small G proteins in islet beta-cell function. Endocr Rev.2010.31(1):52-78.
    5Yu L, Quinn MT, Cross AR, Dinauer MC. Gp91(phox) is the hemebinding subunit of the superoxide-generating NADPH oxidase. Proc NatlAcad Sci U S A.1998.95(14):7993-8.
    6Freeman JL, Lambeth JD. NADPH oxidase activity is independent ofp47phox in vitro. J Biol Chem.1996.271(37):22578-82.
    7Mizrahi A, Berdichevsky Y, Ugolev Y, et al. Assembly of the phagocyteNADPH oxidase complex: chimeric constructs derived from the cytosoliccomponents as tools for exploring structure-function relationships. JLeukoc Biol.2006.79(5):881-95.
    8Zhou H, Zhang F, Chen SH, et al. Rotenone activates phagocyte NADPHoxidase by binding to its membrane subunit gp91phox. Free Radic BiolMed.2012.52(2):303-13.
    9Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling:roles in cellular stress response, stress tolerance, and tissue repair.Pharmacol Rev.2011.63(1):218-42.
    10Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R. Agp91phox containing NADPH oxidase selectively expressed inendothelial cells is a major source of oxygen radical generation in thearterial wall. Circ Res.2000.87(1):26-32.
    11Kang JL, Pack IS, Hong SM, Lee HS, Castranova V. Silica inducesnuclear factor-kappa B activation through tyrosine phosphorylation of Ikappa B-alpha in RAW264.7macrophages. Toxicol Appl Pharmacol.2000.169(1):59-65.
    12Sheppard FR, Kelher MR, Moore EE, McLaughlin NJ, Banerjee A,Silliman CC. Structural organization of the neutrophil NADPH oxidase:phosphorylation and translocation during priming and activation. JLeukoc Biol.2005.78(5):1025-42.
    13Li JM, Shah AM. Mechanism of endothelial cell NADPH oxidaseactivation by angiotensin II. Role of the p47phox subunit. J Biol Chem.2003.278(14):12094-100.
    14Bokoch GM, Diebold BA. Current molecular models for NADPHoxidase regulation by Rac GTPase. Blood.2002.100(8):2692-6.
    15Cross AR, Segal AW. The NADPH oxidase of professionalphagocytes--prototype of the NOX electron transport chain systems.Biochim Biophys Acta.2004.1657(1):1-22.
    16Heyworth PG, Curnutte JT, Nauseef WM, et al. Neutrophil nicotinamideadenine dinucleotide phosphate oxidase assembly. Translocation ofp47-phox and p67-phox requires interaction between p47-phox andcytochrome b558. J Clin Invest.1991.87(1):352-6.
    17Wientjes FB, Hsuan JJ, Totty NF, Segal AW. p40phox, a third cytosoliccomponent of the activation complex of the NADPH oxidase to containsrc homology3domains. Biochem J.1993.296(Pt3):557-61.
    18Taura M, Miyano K, Minakami R, Kamakura S, Takeya R, Sumimoto H.A region N-terminal to the tandem SH3domain of p47phox plays acrucial role in the activation of the phagocyte NADPH oxidase. BiochemJ.2009.419(2):329-38.
    19Zhou H, Zhang F, Chen SH, et al. Rotenone activates phagocyte NADPHoxidase by binding to its membrane subunit gp91phox. Free Radic BiolMed.2012.52(2):303-13.
    20Raz L, Zhang QG, Zhou CF, et al. Role of Rac1GTPase in NADPHoxidase activation and cognitive impairment following cerebral ischemiain the rat. PLOS ONE.2010.5(9): e12606.
    21Zhou J, Zhang S, Zhao X, Wei T. Melatonin impairs NADPH oxidaseassembly and decreases superoxide anion production in microgliaexposed to amyloid-beta1-42. J Pineal Res.2008.45(2):157-65.
    22Costantini TW, Deree J, Peterson CY, et al. Pentoxifylline modulatesp47phox activation and downregulates neutrophil oxidative burst throughPKA-dependent and-independent mechanisms. ImmunopharmacolImmunotoxicol.2010.32(1):82-91.
    1Basha MR, Murali M, Siddiqi HK, et al. Lead (Pb) exposure and its effecton APP proteolysis and Abeta aggregation. FASEB J.2005.19(14):2083-4.
    2Pompl PN, Yemul S, Xiang Z, et al. Caspase gene expression in the brainas a function of the clinical progression of Alzheimer disease. ArchNeurol.2003.60(3):369-76.
    3Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediatesamyloid beta protein toxicity. Cell.1994.77(6):817-27.
    4Hensley K, Carney JM, Mattson MP, et al. A model for beta-amyloidaggregation and neurotoxicity based on free radical generation by thepeptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A.1994.91(8):3270-4.
    5Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncouplednitric oxide synthase are major sources of glomerular superoxide in ratswith experimental diabetic nephropathy. Am J Physiol Renal Physiol.2005.288(6): F1144-52.
    6Wilkinson BL, Landreth GE. The microglial NADPH oxidase complex asa source of oxidative stress in Alzheimer's disease. J Neuroinflammation.2006.3:30.
    7Zhou J, Zhang S, Zhao X, Wei T. Melatonin impairs NADPH oxidaseassembly and decreases superoxide anion production in microgliaexposed to amyloid-beta1-42. J Pineal Res.2008.45(2):157-65.
    8Yuan XM, Li W, Dalen H, et al. Lysosomal destabilization in p53-inducedapoptosis. Proc Natl Acad Sci U S A.2002.99(9):6286-91.
    9Harada J, Sugimoto M. Activation of caspase-3in beta-amyloid-inducedapoptosis of cultured rat cortical neurons. Brain Res.1999.842(2):311-23.
    10Cregan SP, MacLaurin JG, Craig CG, et al. Bax-dependent caspase-3activation is a key determinant in p53-induced apoptosis in neurons. JNeurosci.1999.19(18):7860-9.
    11Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M, Lock RB.Bcl-2inhibits Bax translocation from cytosol to mitochondria duringdrug-induced apoptosis of human tumor cells. Cell Death Differ.2000.7(1):102-11.
    12Kane DJ, Sarafian TA, Anton R, et al. Bcl-2inhibition of neural death:decreased generation of reactive oxygen species. Science (80-).1993.262(5137):1274-7.
    13Steinman HM. The Bcl-2oncoprotein functions as a pro-oxidant. J BiolChem.1995.270(8):3487-90.
    14Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ.Bcl-2functions in an antioxidant pathway to prevent apoptosis. Cell.1993.75(2):241-51.
    15Green DR, Reed JC. Mitochondria and apoptosis. Science (80-).1998.281(5381):1309-12.
    16Shimizu S, Narita M, Tsujimoto Y. Bcl-2family proteins regulate therelease of apoptogenic cytochrome c by the mitochondrial channelVDAC. Nature.1999.399(6735):483-7.
    17Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science (80-).2002.297(5580):353-6.
    18Kozikowski AP, Miller CP, Yamada F, et al. Delineating thepharmacophoric elements of huperzine A: importance of the unsaturatedthree-carbon bridge to its AChE inhibitory activity. J Med Chem.1991.34(12):3399-402.
    19Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, ShelanskiML. Caspase-2mediates neuronal cell death induced by beta-amyloid. JNeurosci.2000.20(4):1386-92.
    20Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y,Taniguchi T. Changes of p53in the brains of patients with Alzheimer'sdisease. Biochem Biophys Res Commun.1997.232(2):418-21.
    21Masliah E, Mallory M, Alford M, Tanaka S, Hansen LA. Caspasedependent DNA fragmentation might be associated with excitotoxicity inAlzheimer disease. J Neuropathol Exp Neurol.1998.57(11):1041-52.
    22Gilman CP, Chan SL, Guo Z, Zhu X, Greig N, Mattson MP. p53ispresent in synapses where it mediates mitochondrial dysfunction andsynaptic degeneration in response to DNA damage, and oxidative andexcitotoxic insults. Neuromolecular Med.2003.3(3):159-72.
    23Kagedal K, Johansson AC, Johansson U, et al. Lysosomal membranepermeabilization during apoptosis--involvement of Bax. Int J Exp Pathol.2005.86(5):309-21.
    24Schuler M, Green DR. Mechanisms of p53-dependent apoptosis.Biochem Soc Trans.2001.29(Pt6):684-8.
    25Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Baxby p53mediates mitochondrial membrane permeabilization andapoptosis. Science (80-).2004.303(5660):1010-4.
    26Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR.Bax-induced caspase activation and apoptosis via cytochrome c releasefrom mitochondria is inhibitable by Bcl-xL. J Biol Chem.1999.274(4):2225-33.
    27Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiatedcaspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10in a caspase-9-dependent manner. J Cell Biol.1999.144(2):281-92.
    28Giovanni A, Keramaris E, Morris EJ, et al. E2F1mediates death ofB-amyloid-treated cortical neurons in a manner independent of p53anddependent on Bax and caspase3. J Biol Chem.2000.275(16):11553-60.
    29Sedarous M, Keramaris E, O'Hare M, et al. Calpains mediate p53activation and neuronal death evoked by DNA damage. J Biol Chem.2003.278(28):26031-8.
    30Kaya SS, Mahmood A, Li Y, Yavuz E, Goksel M, Chopp M. Apoptosisand expression of p53response proteins and cyclin D1after corticalimpact in rat brain. Brain Res.1999.818(1):23-33.
    31Zhang Y, McLaughlin R, Goodyer C, LeBlanc A. Selective cytotoxicityof intracellular amyloid beta peptide1-42through p53and Bax incultured primary human neurons. J Cell Biol.2002.156(3):519-29.
    32Sherr CJ, McCormick F. The RB and p53pathways in cancer. CancerCell.2002.2(2):103-12.
    33Hofseth LJ, Hussain SP, Harris CC. p53:25years after its discovery.Trends Pharmacol Sci.2004.25(4):177-81.
    34Joers A, Jaks V, Kase J, Maimets T. p53-dependent transcription canexhibit both on/off and graded response after genotoxic stress. Oncogene.2004.23(37):6175-85.
    35Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A.Amyloid beta peptide of Alzheimer's disease downregulates Bcl-2andupregulates bax expression in human neurons. J Neurosci.1996.16(23):7533-9.
    36MacGibbon GA, Lawlor PA, Sirimanne ES, et al. Bax expression inmammalian neurons undergoing apoptosis, and in Alzheimer's diseasehippocampus. Brain Res.1997.750(1-2):223-34.
    37Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2heterodimerizes in vivowith a conserved homolog, Bax, that accelerates programmed cell death.Cell.1993.74(4):609-19.
    1Moller HJ, Graeber MB. The case described by Alois Alzheimer in1911.Historical and conceptual perspectives based on the clinical record andneurohistological sections. Eur Arch Psychiatry Clin Neurosci.1998.248(3):111-22.
    2Zhang J, Zhen YF, Pu-Bu-Ci-Ren, et al. Salidroside attenuates betaamyloid-induced cognitive deficits via modulating oxidative stress andinflammatory mediators in rat hippocampus. Behav Brain Res.2013.244:70-81.
    3Checler F, Alves dCC. p53in neurodegenerative diseases and braincancers. Pharmacol Ther.2014.142(1):99-113.
    4Turunc BE, Uyanikgil Y, Kanit L, Koylu E, Yalcin A. Nicotinamidetreatment reduces the levels of oxidative stress, apoptosis, and PARP-1activity in Abeta(1-42)-induced rat model of Alzheimer's disease. FreeRadic Res.2014.48(2):146-58.
    5Fiorini A, Sultana R, Barone E, et al. Lack of p53affects the expressionof several brain mitochondrial proteins: insights from proteomics intoimportant pathways regulated by p53. PLOS ONE.2012.7(11): e49846.
    6Pan LL, Liu XH, Jia YL, et al. A novel compound derived fromdanshensu inhibits apoptosis via upregulation of heme oxygenase-1expression in SH-SY5Y cells. Biochim Biophys Acta.2013.1830(4):2861-71.
    7Mao GX, Wang Y, Qiu Q, et al. Salidroside protects human fibroblastcells from premature senescence induced by H(2)O(2) partly throughmodulating oxidative status. Mech Ageing Dev.2010.131(11-12):723-31.
    8Wilson RS, Scherr PA, Schneider JA, Tang Y, Bennett DA. Relation ofcognitive activity to risk of developing Alzheimer disease. Neurology.2007.69(20):1911-20.
    9Hippius H, Neundorfer G. The discovery of Alzheimer's disease.Dialogues Clin Neurosci.2003.5(1):101-8.
    10Geerlings MI, Schmand B, Braam AW, Jonker C, Bouter LM, van TilburgW. Depressive symptoms and risk of Alzheimer's disease in more highlyeducated older people. J Am Geriatr Soc.2000.48(9):1092-7.
    11Lucci B. The contribution of Gaetano Perusini to the definition ofAlzheimer's disease. Ital J Neurol Sci.1998.19(1):49-52.
    12Xu MC, Shi HM, Gao XF, Wang H. Salidroside attenuates myocardialischemia-reperfusion injury via PI3K/Akt signaling pathway. J Asian NatProd Res.2013.15(3):244-52.
    13Chen SF, Tsai HJ, Hung TH, et al. Salidroside improves behavioral andhistological outcomes and reduces apoptosis via PI3K/Akt signaling afterexperimental traumatic brain injury. PLOS ONE.2012.7(9): e45763.
    14Zhang L, Ding W, Sun H, et al. Salidroside protects PC12cells fromMPP(+)-induced apoptosis via activation of the PI3K/Akt pathway. FoodChem Toxicol.2012.50(8):2591-7.
    15Zhu Y, Shi YP, Wu D, et al. Salidroside protects against hydrogenperoxide-induced injury in cardiac H9c2cells via PI3K-Akt dependentpathway. DNA Cell Biol.2011.30(10):809-19.
    16Li HB, Ge YK, Zheng XX, Zhang L. Salidroside stimulated glucoseuptake in skeletal muscle cells by activating AMP-activated proteinkinase. Eur J Pharmacol.2008.588(2-3):165-9.
    17Li Z, Dong X, Liu H, et al. Astaxanthin protects ARPE-19cells fromoxidative stress via upregulation of Nrf2-regulated phase II enzymesthrough activation of PI3K/Akt. Mol Vis.2013.19:1656-66.
    18L'Episcopo F, Tirolo C, Testa N, et al. Aging-induced Nrf2-ARE pathwaydisruption in the subventricular zone drives neurogenic impairment inparkinsonian mice via PI3K-Wnt/beta-catenin dysregulation. J Neurosci.2013.33(4):1462-85.
    19Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, HayesJD. Nrf2is controlled by two distinct beta-TrCP recognition motifs in itsNeh6domain, one of which can be modulated by GSK-3activity.Oncogene.2013.32(32):3765-81.
    20Chen CS, Tseng YT, Hsu YY, Lo YC. Nrf2-Keap1antioxidant defenseand cell survival signaling are upregulated by17beta-estradiol inhomocysteine-treated dopaminergic SH-SY5Y cells. Neuroendocrinology.2013.97(3):232-41.
    21Bak MJ, Jun M, Jeong WS. Procyanidins from Wild Grape (Vitisamurensis) Seeds Regulate ARE-Mediated Enzyme Expression via Nrf2Coupled with p38and PI3K/Akt Pathway in HepG2Cells. Int J Mol Sci.2012.13(1):801-18.
    22Almazari I, Park JM, Park SA, et al. Guggulsterone induces hemeoxygenase-1expression through activation of Nrf2in human mammaryepithelial cells: PTEN as a putative target. Carcinogenesis.2012.33(2):368-76.
    23Bates DJ, Smitherman PK, Townsend AJ, King SB, Morrow CS.Nitroalkene fatty acids mediate activation of Nrf2/ARE-dependent andPPARgamma-dependent transcription by distinct signaling pathways andwith significantly different potencies. Biochemistry.2011.50(36):7765-73.
    24Cook AL, Vitale AM, Ravishankar S, et al. NRF2activation restoresdisease related metabolic deficiencies in olfactory neurosphere-derivedcells from patients with sporadic Parkinson's disease. PLOS ONE.2011.6(7): e21907.
    25Jones RJ, Bjorklund CC, Baladandayuthapani V, Kuhn DJ, Orlowski RZ.Drug resistance to inhibitors of the human double minute-2E3ligase ismediated by point mutations of p53, but can be overcome with the p53targeting agent RITA. Mol Cancer Ther.2012.11(10):2243-53.
    26Di CG, Buttarelli M, Monti O, et al. IGF-1R/MDM2relationship confersenhanced sensitivity to RITA in Ewing sarcoma cells. Mol Cancer Ther.2012.11(6):1247-56.
    27de Lange J, Verlaan-de VM, Teunisse AF, Jochemsen AG. Chk2mediatesRITA-induced apoptosis. Cell Death Differ.2012.19(6):980-9.
    28Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A.Human NK cells are alerted to induction of p53in cancer cells byupregulation of the NKG2D ligands ULBP1and ULBP2. Cancer Res.2011.71(18):5998-6009.
    29Spinnler C, Hedstrom E, Li H, et al. Abrogation of Wip1expression byRITA-activated p53potentiates apoptosis induction via activation of ATMand inhibition of HdmX. Cell Death Differ.2011.18(11):1736-45.
    30Roh JL, Kang SK, Minn I, Califano JA, Sidransky D, Koch WM.p53-Reactivating small molecules induce apoptosis and enhancechemotherapeutic cytotoxicity in head and neck squamous cell carcinoma.Oral Oncol.2011.47(1):8-15.
    31Saha MN, Jiang H, Mukai A, Chang H. RITA inhibits multiple myelomacell growth through induction of p53-mediated caspase-dependentapoptosis and synergistically enhances nutlin-induced cytotoxic responses.Mol Cancer Ther.2010.9(11):3041-51.
    32Zhao CY, Grinkevich VV, Nikulenkov F, Bao W, Selivanova G. Rescue ofthe apoptotic-inducing function of mutant p53by small molecule RITA.Cell Cycle.2010.9(9):1847-55.
    33Zhao CY, Szekely L, Bao W, Selivanova G. Rescue of p53function bysmall-molecule RITA in cervical carcinoma by blocking E6-mediateddegradation. Cancer Res.2010.70(8):3372-81.
    34Hedstrom E, Eriksson S, Zawacka-Pankau J, Arner ES, Selivanova G.p53-dependent inhibition of TrxR1contributes to the tumor-specificinduction of apoptosis by RITA. Cell Cycle.2009.8(21):3576-83.
    35Rinaldo C, Prodosmo A, Siepi F, et al. HIPK2regulation by MDM2determines tumor cell response to the p53-reactivating drugs nutlin-3andRITA. Cancer Res.2009.69(15):6241-8.
    36Yang J, Ahmed A, Poon E, et al. Small-molecule activation of p53blockshypoxia-inducible factor1alpha and vascular endothelial growth factorexpression in vivo and leads to tumor cell apoptosis in normoxia andhypoxia. Mol Cell Biol.2009.29(8):2243-53.
    37Nogueira MC, Guedes NEP, Rosa MW, Zettler E, Zettler CG.Immunohistochemical expression of p16and p53in vulvar intraepithelialneoplasia and squamous cell carcinoma of the vulva. Pathol Oncol Res.2006.12(3):153-7.
    38Xu MC, Shi HM, Wang H, Gao XF. Salidroside protects against hydrogenperoxide-induced injury in HUVECs via the regulation of REDD1andmTOR activation. Mol Med Rep.2013.8(1):147-53.
    39Zhao Y, Ling Y, Zhao J, et al. Synthesis and protective effects of novelsalidroside analogues on glucose and serum depletion induced apoptosisin PC12cells. Arch Pharm (Weinheim).2013.346(4):300-7.
    40Shi TY, Feng SF, Xing JH, et al. Neuroprotective effects of Salidrosideand its analogue tyrosol galactoside against focal cerebral ischemia invivo and H2O2-induced neurotoxicity in vitro. Neurotox Res.2012.21(4):358-67.
    41Zhang S, Chen X, Yang Y, Zhou X, Liu J, Ding F. Neuroprotectionagainst cobalt chloride-induced cell apoptosis of primary cultured corticalneurons by salidroside. Mol Cell Biochem.2011.354(1-2):161-70.
    42Li X, Ye X, Li X, et al. Salidroside protects against MPP(+)-inducedapoptosis in PC12cells by inhibiting the NO pathway. Brain Res.2011.1382:9-18.
    43Zhong H, Xin H, Wu LX, Zhu YZ. Salidroside attenuates apoptosis inischemic cardiomyocytes: a mechanism through amitochondria-dependent pathway. J Pharmacol Sci.2010.114(4):399-408.
    44Yu S, Shen Y, Liu J, Ding F. Involvement of ERK1/2pathway inneuroprotection by salidroside against hydrogen peroxide-inducedapoptotic cell death. J Mol Neurosci.2010.40(3):321-31.
    45Zhang L, Yu H, Zhao X, et al. Neuroprotective effects of salidrosideagainst beta-amyloid-induced oxidative stress in SH-SY5Y humanneuroblastoma cells. Neurochem Int.2010.57(5):547-55.
    46Tan CB, Gao M, Xu WR, Yang XY, Zhu XM, Du GH. Protective effectsof salidroside on endothelial cell apoptosis induced by cobalt chloride.Biol Pharm Bull.2009.32(8):1359-63.
    47Chen X, Zhang Q, Cheng Q, Ding F. Protective effect of salidrosideagainst H2O2-induced cell apoptosis in primary culture of rathippocampal neurons. Mol Cell Biochem.2009.332(1-2):85-93.
    48Cai L, Wang H, Li Q, Qian Y, Yao W. Salidroside inhibits H2O2-inducedapoptosis in PC12cells by preventing cytochrome c release andinactivating of caspase cascade. Acta Biochim Biophys Sin (Shanghai).2008.40(9):796-802.
    49Chen X, Liu J, Gu X, Ding F. Salidroside attenuates glutamate-inducedapoptotic cell death in primary cultured hippocampal neurons of rats.Brain Res.2008.1238:189-98.
    50Otterbein L, Sylvester SL, Choi AM. Hemoglobin provides protectionagainst lethal endotoxemia in rats: the role of heme oxygenase-1. Am JRespir Cell Mol Biol.1995.13(5):595-601.
    1Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev.2001.81(2):741-66.
    2McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM.Clinical diagnosis of Alzheimer's disease: report of theNINCDS-ADRDA Work Group under the auspices of Department ofHealth and Human Services Task Force on Alzheimer's Disease.Neurology.1984.34(7):939-44.
    3McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM.Clinical diagnosis of Alzheimer's disease: report of theNINCDS-ADRDA Work Group under the auspices of Department ofHealth and Human Services Task Force on Alzheimer's Disease.Neurology.1984.34(7):939-44.
    4Smith MA, Drew KL, Nunomura A, et al. Amyloid-beta, tau alterationsand mitochondrial dysfunction in Alzheimer disease: the chickens or theeggs. Neurochem Int.2002.40(6):527-31.
    5Thangavel R, Sahu SK, Van Hoesen GW, Zaheer A. Loss ofnonphosphorylated neurofilament immunoreactivity in temporal corticalareas in Alzheimer's disease. Neuroscience.2009.160(2):427-33.
    6LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta inAlzheimer's disease. Nat Rev Neurosci.2007.8(7):499-509.
    7Selkoe DJ, Podlisny MB, Joachim CL, et al. Beta-amyloid precursorprotein of Alzheimer disease occurs as110-to135-kilodaltonmembrane-associated proteins in neural and nonneural tissues. Proc NatlAcad Sci U S A.1988.85(19):7341-5.
    8Walsh DM, Hartley DM, Kusumoto Y, et al. Amyloid beta-proteinfibrillogenesis. Structure and biological activity of protofibrillarintermediates. J Biol Chem.1999.274(36):25945-52.
    9Selkoe DJ. Images in neuroscience. Alzheimer's disease: from genes topathogenesis. Am J Psychiatry.1997.154(9):1198.
    10Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Muller WE.Mitochondrial dysfunction in sporadic and genetic Alzheimer's disease.Exp Gerontol.2006.41(7):668-73.
    11Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities inAlzheimer's disease. J Neurosci.2001.21(9):3017-23.
    12Keil U, Bonert A, Marques CA, et al. Amyloid beta-induced changes innitric oxide production and mitochondrial activity lead to apoptosis. JBiol Chem.2004.279(48):50310-20.
    13Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK.Accumulation of amyloid precursor protein in the mitochondrial importchannels of human Alzheimer's disease brain is associated withmitochondrial dysfunction. J Neurosci.2006.26(35):9057-68.
    14Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction andsynaptic damage: implications for cognitive decline in aging andAlzheimer's disease. Trends Mol Med.2008.14(2):45-53.
    15Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR. An integrativeview of the role of oxidative stress, mitochondria and insulin inAlzheimer's disease. J Alzheimers Dis.2009.16(4):741-61.
    16Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliestevent in Alzheimer disease. J Neuropathol Exp Neurol.2001.60(8):759-67.
    17Trimmer PA, Keeney PM, Borland MK, et al. Mitochondrialabnormalities in cybrid cell models of sporadic Alzheimer's diseaseworsen with passage in culture. Neurobiol Dis.2004.15(1):29-39.
    18Carrieri G, Bonafe M, De Luca M, et al. Mitochondrial DNA haplogroupsand APOE4allele are non-independent variables in sporadic Alzheimer'sdisease. Hum Genet.2001.108(3):194-8.
    19Keller JN, Pang Z, Geddes JW, et al. Impairment of glucose andglutamate transport and induction of mitochondrial oxidative stress anddysfunction in synaptosomes by amyloid beta-peptide: role of the lipidperoxidation product4-hydroxynonenal. J Neurochem.1997.69(1):273-84.
    20Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuatesmitochondrial and neuronal perturbation and ameliorates learning andmemory in Alzheimer's disease. Nat Med.2008.14(10):1097-105.
    21Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuatesmitochondrial and neuronal perturbation and ameliorates learning andmemory in Alzheimer's disease. Nat Med.2008.14(10):1097-105.
    22Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE.beta-Amyloid peptides destabilize calcium homeostasis and renderhuman cortical neurons vulnerable to excitotoxicity. J Neurosci.1992.12(2):376-89.
    23Trimmer PA, Keeney PM, Borland MK, et al. Mitochondrialabnormalities in cybrid cell models of sporadic Alzheimer's diseaseworsen with passage in culture. Neurobiol Dis.2004.15(1):29-39.
    24Maiese K, Chong ZZ. Insights into oxidative stress and potential noveltherapeutic targets for Alzheimer disease. Restor Neurol Neurosci.2004.22(2):87-104.
    25Maurer I, Zierz S, Moller HJ. A selective defect of cytochrome c oxidaseis present in brain of Alzheimer disease patients. Neurobiol Aging.2000.21(3):455-62.
    26Wilquet V, De Strooper B. Amyloid-beta precursor protein processing inneurodegeneration. Curr Opin Neurobiol.2004.14(5):582-8.
    27Gruden MA, Davidova TB, Malisauskas M, et al. Differentialneuroimmune markers to the onset of Alzheimer's diseaseneurodegeneration and dementia: autoantibodies to Abeta((25-35))oligomers, S100b and neurotransmitters. J Neuroimmunol.2007.186(1-2):181-92.
    28Markesbery WR. The role of oxidative stress in Alzheimer disease. ArchNeurol.1999.56(12):1449-52.
    29Aitken RJ, Jones KT, Robertson SA. Reactive oxygen species and spermfunction--in sickness and in health. J Androl.2012.33(6):1096-106.
    30Papanicolaou KN, Ngoh GA, Dabkowski ER, et al. Cardiomyocytedeletion of mitofusin-1leads to mitochondrial fragmentation andimproves tolerance to ROS-induced mitochondrial dysfunction and celldeath. Am J Physiol Heart Circ Physiol.2012.302(1): H167-79.
    31Hensley K, Carney JM, Mattson MP, et al. A model for beta-amyloidaggregation and neurotoxicity based on free radical generation by thepeptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A.1994.91(8):3270-4.
    32Bores GM, Smith CP, Wirtz-Brugger F, Giovanni A. Amyloidbeta-peptides inhibit Na+/K+-ATPase: tissue slices versus primarycultures. Brain Res Bull.1998.46(5):423-7.
    33Mark RJ, Hensley K, Butterfield DA, Mattson MP. Amyloid beta-peptideimpairs ion-motive ATPase activities: evidence for a role in loss ofneuronal Ca2+homeostasis and cell death. J Neurosci.1995.15(9):6239-49.
    34Ferreiro E, Oliveira CR, Pereira CM. The release of calcium from theendoplasmic reticulum induced by amyloid-beta and prion peptidesactivates the mitochondrial apoptotic pathway. Neurobiol Dis.2008.30(3):331-42.
    35Rosenstock TR, Carvalho AC, Jurkiewicz A, Frussa-Filho R, Smaili SS.Mitochondrial calcium, oxidative stress and apoptosis in aneurodegenerative disease model induced by3-nitropropionic acid. JNeurochem.2004.88(5):1220-8.
    36Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals acritical role for mitochondrial permeability transition in cell death. Nature.2005.434(7033):658-62.
    37Sheehan JP, Swerdlow RH, Miller SW, et al. Calcium homeostasis andreactive oxygen species production in cells transformed by mitochondriafrom individuals with sporadic Alzheimer's disease. J Neurosci.1997.17(12):4612-22.
    38Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adulthippocampal neurogenesis. Science (80-).2003.302(5651):1760-5.
    39Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK.Accumulation of amyloid precursor protein in the mitochondrial importchannels of human Alzheimer's disease brain is associated withmitochondrial dysfunction. J Neurosci.2006.26(35):9057-68.
    40Wallace DC, Fan W. The pathophysiology of mitochondrial disease asmodeled in the mouse. Genes Dev.2009.23(15):1714-36.
    41Benard G, Bellance N, James D, et al. Mitochondrial bioenergetics andstructural network organization. J Cell Sci.2007.120(Pt5):838-48.
    42Fukui H, Diaz F, Garcia S, Moraes CT. Cytochrome c oxidase deficiencyin neurons decreases both oxidative stress and amyloid formation in amouse model of Alzheimer's disease. Proc Natl Acad Sci U S A.2007.104(35):14163-8.
    43Rusakov DA. Ca2+-dependent mechanisms of presynaptic control atcentral synapses. Neuroscientist.2006.12(4):317-26.
    44Wang X, Su B, Lee HG, et al. Impaired balance of mitochondrial fissionand fusion in Alzheimer's disease. J Neurosci.2009.29(28):9090-103.
    45Trushina E, Nemutlu E, Zhang S, et al. Defects in mitochondrialdynamics and metabolomic signatures of evolving energetic stress inmouse models of familial Alzheimer's disease. PLOS ONE.2012.7(2):e32737.
    46Wang X, Su B, Siedlak SL, et al. Amyloid-beta overproduction causesabnormal mitochondrial dynamics via differential modulation ofmitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A.2008.105(49):19318-23.
    47Calkins MJ, Reddy PH. Amyloid beta impairs mitochondrial anterogradetransport and degenerates synapses in Alzheimer's disease neurons.Biochim Biophys Acta.2011.1812(4):507-13.
    48Reddy PH. Amyloid beta, mitochondrial structural and functionaldynamics in Alzheimer's disease. Exp Neurol.2009.218(2):286-92.
    49Schapira AH. Movement disorders: advances in cause and treatment.Lancet Neurol.2010.9(1):6-7.
    50Morais VA, De Strooper B. Mitochondria dysfunction andneurodegenerative disorders: cause or consequence. J Alzheimers Dis.2010.20Suppl2: S255-63.
    51Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides inducemitochondrial dysfunction and oxidative stress in astrocytes and death ofneurons through activation of NADPH oxidase. J Neurosci.2004.24(2):565-75.
    52Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectivelyto impaired mitochondria and promotes their autophagy. J Cell Biol.2008.183(5):795-803.
    53Kish SJ, Mastrogiacomo F, Guttman M, et al. Decreased brain proteinlevels of cytochrome oxidase subunits in Alzheimer's disease and inhereditary spinocerebellar ataxia disorders: a nonspecific change. JNeurochem.1999.72(2):700-7.
    54Reddy PH, McWeeney S, Park BS, et al. Gene expression profiles oftranscripts in amyloid precursor protein transgenic mice: up-regulation ofmitochondrial metabolism and apoptotic genes is an early cellular changein Alzheimer's disease. Hum Mol Genet.2004.13(12):1225-40.
    55Lustbader JW, Cirilli M, Lin C, et al. ABAD directly links Abeta tomitochondrial toxicity in Alzheimer's disease. Science (80-).2004.304(5669):448-52.
    56Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction andsynaptic damage: implications for cognitive decline in aging andAlzheimer's disease. Trends Mol Med.2008.14(2):45-53.
    57Scaglia F. The role of mitochondrial dysfunction in psychiatric disease.Dev Disabil Res Rev.2010.16(2):136-43.
    58Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases. Nature.2006.443(7113):787-95.
    59Loh KP, Huang SH, De Silva R, Tan BK, Zhu YZ. Oxidative stress:apoptosis in neuronal injury. Curr Alzheimer Res.2006.3(4):327-37.
    60Mori C, Spooner ET, Wisniewsk KE, et al. Intraneuronal Abeta42accumulation in Down syndrome brain. Amyloid.2002.9(2):88-102.
    61Fernandez-Vizarra P, Fernandez AP, Castro-Blanco S, et al. Intra-andextracellular Abeta and PHF in clinically evaluated cases of Alzheimer'sdisease. Histol Histopathol.2004.19(3):823-44.
    62Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascadehypothesis. Science (80-).1992.256(5054):184-5.
    63Mattson MP. Pathways towards and away from Alzheimer's disease.Nature.2004.430(7000):631-9.
    64Zhu X, Raina AK, Perry G, Smith MA. Apoptosis in Alzheimer disease: amathematical improbability. Curr Alzheimer Res.2006.3(4):393-6.
    65Mattson MP, Pedersen WA. Effects of amyloid precursor proteinderivatives and oxidative stress on basal forebrain cholinergic systems inAlzheimer's disease. Int J Dev Neurosci.1998.16(7-8):737-53.
    66Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. Cellularand molecular mechanisms underlying perturbed energy metabolism andneuronal degeneration in Alzheimer's and Parkinson's diseases. Ann N YAcad Sci.1999.893:154-75.
    67Fukui K, Takatsu H, Shinkai T, Suzuki S, Abe K, Urano S. Appearance ofamyloid beta-like substances and delayed-type apoptosis in rathippocampus CA1region through aging and oxidative stress. JAlzheimers Dis.2005.8(3):299-309.
    68Allen RG, Tresini M. Oxidative stress and gene regulation. Free RadicBiol Med.2000.28(3):463-99.
    69Mallis RJ, Buss JE, Thomas JA. Oxidative modification of H-ras:S-thiolation and S-nitrosylation of reactive cysteines. Biochem J.2001.355(Pt1):145-53.
    70Pereira C, Santos MS, Oliveira C. Involvement of oxidative stress on theimpairment of energy metabolism induced by A beta peptides on PC12cells: protection by antioxidants. Neurobiol Dis.1999.6(3):209-19.
    71Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities inAlzheimer's disease. J Neurosci.2001.21(9):3017-23.
    72Kim HS, Lee JH, Lee JP, et al. Amyloid beta peptide induces cytochromeC release from isolated mitochondria. Neuroreport.2002.13(15):1989-93.
    73Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction andsynaptic damage: implications for cognitive decline in aging andAlzheimer's disease. Trends Mol Med.2008.14(2):45-53.
    74Cash AD, Perry G, Smith MA. Therapeutic potential in Alzheimer disease.Curr Med Chem.2002.9(17):1605-10.
    75Liu CS, Chen NH, Zhang JT. Protection of PC12cells from hydrogenperoxide-induced cytotoxicity by salvianolic acid B, a new compoundisolated from Radix Salviae miltiorrhizae. Phytomedicine.2007.14(7-8):492-7.
    76Park SY, Kim HS, Cho EK, et al. Curcumin protected PC12cells againstbeta-amyloid-induced toxicity through the inhibition of oxidative damageand tau hyperphosphorylation. Food Chem Toxicol.2008.46(8):2881-7.
    77Yen WL, Klionsky DJ. How to live long and prosper: autophagy,mitochondria, and aging. Physiology (Bethesda).2008.23:248-62.
    78Cory S, Adams JM. The Bcl2family: regulators of the cellularlife-or-death switch. Nat Rev Cancer.2002.2(9):647-56.
    79Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: releaseof cytochrome c from mitochondria blocked. Science (80-).1997.275(5303):1129-32.
    80Crompton M. Bax, Bid and the permeabilization of the mitochondrialouter membrane in apoptosis. Curr Opin Cell Biol.2000.12(4):414-9.
    81Kowaltowski AJ, Vercesi AE, Fiskum G. Bcl-2prevents mitochondrialpermeability transition and cytochrome c release via maintenance ofreduced pyridine nucleotides. Cell Death Differ.2000.7(10):903-10.
    82Behl C, Hovey L3rd, Krajewski S, Schubert D, Reed JC. BCL-2prevents killing of neuronal cells by glutamate but not by amyloid betaprotein. Biochem Biophys Res Commun.1993.197(2):949-56.
    83Yamada M, Oligino T, Mata M, Goss JR, Glorioso JC, Fink DJ. Herpessimplex virus vector-mediated expression of Bcl-2prevents6-hydroxydopamine-induced degeneration of neurons in the substantianigra in vivo. Proc Natl Acad Sci U S A.1999.96(7):4078-83.
    84Yin KJ, Lee JM, Chen H, Xu J, Hsu CY. Abeta25-35alters Akt activity,resulting in Bad translocation and mitochondrial dysfunction incerebrovascular endothelial cells. J Cereb Blood Flow Metab.2005.25(11):1445-55.
    85Hsu MJ, Sheu JR, Lin CH, Shen MY, Hsu CY. Mitochondrialmechanisms in amyloid beta peptide-induced cerebrovasculardegeneration. Biochim Biophys Acta.2010.1800(3):290-6.
    86Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell.2011.146(5):682-95.
    87Lindholm D, Eriksson O, Korhonen L. Mitochondrial proteins inneuronal degeneration. Biochem Biophys Res Commun.2004.321(4):753-8.
    88Hauptmann S, Keil U, Scherping I, Bonert A, Eckert A, Muller WE.Mitochondrial dysfunction in sporadic and genetic Alzheimer's disease.Exp Gerontol.2006.41(7):668-73.
    89Keil U, Bonert A, Marques CA, et al. Amyloid beta-induced changes innitric oxide production and mitochondrial activity lead to apoptosis. JBiol Chem.2004.279(48):50310-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700