拟南芥胚胎发育相关基因AtFEM和鼠李糖合成酶基因AtRHM1的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文第一部分工作是关于一个影响胚胎发育的AtFEM基因的研究。植物中精确控制基因的表达对于胚胎和胚乳的发育是非常关键的。目前已经发现,超过250个基因的突变可以导致胚胎发育异常(或致死),这些基因的正常表达对于胚胎的正常发育是必需的,对胚胎发育的影响不尽相同。已知的引起胚胎发育缺陷的基因编码执行不同功能的蛋白,包括代谢、细胞生长、转录、蛋白命运、蛋白转运和受阻以及植物防御。在拟南芥中, F-box蛋白有700个以上,通过参与SCF复合体介导底物蛋白降解。遗传分析表明,F-box蛋白在许多信号传导途径中发挥作用。关于F-box蛋白参与胚胎和胚乳发育已经有一些报道。F-box蛋白TIR1和AFB在胚胎形成过程中调节生长素的反应,tir1-1 afb2-1 afb3-1突变体的胚胎在早期发育异常。F-box蛋白AtSFL61和AtSFL70参与胚胎或雌配子体的发育,AtSFL61突变引起胚胎败育,突变体胚胎细胞不正常分裂;atsfl70/+杂合突变体胚珠种子败育率为50%,由雌配子体致死所引起。本论文中对一个F-BOX EMBRYO LETHAL (FEM)基因进行研究,预测该基因编码的蛋白是一个参与细胞周期的F-box蛋白,Atfem的T-DNA插入突变可以引起隐性胚胎致死表型。自交的杂合体植株产生几乎25%的不正常种子,这些种子最终萎缩败育。突变体的胚胎大部分停滞在晚球形期,其中有的败育胚胎停滞在球形向心形过渡期。在1-细胞期和2-细胞期时,野生型和突变体胚胎没有明显区别;野生型胚胎发育到球形期时,突变体胚胎主要处于8-16细胞期;野生型胚胎发育到心形期时,突变体胚胎主要处于早球形期;野生型胚胎继续发育为成熟胚胎,突变体胚胎大部分仍处于晚球形期,没有胚胎可以发育到心形期,突变体胚胎最终败育。突变体的胚胎除了发育迟缓,另一个明显的特征是细胞分裂异常,分裂板的位置发生变化,最终产生了形态各异的不规则的球形期胚。此外,突变体的胚乳核数目与野生型相比显著降低。FEM蛋白包含两个LRR结构和两个F-box结构域。GUS染色结果显示,FEM在幼苗、莲座叶、种荚、花序均有表达。在幼苗的子叶和新生真叶表达强烈,特别是在叶脉上表达明显,根上只有少量表达。直到胚胎发育到成熟期,FEM在胚乳和胚胎中一直有表达,在胚乳中表达强烈,在胚胎中相对较弱。以上结果表明,FEM基因对于胚胎和胚乳的发育是非常重要的。
     本论文第二部分工作是关于鼠李糖合成酶基因AtRHM1的功能分析。在植物进行正常的生命活动时,细胞壁是植物细胞不可缺少的重要部分。细胞壁不但在维持细胞形态与细胞之间黏结、决定细胞壁的强度和调控细胞伸长等方面起了必要的作用,而且还参与了细胞的分化、抗病、细胞识别与信号传导等一系列生理过程。细胞壁成分包含纤维素、半纤维素、果胶和少量的结构蛋白等。L-鼠李糖是拟南芥细胞壁果胶多聚糖的重要组分之一,在模式植物拟南芥中由三种鼠李糖合成酶AtRHM1,AtRHM2和AtRHM3催化合成。拟南芥中的RHM2基因的等位基因是MUM4(MUCILAGE-MODIFIED4)。RHM2基因突变导致拟南芥种皮粘液中鼠李糖和半乳糖醛酸含量的减少,进一步证实了RHM蛋白具有鼠李糖合成酶的功能。已经发现,RHM1参与拟南芥根毛的形成,但是AtRHM1蛋白的体内酶学活性和亚细胞定位仍然不清楚。本论文对AtRHM1的功能进行了进一步的阐述。AtRHM1与拟南芥中RHM家族的其它成员有很高的相似性,与其它植物例如水稻和葡萄也有高的相似性。AtRHM1启动子-GUS (Prhm1)融合表达结果表明AtRHM1几乎在各个组织器官表达,尤其在幼苗的根、子叶和植株花序表达强烈,GUS染色结果与RT-PCR结果一致。这与AtRHM3基因的表达模式相似,但AtRHM2基因的表达模式不同,AtRHM2/MUM4在繁殖器官中表达量较高,如种子等。对AtRHM1不同缺失启动子(Pd1,Pd2,Pd3,Pd4,Pd5)GUS转基因植株GUS染色结果表明:Prhm1和Pd1在整体上的GUS表达模式一致,即在整株幼苗都有表达,只是在染色程度上Pd1比Prhm1稍弱;而对于Pd2与Pd1染色情况比较来看,Pd2的子叶染色弱而根上几乎无染色,而Pd1的根上有很深的染色,表明RHM1启动子中的-752 bp~-308 bp这段序列可能与根特异表达相关;Pd3幼苗子叶上的染色较Pd2明显降低,2天时子叶无染色,4、7天的子叶只有顶尖处有稍许表达,表明-308 bp~-140 bp序列可能与子叶特异表达相关,而在RHM1基因启动子-752 bp~-308 bp含有两个G-box和一个与伤害有关的调控元件,在-308 bp~-140 bp区域中存在ACTT和ABRE元件。AtRHM1的表达受糖和伤害诱导,RHM1基因启动子中与伤害诱导相关的顺式作用元件可能位于-308 bp~140 bp,与葡萄糖应答相关顺式作用元件可能位于该基因启动子-931 bp~-752 bp区域。已有假设指出许多核糖转化酶定位在细胞质。Reiter和Pai指出烟草中一种UDP-D-apiose/UDP-D-xylose合成酶NbAXS1通常定位在细胞质。共聚焦显微镜观察表明GFP::AtRHM1融合蛋白定位在子叶细胞的细胞质,这说明AtRHM1是一种细胞质定位的蛋白。AtRHM1代表了RHM家族中第一个定位在细胞质的鼠李糖合成蛋白,这与许多其它参与细胞壁生物合成的核糖转化酶定位在细胞质相符。拟南芥中AtRHM1基因过表达导致叶片细胞壁的鼠李糖含量增加了40%,同时,甘露糖和葡萄糖的含量也发生了改变。而RNAi株系细胞壁中主要单糖包括鼠李糖的含量没有任何明显的改变。傅里叶变换红外光谱分析表明AtRHM1过表达株系中增加的鼠李糖参与了鼠李糖苷的合成。
The thesis is constituted of two studies. The first is about an Arabidopsis F-box protein involved in embryogenesis. Precise control of gene expression is critical for embryo and endosperm development in plants. Recent studies revealed that the mutations of over 250 genes resulted in embryoic abnormalities or embryo lethalities, indicating these genes are essential for normal embryo development. The known embryo-defective genes encode proteins with diverse functions, including metabolism, cell growth, transcription, translation, protein fate, protein transport and traffic, and plant defense. In Arabidopsis, there’re more than 700 F-box proteins interacting with the rest of the SCF complex for degradation of the substrates. A number of studies have demonstrated that F-box proteins play critical roles in various signaling pathways, while some reports show that F-box proteins are also involved in embryo and endosperm development. The F-box proteins TIR1 and AFB were reported to mediate auxin responses during embryogenesis, and it’s found that the embryos of the triple mutant tir1-1 afb2-1 afb3-1 displayed defects during early embryogenesis. Other F-box proteins such as AtSFL61 and AtSFL70 are likely required for the development of embryo or female gametophyte. AtSFL61 mutation led to embryo-lethality with the frequent irregular cell division in atsfl61 embryos. Around 50% of the atsfl70/+ ovules could not survive beyond the zygotic division due to female gametophyte being defective. In this study, we report that F-BOX EMBRYO LETHAL (FEM), an F-box protein, is involved in embryogenesis and endosperm development in Arabidopsis. Loss-of-function mutations of FEM caused recessive embryo-lethal phenotype. Selfed heterozygous plants produced approximately 25% abnormal seeds which were shrunken and aborted. Most of the mutant embryos were arrested at globular stage and some at globular-to-heart transition stage. At 1-cell and 2-cell stages, it was difficult to distinguish the mutant from wild type; when wild-type ovules beared globular embryos, the mutant embryos were at 8-16-cell stage; when wild-type ovules contained heart-shaped embryos, the mutant embryos were at preglobular stage; when wild-type embryos developed mature embryos, the mutant embryos were arrested at globular-like or globular-to-heart transition stages and aborted. None of the fem embryos reached the heart stage. In addition to the embryos being arrested, aberrant cell divisions were observed in the mutant embryos with aberrant positioning of the division planes displayed, which resulted in globular embryos with irregular shape. Moreover, the number of endosperm nuclei of the mutant showed a dramatic reduction compared to wild type. FEM encodes a polypeptide with two LRR domains and two F-Box domains. FEM was ubiquitously expressed in various organs of transgenic Arabidopsis as revealed by FEM promoter-GUS fusion with a consistency with the microarray data (indicate the website). Detailed GUS staining with the transgenic ovules revealed the expression of FEM in the endosperm and developing embryos. Taken together, the data suggest that FEM gene is essential for both normal embryo and endosperm development in Arabidopsis.
     Second study is about the functional analysis of the Arabidopsis rhamnose biosynthesis gene AtRHM1. Cell wall plays essential roles during plant growth and development. The cell walls determine the boundaries of plant form, represent the main sink for photoassimilated carbon, protect against pathogen invasion, and provide mechanical strength to the plant body. Cell walls comprise primarily cellulose microfibrils, hemicelluloses, pectic polysaccharides, and small amounts of structural proteins. L-Rhamnose (Rha) is an important constituent of pectic polysaccharides, a major component of the cell walls of Arabidopsis, which is synthesized by three rhamnose biosynthesis enzymes (RHM) encoded by AtRHM1, AtRHM2, and AtRHM3, respectively. Mutations in Arabidopsis RHM2 gene, which are allelic to the MUCILAGE-MODIFIED4 (MUM4) locus, reduced the Rha and galacturonic acid content of seed coat mucilage, suggesting that RHM2/MUM4 is involved in RGI biosynthesis. Despite the finding that RHM1 is involved in root hair formation in Arabidopsis, experimental evidence is still lacking for the in vivo enzymatic activity and subcellular compartmentation of the AtRHM1 protein. AtRHM1 displays high similarity to the other members of RHM family in Arabidopsis and in other plant species such as rice and grape. Expression studies with AtRHM1 promoter-GUS (Prhm1) fusion gene showed that AtRHM1 was expressed almost ubiquitously, with more expression in roots and cotyledons of young seedlings and inflorescences, which is consistent with the results of RT-PCR. We made a series of AtRHM1 promoter deletion (Pd1,Pd2,Pd3,Pd4,Pd5). These deletion fragments were fused with GUS reporter gene respectively. The GUS staining showed that the expression pattern of Prhm1 and Pd1 was almost the same, whereas expression levels were different. For Pd1, expression level was a little bit reduced. Compared the expression level of Pd2 to Pd1, no staining was in cotyledon for Pd2, but strong staining was found for Pd1, indicating that -752 bp~-308 bp of RHM1 promoter was related to special expression of root. For Pd3, expression level in cotyledon of young seedling was reduced dramatically compared to Pd2. No staining was in 2 d seedling and a little staining was on top of 4 d and 7 d seedlings for Pd3, indicating that -308 bp~-140 bp was possibly involved in special expression of cotyledon. There were two G-box and a regulatory element of wounding in a range from -752 bp to -308 bp and ACTT and ABRE elements in a range from -308 bp~-140 bp. GUS staining showed that the expression of RHM1 was induced by sugar and wounding. -308 bp~140 bp of RHM1 promoter was possibly a regulatory element of wounding and -931 bp~-752 bp of RHM1 promoter was possibly involved in glucose answering reaction. It has been proposed that many nucleotide sugar interconverting enzymes are localized in cytosol. Reiter and Pai demonstrated that tobacco NbAXS1, a UDP-D-apiose/UDP-D-xylose synthase was mostly localized in the cytosol. GFP::AtRHM1 fusion protein was found to be localized in the cytosol of cotyledon cells, indicating AtRHM1 is a cytosol-localized protein. The overexpression of AtRHM1 gene in Arabidopsis resulted in an increase of rhamnose content as much as 40% in the leaf cell wall compared to the wild type, as well as an alteration in the contents of galactose and glucose. We did not find any significant difference (P < 0.05) in the amounts of the major sugars of cell wall material between wild type and RNAi line including Rha. Fourier-Transform Infrared analyses revealed that surplus rhamnose upon AtRHM1 overexpression contributes to the construction of rhamnogalacturonan.
引文
1.郭建华,窦少华,邱然.利用糖糟与啤酒糟生产蛋白饲料的研究.饲料工业,2005,21:48~50.
    2.桂建芳. RNA加工与细胞周期调控.北京:科学出版社,1998,103~106.
    3.蒋丽,齐兴云,龚化勤,刘春明.被子植物胚胎发育的分子调控.植物学通报,2007,24 :389~398.
    4.蒋立文,付海平.发酵型含醇酸豆奶的研制.食品科技,2001,3:43~45.
    5.李雄彪等编著.植物细胞壁.北京:北京大学出版社,1993.
    6.林勤保,高大维,于淑娟.大枣多糖的单糖组成的高效液相色谱法研究.郑州粮食学院学报,1998,19:57~61.
    7.浦跃武,刘卫斌.鼠李糖的研究现状及其应用.食品工业科技,2001,23:84.
    8.宿红艳,王磊,张宪省.胚珠发育的分子机理植物学通报,2005,22:396~407.
    9.孙长明.植物胚胎发育过程中基因表达调控的研究进展.山东电大学报,2002,2:54~56.
    10.王忠民,吴谋成,尹经章.葡萄多糖-2的分离及其组成单糖的分析.河南农业大学学报,2003,37:94~96.
    11.张惟杰,糖复合物生化研究技术,杭州:浙江大学出版社,1994,95.
    12. Ahn J.W., Verma R., Kim M., Lee J.Y., Kim Y.K., Bang J.W., Reiter W.D., Pai H.S., Depletion of UDP-D-apiose/UDP-D-xylose synthases results in rhamnogalacturonan-II deficiency, cell wall thickening, and cell death in higher plants, J Biol Chem 2006, 281: 13708-13716.
    13. Alexandre E., Donaldo M., Emmanuel G., Philippe J., Marie-Francoise G.,The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice. Planta 2007, 225: 287-300.
    14. Andrade M.A., Gonzalez-Guzman M., Serrano R., Rodriguez P.L., A combination of the F-box motif and kelch repeats defines a large Arabidopsis family of F-box proteins. Plant Mol Biol 2001, 46: 603-614.
    15. Arenas Huertero-F., Arroyo A., Zhou L., Sheen J., León P., Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes and Development 2000, 14: 2085-2096.
    16. Arioli T., Peng L., Betzner A.S., Burn J., Wittke W., Herth W., Camilleri C., H?fte H., Plazinski J., Birch R. et al., Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 1998, 279: 717-720.
    17. Ayashi T., Kobayashi D., Kariu T., Tahara M., Hada K., Genomic cloning of ribonucleases in Nicotiana glutinosa leaves, as induced in response to wounding or to TMV-infection, andcharacterization of their promoters. Biosci Biotechnol Biochem 2003, 67: 2574-2583.
    18. Bar-Peled M., Lewinsohn E., Fluhr R., Gressel J., UDP-rhamnose-flavanone-7-O- glucoside-20-O-rhamnosyltransferase purification and characterization of an enzyme catalyzing the production of bitter compounds in citrus. J Biol Chem 1991, 226: 20953–20959.
    19. Baumberger N., Ringli C., Keller B., The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes and Development 2001, 15: 1128-1139.
    20. Boisnard-Lorig C., Colon-Carmona A., Bauch M., Hodge S., Doerner P., Bancharel E., Dumas C., Haseloff J., Berger F., Dynamic analyses of the expression of the HISTONE::YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. Plant Cell 2001, 13: 495-509.
    21. Brown R.C., Lemmon B.E, Olsen O.A., Endosperm development in barley: microtubule involvement in the morphogenetic pathway. Plant Cel1 1994, 6: 1241-1252.
    22. Burget E.G., Verma R., Molhoj M., Reiter W.D., The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis, Plant Cell 2003, 15: 523-531.
    23. Burn J.E., Hocart C.H., Birch R.J., Cork A.C., Williamson R.E., Functional analysis of the cellulose synthase genes CesA1, CesA2, and CesA3 in Arabidopsis. Plant Physiol 2002, 129: 797-807.
    24. Callis J., Vierstra R.D. Protein degradation in signaling. Curr Opin Plant Biol 2000, 3: 381-386.
    25. Carpita N.C., Gibeaut D.M., Structural models of primary cell wall in flowering plant: consistency of molecular structure with the physical. Properties of the walls during growth. Plant J 1993, 3: l-30,
    26. Chaudhury A.M., Ming L., Miller C., Craiq S., Dennis E.S., Peacock W.J., Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 1997, 94: 4223-228.
    27. Ciapa B., Chiri S., Egg activation: upstream of the fertilization calcium signal. Biol Cell 2000, 92: 215-233.
    28. Colcombet J., Boisson-Dernier A., Ros-Palau R., Vera C.E., Schroeder J.I., Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES 1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 2005, 17: 3350-3361.
    29. Coimbra M.A., Barros A., Barros M., Rutledge D.N., Delgadillo I., FTIR spectroscopy as a tool for analysis of olive pulp cell wall polysaccharide extracts, Carbohydrate Research 1999, 317: 145-154.
    30. Corbesier L., Lejeune P., Bernier G., The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 1998,206: 131-137.
    31. Craig K.L., Tyers M., The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol 1999, 72: 299-328.
    32. Das M.C., Bachhawat B.K., Mahato S.B., Basu M.K., Plant glycosides in a liposomal drug-delivery system. Biochem J 1987, 247: 359-361.
    33. Dvaill A., McNil N., Albersheim P., Deimer D.P., The Primary cell walls flowering, in: N.E. Tolbert (Ed.), The Biochemisy of Plants, Acdemic Press, NewYork, 1980, 91-192.
    34. Delmer D.P., Albersheim P., The Biosynthesis of Sucrose and Nucleoside Diphosphate Glucoses in Phaseolus aureus, Plant Physiol 1970, 45: 782-786.
    35. Dealy M.J., Nguyen K.V., Lo J., Gstaiger M., Krek W., Elson D., Arbeit J., Kipreos E.T., Johnson R.S., Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet 1999, 23: 245-248.
    36. Deng X.W., Caspar T., Quail P.H., cop1: A regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes and Development 1991, 5: 1172-1182.
    37. Desprez T., Vernhettes S., Fagard M., Refrégier G., Desnos T., Aletti E., Py N., Pelletier S., H?fte H., Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 2002, 128: 482-490.
    38. Devoto A., Nieto-Rostro M., Xie D., Ellis C., Harmston R., Patrick E., Davis J., Sherratt L., Coleman M., Turner JGCOI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 2002, 32: 457-466.
    39. Dharmasiri N., Dharmasiri S., Jones A.M., Estelle M., Auxin action in a cell-free system. Curr Biol 2003, 13: 1418-1422.
    40. Dharmasiri N., Dharmasiri S., Weijers D., Lechner E.,Yamada M., Hobbie L., Ehrismann J.S., Jurgens G., Estelle M., Plant development is regulated by a family of auxin receptor F-box proteins. Dev Cell 2005, 9: 109-119.
    41. Diet A., Link B., Seifert G.J., Schellenberg B., Wagner U., Pauly M., Reiter W.D., Ringli C., The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-Rhamnose synthase. Plant Cell 2006, 18: 1630-1641.
    42. Digonnet C., Aldon D., Leduc N., Dumas C., Rougier M., First evidence of a calcium transient in flowering plants at fertilization. Development 1997, 124: 2867-2874.
    43. Ding Y.H., Liu N.Y., Tang Z.S., Liu J., Yang W.C., Arabidopsis GLUTAMINERICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase II subunit III. Plant Cell 2006, 18: 815-830.
    44. DS F., Aldo (and keto) hexoses and uronic acids. IN FA Loewus, W Tanner, eds, Plant Carbohydrates I, Intracellular Carbohydrates (Encyclopedia of Plant Physiology New Series), Springer-Verlag, Heidelberg, 1982.
    45. Durrant W.E., Rowland O., Piedras P., cDNA-AFLP reveals a striking overlap in race-specificresistance and wound response gene expression profiles. Plant Cell 2000, 12: 963-977.
    46. Figueroa P., Gusmaroli G., Serino G., Habashi J., Ma L., Shen Y., Feng S., Bostick M., Callis J., Hellmann H., Deng X.W., Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 2005, 17: 1180-1195.
    47. Friedman W.E., Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm. C R Acad Sci III 2001, 324: 559-567.
    48. Friml J., Vieten A., Sauer M., Weijers D., Schwarz H., Hamann T., Offringa R., Jürgens G., Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 2003, 426: 147-153.
    49. Frederic B., Endosperm development. Current Opinion in Plant Biology 1999, 2: 28-32.
    50. Fry S.C., The structure and function of xylogluena. J ExP Bot 1989, 40: 1-11.
    51. Gagne J.M., Downes B.P., Shiu S.H., Durski A.M., Vierstra R.D., The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 2002, 99: 11519-11524.
    52. Geldner N., Anders N., Wolters H., Keicher J., Kornberger W., Müller P., Delbarre A., Ueda T., Nakano A., Jürgens G., The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, auxin-dependent plant growth. Cell 2003, 112: 219-230.
    53. Geldner N., Friml J., Stierhof Y.D., Jürgens G., Palme K., Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 2001, 413: 425-428.
    54. Geshi N., Jogrensen B., Scheller H.V., Ulvskov P., In vitro biosynthesis of l, 4-?-galactan attached to rhamnogalacturonan I. Planta 2000, 210: 622-629.
    55. Giuliano G., Pichersky E., Malik V.S., Timko M.P., Scolnik P.A., An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 1998, 85: 7089-7093.
    56. Glenda G., Hilla B.D., Wilhelm G., Fruits: a developmental perspective. Plant Cell 1993, 5: 1439-1451.
    57. Goubet F., Mohnen D., Subcellular localization and topology of homogalacturonan methyltransferase in suspension-cultured Nicotiana tabacum cells. Planta 1999, 209: 112-117.
    58. Grierson C., Du J.S., de Torres Zabala M., Beqqs K., Smith C., Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J 1994, 5: 815-826.
    59. Grossniklaus U., Vielle—Calzada J.P., Hoeppner M.A., Gagliano W.B., Maternal control of embryogenesis by MEDEA, a polycomb—group gene in Arabidopsis. Science 1998, 280: 446-450.
    60. Grossniklaus U., Spillane C., Page D.R., KiShler C., Genomic imprinting and seed development: endosperm formation with and without sex. Curr Opin Plant Bio1 2001, 4: 21-27.
    61. Gray W.M., del Pozo J.C., Walker L., Hobbie L., Risseeuw E., Banks T., Crosby W.L., Yang M., Ma H., Estelle M., Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes and Development 1999, 13: 1678-1691.
    62. Gray W.M., Kepinski S., Rouse D., Leyser O., Estelle M., Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 2001, 414: 271-276.
    63. Han B.W., Bingman C.A., Mahnke D.K., Bannen R.M., Bednarek S.Y., Sabina R.L., Phillips G.N., Membrane association, mechanism of action, structure of Arabidopsis embryonic factor 1 (FAC 1). J Biol Chem 2006, 281: 14939-14947.
    64. Hall Q., Cannon M.C., The cell wall hydroxyproline-rich glycoprotein RSH is essential for normal embryo development in Arabidopsis. Plant Cell 2002, 14: 1161-1172.
    65. Hardtke C.S., Ber leth T., The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 1998, 17: 1405-1411.
    66. Haruko U., Haruko O., Glycobiology of the plant glycoprotein epitope: structure, immunogenicity and allergenicity of plant glycotopes. Trends Glycosci Glycotech 1999, 11: 413-428.
    67. Hecht V., Vielle-Calzada J.P., Hartog M.V., Schmidt E.D., Boutilier K., Grossniklaus U., de Vries S.C., The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 2001, 127: 803-816.
    68. Hellmann H., Hobbie L., Chapman A., Dharmasiri S., Dharmasiri N., del Pozo C., Reinhardt D., Estelle M., Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J 2003, 22: 3314-3325.
    69. Hershko A., Ciechanover A., The ubiquitin system. Annu Rev Biochem 1998, 67: 425-479.
    70. Ingram G.C., Doyle S., Carpenter R., Schultz E.A., Simon R., Coen E.S., Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J 1997, 16: 6521-6534.
    71. Ishiguro S., Nakamura K., Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’upstream regions of genes coding for sporamin and amylase from sweet potato. Mol Gen Genet 1994, 244: 563-571.
    72. Jackson P.K., Eldridge A.G., Freed E., Furstenthal L., Hsu J.Y., Kaiser B.K., Reimann J.D., The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 2000, 10: 429-439.
    73. Jang J.C., Sheen J., Sugar sensing in higher plants. Plant Cell 1994, 6: 1665-79.
    74. Jefferson R.A., Kavanagh T.A., Bevan M.W., GUS fusions:β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO J 1987, 6: 3901-3907.
    75. Jones L., Ennos A.R., Turner S.R., Cloning and characterization of irregular xylem4 (irx4): a severely lignin - deficientmutant ofArabidop sis. Plant J 2001, 26: 205-216.
    76. Kepinski S., Leyser O., Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci USA 2004, 101: 12381-12386.
    77. Kepinski S., Leyser O., The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 2005, 435: 446-451.
    78. Kinoshita T., Miura A., Choi Y., Kinoshita Y., Cao X.F., Jacobsen S.E., Fischer R.L., Kakutani T., One—way control of WlA imprinting in Arabidopsis endosperm by DNA methylation.Science 2004, 303: 521-523.
    79. Koch K.E., Ying Z., Wu Y., Aviqne W.T., Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes ofsucrose and ethanol metabolism. Journal of Experimental Botany 2000, 51: 417-427.
    80. Kong H., Leebens-Mack J., Ni W., dePamphilis C.W., Ma H., Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications. Mol Biol Evol 2004, 21: 117-128.
    81. Lee I., Wolfe D.S., Nilsson O., Weigel D., A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol 1997, 7: 95-104.
    82. Levin J.Z., Meyerowitz E.M., UFO: An Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 1995, 7: 529-548.
    83. Liu C.M., Xu Z., Chua N.H., Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 1993, 5: 621-630.
    84. Lokowitz W., Mayer U., Jurgens G., Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KEOLLE gene product. Cell 1996, 84: 761-771.
    85. Loreti E., Yamaguchi J., Alpi A., Perata P., Sugar modulation of alpha-amylase genes under anoxia. Annals of Botany 2003, 91: 143-148.
    86. Iwakawa H., Shinmyo A., Sekine M., Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J 2006, 45: 819-831.
    87. Maeo K., Tomiya T., Hayashi K., Akaike M., Ishiguro S., Sugar-responsible elements in the promoter of a gene for amylase of sweet potato. Plant Mol Biol 2001, 46: 627-637.
    88. Maitra U.S., Ankel H., Uridine diphosphate-4-keto-glucose, an intermediate in the uridine diphosphate-galactose-4-epimerase reaction, Proc Natl Acad Sci USA 1971, 68: 2660-2663.
    89. Markham K.R., Gould K.S., Winefield C.S., Mitchell K.A., Bloor S.J., Boase M.R., Anthocyanic vacuolar inclusions-their nature and significance in flower colouration. Phytochemistry 2000, 55: 327-336.
    90. Martinez-Garcia J.F., Huq E., Quail P.H., Direct targeting of light signals to a promoter element-bound transcription factor. Science 2000, 288: 859-863.
    91. McCann M.C., Wells B., Roberts K., Structure-activity relationships of xyloglucan oligosaccharides with anti-auxin activity, J Cell Sci 1990, 96: 323-334.
    92. McElver J., Tzafrir I., Aux G., Rogers R., Ashby C., Smith K., Thomas C., Schetter A., Zhou Q., Cushmann M.A. et al., Insertional mutagenesis of genes required for seed development inArabidopsis thaliana. Genetics 2001, 159: 1751-1763.
    93. Milner Y., Avigad G., Thymidine diphosphate nucleotides as substrates in the sucrose synthetase reaction, Nature 1965, 206: 825.
    94. Ka?urákováM., Capek P., SasinkováV., Wellner N., EbringerováA., FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses, Carbohydrate Polymers 2000, 43: 195-203.
    95. Munoz P., Norambuena L., Orellana A., Evidence for a UDP-Glucose Transporter in Golgi Apparatus-Derived Vesicles from Pea and Its Possible Role in Polysaccharide Biosynthesis, Plant Physiol 1996, 112: 1585-1594.
    96. Nowack M.K., Grini P.E., Jakoby M.J., Lafos M., Koncz C., Schnittger A., A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 2006, 38: 63-67.
    97. Ohad N., Margossian L., Hsu Y.C., Williams C., Repetti P., Fischer R.L., A mutation that allows endosperm development without fertilization. Proc Natl Acad Sci USA 1996, 93: 5319-5324.
    98. Oka T., Nemoto T., Jigami Y., Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion, J Biol Chem 2007, 282: 5389-5403.
    99. Olsen O.A., Linnestad C., Nichols S.E., Developmental biology of the cereal endosperm.Trends Plant Sci 1999, 4: 253-257.
    100.Olsen O.A., Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 2001, 52: 233-267.
    101.Olsen O.A., Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 2004, 16(supp), S214-S227.
    102.O’Neill M.A., Eberhard S., Albersheim P., Darvill A.G., Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 2001, 294: 846-849.
    103.Perrin R.M., How many cellulose synthases to make a plant? Curr Biol 2001, 11: R213-R216.
    104.Pickart C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem 2001, 70: 503-533.
    105.Porat R., Lu P., O’Neill S.D., Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells. Planta 1998, 204: 345-351.
    106.Quirino B.F, Reiter W.D., Amasino R.D., One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Mol Biol 2001, 46: 447-457.
    107.Ray S., Materual effects of short integuments mutation on embryo development in Arabidopsis. Dev Biol 1996, 180: 365-369.
    108.Reeves P.R., Hobbs M., Valvano M.A., Skurnik M., Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 1996, 4: 495-503.
    109.Reinhardt D., Pesce E.R., Stieger P., Mandel T., Baltensperger K., Bennett M., Traas J., Friml J., Kuhlemeier C., Regulation of phyllotaxis by polar auxin transport. Nature 2003, 426:255-260.
    110.Reiter W.D., Vanzin G.F., Molecular genetics of nucleotidesugar interconversion pathways in plants. Plant Mol Biol 2001, 47: 95-113.
    111.Reymond P., Farmer E.E., Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1998, 1: 404-411.
    112.Ridley B.L., O’Neill M.A., Mohnen D., Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 2001, 57: 929-967.
    113.Risseeuw E.P., Daskalchuk T.E., Banks T.W., Liu E., Cotelesage J., Hellmann H., Estelle M., Somers D.E., Crosby W.L., Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 2003, 34: 753-767.
    114.Roitsch T., Source-sink regulation by sugar and stress. Curr Opin Plant Biol 1999, 2: 198-206.
    115.Rolland F., Moore B., Sheen J., Sugar sensing and signaling in plants. Plant Cell 2002, 14 Suppl: S185-S205.
    116.Rook F., Gerrits N., Kortstee A., van Kampen M., Borrias M., Weisbeek P., Smeekens S., Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene, Plant J 1998, 15: 253-263.
    117.Roscher R., Hilkert A., Gessner M., Schindler E., Schreier P., Schwab W., L-Rhamnose: progenitor of 2, 5-dimethyl-4-hydroxy-3[2H]-furanone formation by Pichia capsulata? J Agric Food Chem 1997, 45: 3202-3205.
    118.Sabatini S., Bels D., Wolkenfelt H., Murfett J., Guilfoyle T., Malamy J., Benfey P., Leyser O., Bechtold N., Weisbeek P., Scheres B., An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 1999, 99: 463-472.
    119.Schrammeijer B., Risseeuw E., Pansegrau W., Regensburg-Tuink T.J., Crosby W.L., Hooykaas P.J., Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Bio 2001, 11: 258-262.
    120.Schwob E., Bohm T., Mendenhall M.D., and Nasmyth K., The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 1994, 79: 233-244.
    121.Seifert G.J., Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside, Curr Opin Plant Biol 2004, 7: 277-284.
    122.Smeekens S., Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 2000, 51: 49-81.
    123.Shen W.H., Parmentier Y., Hellmann H., Lechner E., Dong A., Masson J., Granier F., Lepiniec L., Estelle M., Genschik P., Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. Mol Biol Cell 2002, 13: 1916-1928.
    124.Shinozaki Y., Tobita T., Mizutani M., Matsuzaki T., Isolation and identification of two new diterpene glycosides from Nicotiana tabacum. Biosci Biotechnol Biochem 1996, 60: 903-905.
    125.Shinshi H., Usami S., Ohme-Takaqi M., Identification of an ethylene-responsive region in thepromoter of a tobacco class I chitinase gene. Plant and Molecular Biology 1995, 27: 923-932.
    126.Sorensen M.B., Mayer U., Lukowitz W., Robert H., Chambrier P., Jurgens G., Somerville C., Lepiniec L., Berger F., Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 2002, 129: 5567-5576.
    127.Stoddart R.W., The biosynthesis of polysaccharides. 1984.
    128.Stone S.L., Anderson E.M., Mullen R.T., Goring D.R., ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell 2003, 15: 885-898.
    129.Sun C.X., Palmqvist S., Olsson H., Jansson C., A Novel WRKY Transcription Factor, SUSIBA2, Participates in sugar signalingin Barley by Binding to the sugar-Responsive Elements of the iso1 Promoter. Plant Cell 2003, 15: 2076-2092.
    130.Szyjanowicz, IainMcKinnon et al., The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J 2004, 37: 730~740.
    131.Tate C.G., Muiry J.A., Henderson P.J., Mapping, cloning, expression, and sequencing of the rhaT gene, which encodes a novel L-rhamnose-H+ transport protein in Salmonella typhimurium and Escherichia coli. J Biol Chem 1992, 267: 6923-6932.
    132.Taylor N.G., Scheible W.R., Cutler S., Somerville C.R., Turner S.R., The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 1999, 11: 769-780.
    133.Taylor N.G., Laurie S., Turner S.R., Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 2000, 12: 2529-2540.
    134.Tian Q., Uhlir N.J., Reed J.W., Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 2002, 14: 301-319.
    135.Tian Q., Nagpal P., Reed J.W., Regulation of Arabidopsis SHY2/IAA3 protein turnover. Plant J 2003, 36: 643-651.
    136.Tiwari S.B., Hagen G., Guilfoyle T., The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 2003, 15: 533-543.
    137.Tzafrir I., McElver J.A., Liu C.M., Yang L.J., Wu J.Q., Martinez A., Patton D.A., Meinke D.W., Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol 2002, 128: 38-51.
    138.Ulmasov T., Hagen G., Guilfoyle T.J., ARF1, a transcription factor that binds auxin response elements. Science 1997, 276: 1865-1868.
    139.van den Berg C., Willemsen V., Hage W., Weisbeek P., Scheres B., Cell fate in the Arabidopsis root meristem determined by directional signaling. Nature 1995, 378: 62-65.
    140.van Setten D.C., van de Werken G., Zomer G., Kersten G.F., Glycosyl compositions and structural characteristics of the potential immunoadjuvant active saponins in the Quillaja saponaria Molina extract quilA. Rapid Commun Mass Spectrom 1995, 9: 660-666.
    141.Vanzin G.F., Madson M., Carpita N.C., Raikhel N.V., Keegstra K., Reiter W.D., The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci USA 2002, 99: 3340-3345.
    142.Wang L., Dong L., Zhang Y., Deng W. X. et al., Genome-wide analysis of S locus F-box-like genes in Arabidopsis thaliana. Plant Mol Biol 2005, 56: 929-945.
    143.Wang Y., Penfold S., Tang X., Hattori N., Riley P., Harper J.W., Cross J.C., Tyers M., Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr Biol 1999, 9: 1191-1194.
    144.Watt G., Leoff C., Harper A.D., Bar-Peled M., A bifunctional 3, 5-epimerase/4-keto reductase for nucleotide-rhamnose synthesis in Arabidopsis, Plant Physiol 2004, 134: 1337-1346.
    145.Weijers D., Jürgens G., Auxin and embryo axis formation: the ends in sight? Curr Opini Plant Biol 2005, 8: 32-37.
    146.Wellner N., Kacurakova M., Malovikova A., Wilson R.H., Belton P.S., FT-IR study of pectate and pectinate gels formed by divalent cations, Carbohydrate Research 1998, 308: 123-131.
    147.Worley C.K., Zenser N., Ramos J., Rouse D., Leyser O., Theologis A., Callis J., Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J 2000, 21: 553-562.
    148.Xu L., Liu F., Lechner E., Genschik P.,Crosby W. L., Ma H., Peng W., Huang D., Xie D., The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 2002, 14: 1919-1935.
    149.Xu J., Zhang H.Y., Xie C.H., Xue H.W., Dijkhuis P., Liu C.M., EMBRYONIC FACTOR 1 encodes an AMP deaminase and is essential for the zygote to embryo transition in Arabidopsis. Plant J 2005, 42: 743-756.
    150.Yadegari R., Kinoshita T., Lotan O., Cohen G., Katz A., Choi Y., Katz A., Nakashima K., Harada J.J., Goldberg R.B. et al., Mutation in the FlE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms. Plant Cell 2000, 12: 2367-2381.
    151.Yang X., Lee S., So J.H., Dharmasiri S., Dharmasiri N., Ge L., Jensen C., Hangarter R., Hobbie L., Estelle M., The IAA1 protein is encoded by AXR5 and is a substrate of SCF (TIR1). Plant J 2004, 40: 772-782.
    152.York W.S., Darvill A.G., Albersheim P., Inhibition of 2, 4-dichlorophenoxyacetic acid-stimulated elongation of pea stem segments by a xyloglucan oligosaccharide. Plant Physiol 1984, 75: 295-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700