依博素生物合成基因ste5、ste22的克隆、表达和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
链霉菌(Streptomyces)是工业重要微生物之一,能产生大量的次级代谢物,主要有抗生素等,然而有关链霉菌胞外多糖的研究除本实验室外国内外尚未见报道。本研究室自行构建了以基因重组白细胞介素-1(interleukin-1,IL-1)可溶性受体为靶位的受体拮抗剂筛选模型,获得了一种由链霉菌139产生的新型胞外多糖(exopolysaccharide,EPS)依博素,经药效学研究证明依博素对类风湿性关节炎有明显疗效,并且毒性较低,已申报临床研究,有可能发展成为临床治疗类风湿性关节炎的新药。
     我室已确定了由27个开放阅读框架(ORF)构成的依博素生物合成基因簇(ste)。为了阐明依博素生物合成途径,研究依博素结构与生物活性关系并获得新型依博素衍生物,已对不同基因功能进行了深入研究,本文的研究对象为ste5和ste22基因。
     根据基因同源性分析,ste5基因编码的蛋白可能是引导糖基转移酶,在依博素生物合成中启动第一步反应。为了解ste5在依博素生物合成中的功能,通过同源重组双交换对ste5进行了基因阻断研究,获得了基因缺失突变株Streptomyces sp.139(ste5),其产生的多糖EPS-5m单糖组分中半乳糖含量明显下降,全部丧失对IL-1R的拮抗活性,同时EPS-5m的分子量较依博素明显降低。
     为了确定ste5编码产物性质,在大肠杆菌成功进行了基因克隆表达,并纯化了重组蛋白,其分子量为54KD。酶学活性研究证明Ste5为半乳糖糖基转移酶,能够催化1-磷酸半乳糖由UDP-半乳糖转移到Streptomyces sp.139细胞膜脂质载体上,形成磷酸糖脂,从而作为引导糖基转移酶启动了依博素的生物合成,因此ste5是依博素的关键的生物合成基因。
     为了证实ste22基因编码产物性质,以pBV220为载体,在大肠杆菌成功进行了基因克隆表达,并纯化了重组蛋白Ste22,其分子量为35KD。酶学活性研究证明Ste22为鼠李糖糖基转移酶,能够催化鼠李糖基由TDP-L-rhamnose转移到多糖重复单元增长链,形成糖苷键,在依博素生物合成中具有重要作用。
     本文有效确定了ste5和ste22基因在依博素生物合成中的作用,为通过组合生物学:途径研究多糖结构与生物活性关系,获得具有生物活性的新结构多糖奠定了较好的基础。上述研究均未见国内外报道。
It is well known that members of the genus Streptomyces produce a great many antibiotics and other classes of biologically active secondary metabolites,but little is known of the EPSs produced by these valuable microbes.Recently,a novel EPS named Ebosin was isolated and identified in our laboratory from the culture of Streptomyces sp. 139,which has antagonist activity for IL-1R in vitro and remarkable anti-rheumatic arthritis activity in vivo.The application of clinical trial for Ebosin has been made. The biosynthesis gene cluster(ste) of Ebosin consisting of 27 ORFs was identified in our lab.We have endeavored to elucidate the functions of the ste genes present in this cluster.Here we presented our study on ste5 and ste22.
     Based on the database analysis,the deduced product of ste5 showed high homology with glycosyltransferases,which may take responsibility in Ebosin biosynthesis at the first step.For understanding the function of ste5 in the biosynthesis of Ebosin,the gene was disrupted with a double crossover via homologous recombination.The proportions of monosaccharides in EPS-5m produced by the gene deficient strain Streptomyces sp. 139(ste5) were changeable especially in reducing galactose compared with Ebosin, while its antagonist activity for IL-1R was lost and Mw was apparently lower than Ebosin.
     The gene ste5 was cloned and expressed in E.coli.The recombinant protein with Mw~54 KD was purified,which was identified as a galactosyltransferase catalyzing the transfer of galactose-1-phosphate from UDP-galactose to the lipid carrier in the cytoplasmic membrane of Streptomyces sp.139.As a priming glycosyltransferases,Ste5 is functional at the first step during biosynthesis of Ebosin.
     Gene ste22 was also cloned and expressed in E.coli with pBV220 as vector.The recombinant protein Ste22 with Mw~35 KD was purified.The result of enzymatic study showed that the protein of ste22 was rhamnosyltransferase catalyzing the transference of rhamnose from TDP-rhamnose to a rhamnose-acceptor,a lipophilic carrier in the cytoplasmic membrane of Streptomyces sp.139.Gene ste22 plays essential role undoubtedly in biosynthesis of Ebosin.
     In short,the functions of ste5 and ste22 were identified during biosynthesis of Ebosin.The foundation has been laid on explaining the relationship between structure and biological activities in Ebosin and producing the novel derivates of Ebosin with activities.
引文
[1]Leigh J.A.and Coplin DL.Exopolysaccharides in plant-bacterial interactions.Annu.Rev.Microbiol,1992,46:307-346.
    [2]Whitfield C.and Valvano MA.Biosynthesis and expression of cell surface polysaccharides in gram-negative bacteria.Adv.Micro.Physiol,1993,35:135-246.
    [3]Sutherland I.W.Novel and established applications of microbial polysaccharides.Trends Biotechnol,1998,16:41-46.
    [4]Hosono A,Lee J,Ametani A,et al.Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4.Biosci Biotechnol Biochem,1997,61:312-316.
    [5]Kitazawa H,Toba T,Itoh T,et al.Antitumoral activity of slime-forming,encapsulated Lactococcus lactis subsp,cremoris isolated from Scandinavian ropy sour mick,'viili'.Anim Sci Technol,1991,62:277-283.
    [6]Nakajima H,Suzuki Y,Kaizu H,Hirota T.Cholesterol lowering activity of ropy fermented milk.J Food Sci,1992,57:1327-1329.
    [7]Sutherland IW.Biosynthesis and composition of Gram-negative bacterial extracellular and wall polysaccharide.Annu Rev Microbiol,1985,39:243-300.
    [8]Morona JK,Morona R,Paton JC.Characterization of the locus encoding the Streptomyces pneumoniae types 19F capsular polysaccharide biosynthetic pathway.Mol Microbiol,1997,23:751-763.
    [9]Mu(?)oz R,Mollerach M,L(?)pez R,et al.Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptomyces pneumoniae:formation of the binary encapsulated pneumococci and identification of crytic dTDP-rhamnose biosynthesis genes.Mol Microbiol,1997,25:79-92.
    [10]Sau S,Sun J,Lee CY.Molecular characterization and transcriptional analysis of type 1 capsule genes in Staphylococcus aureus.J Bacteriol,1997,179:1614-1621.
    [11]陈晶,吴剑波,刘叶民,徐桂芸.一种微生物来源的白细胞介素1受体拮抗剂-多糖139A的化学结构研究.药学学报,2001,36(10):787-789.
    [12]吴倩,吴剑波,李元.白细胞介素1受体拮抗剂139A的理化性质及体内活性研究.中国抗生素杂志,1999,24(6):401-403.
    [13]Wang LY,Li ST,Li Y.Identification and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces.FEMS Microbiol Lett,2003,220(1):21-7.
    [14]张天宇,中国协和医科大学博士论文,2005,5.
    [15]孙庆莉,中国协和医科大学博士论文,2006,5.
    [16]Hu Y.and Walker S.Remarkable structural similarities between diverse glycosyltransferases.Chem Btol.2002,9:1287-1296.
    [17]Taniguchi,N.,Honke,K.,and Fukuda,M.(2002) Handbook of glycosyl-transferase and Related Genes.Springer,Tokyo.
    [18]Wiggins CA.Munro S.Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases.Proc Natl Acad Sci,1998,95(14):7945-7950.
    [19]MaNeil D,Gewain KM,Ruby CL,et al.Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector.Gene,1992,111:61-68.
    [20]Bierman M,Logan R,O'Brien K.Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.Gene,1992,116:43-49.
    [21]萨姆布鲁克,弗里奇,曼尼阿蒂斯著,金冬雁,黎孟枫等译,分子克隆实验指南(第二版),科学出版社。
    [22]Kieser T,Bibb MJ,Buttner MJ,et al.Practical Streptomyces Genetics,2000,The John Innes Foundation.
    [23]奥斯伯,金斯顿,塞德曼等著,马学军,舒跃龙等译。精编分子生物学实验指南(第四版),科学出版社。
    [24]Birgitta Norling,Elena Zak.et al.2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis SP.PCC 6803.FEBS Letters.1998,436:189-192.
    [25]Palcic,Monica M and Sujino,Keiko.Assays for glycosyltransferases.Trends in Glycoscience and Glycotechnology,2001,13(72):361-370.
    [26]Sylvie G,May A,et al.A continuous spectrophotometric assay for glycosyltransferases.Analytical Biochem,1994,220:92-97.
    [27]D.K.Fitzgerald,B Colvin,et al.Enzymic assay for galactosyltransferase activity of lactose synthetase and α-lactalbumin in purified and crude systems.Analytical Biochem,1970,36:43-61.
    [28]Dang VD,Valens M,Bolotin-Fukuhara M,Daignan-Fornier B.Cloning of the ASN1 and ASN2 genes encoding asparagines synthetases in Saccharomyces cerevisiae:differential regulation by the CCAAT-box-binding factor.Mol Microbiol,1996,22(4):681-92.
    [29]Bentley SD,Chater KF,Cerdeno-Tarraga AM,et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2).Nature,2002,417 (6885):141-147.
    [30]Tettelin H,Masignani V,Cieslewicz MJ,et al.Complete genome sequence and comparative genomic analysis of an emerging human pathogen,serotype V Streptococcus agalactiae.Proc Natl Acad Sci,2002,99 (19):12391-12396.
    [31]Gray JX,Djordjevic MA,Rolfe BG Two genes that regulate exopolysaccharide production in Rhizobium sp.strain NGR234:DNA sequences and resultant phenotypes.J Bacteriol,1990,172 (1):193-203.
    [32]Wang LY,Li ST,Li Y.Isolation and Sequencing of Glycosyltransferase Gene and UDP-glucose Dehydrogenase Gene that are Located on a Gene Cluster Involved in a New Exopolysaccharide Biosynthesis in Streptomyces.DNA Sequence,2003,14(2):141-145.
    [33]Wang LY,Li ST,Guo LH,et al.Cloning and identification of the priming glycosyltransferase gene involved in exopolysaccharide 139A biosynthesis in Streptomyces.Yi Chuan Xue Bao,2003,30(8):723-9.
    [34]Jolly L,Vincent SJ,Duboc P,et al.Exploiting expolysaccharides from lactic acid bacteria.Antonie Van Leeuwenhoek,2002,82(l-4):367-74.
    [35]Dabour N,LaPointe G Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp.Cremoris SMQ-461.Appl Environ Microbiol,2005,71(11):7414-25.
    [36]Peant B,LaPointe G,Gilbert C,et al.Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus.Microbiology,2005,151(6):1839-51.
    [37]Becker BU,Kosch K,Parniske M,et al.Exopolysaccharide(EPS) synthesis in Bradyrhizobium japonicum:sequence,operon structure and mutational analysis of an exo gene cluster.Mol Gen Genet,1998,59(2):161-71.
    [38]Reube TL,Walker GC.Biosynthesis of succinoglycan,a symbiotically important exopolysaccharide of Rhizobium melioti.Cell,1993,74:269-280.
    [39]Wang L,Liu D,Reeves P.C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis.J Bacteriol,1996,178:2598-2604.
    [40]Van Kranenburg R,Marugg JD,van Swam II,et al.Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis.Mol Microbiol,1997,24:387-397.
    [41]白利平,中国协和医科大学博士论文,2007,5.
    [42]Looijesteijn,P.J.et al.Influence of different substrate limitations on the yield,composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp.Cremoris in continuous cultures.J.Appl.Microbiol.2000,89:116-122.
    [43]Bettenbrock K,Alpert CA.The gal genes for the Leloir pathway of Lactobacillus casei 64H.Appl Environ Microbiol.1995,25:361-371.
    [44]Van Kranenburg R,Vos HR,van Swam II,et al.Functional analysis of glycosyltransferase genes from Lactococcus lactis and other Gram-positive cocci:Complementation,expression,and diversity.J Bacteriol,1999,181:6347-6353.
    [45]Luke J.Alderwick,et al.Identification of a novel arabinofuranosyltransferase(AftA)involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis.J.Biol.Chem.,2006,281(23):15653-15661.
    [46]Kim NY,Kim HG,et al.Expression and Characterization of Human N-Acetylglucosaminyltransferases and alpha2,3-Sialyltransferase in Insect Cells for In Vitro Glycosylation of Recombinant Erythropoietin.J Microbiol Biotechnol.2008,18(2):383-91.
    [47]Finan TM,Weidner S,Wong K,et al.The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.Proc Natl Acad Sci,2001,98(17):9889-9894.
    [48]Ogata H,Audic S,Renesto-Audiffren P,et al.Mechanisms of evolution in Rickettsia conorii and R.Prowazekii.Science.2001,293(5537):2093-2098.
    [49]De Vuyst L,Degeest B.Heteropolysaccharides from lactic acid bacteria.FEMS Microbiol Rev.1999,23(2):153-77.
    [50]Paula A,Videira,et al.Functional and topological analysis of the Burkholderia cenocepacia priming glucosyltransferase BceB,involved in the biosynthesis of the Cepacian exopolysaccharide.J Bacteriol.2005,187(14):5013-18.
    [51]Van Kranenburg R,van Swam II,Marugg JD,et al.Exopolysaccharide biosynthesis in Lactococcus lactis NIZO B40:functional analysis of the glycosyltransferase genes involved in synthesis of the polysaccharide backbone.J Bacteriol.1999,181(1):338-40.
    i
    [52]Glucksmann MA,Reuber TL,Walker GC.Family of the glycosyltransferases needed for the synthesis of succinoglycan by Rhizobium meliloti.J Bacteriol.1993,175(21):7033-44.
    [53]McNel M,Daffe M,Brennan PJ.Evidences for the nature of the links between the arabinogalatan and peptiglycan of mycobacterial cell walls.J Biol Chem.1991,265(30):18200-6.
    [54]Mils JA,Motika K,Jucker M,Wu HP,Uhlik BC,Stern RJ,et al.Inactivation of the mycobacterial rhamnosyltransferases,which is need for the formations of the arabinogalan-peptidoglycan linker,leads to irreversible loss of viability.J Biol Chem.2004,279(42):43540-6.
    [1]Hu Y.and Walker S.Remarkable structural similarities between diverse glycosyltransferases.Chem Btol.2002,9:1287-1296.
    [2]Taniguchi,N.,Honke,K.,and Fukuda,M.(2002) Handbook of glycosyl-transferase and Related Genes.Springer,Tokyo.
    [3]Wiggins CA.Munro S.Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases.Proc Natl Acad Sci.1998,95(14):7945-7950.
    [4]Campbell,J.A.,Davies,G.J.,Bulone,V.,and Henrissat,B.A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities.Biochem.1997,326:929-939.
    [5]Coutinho,P.M.,Deleury,E.,Davies,G.J.,and Henrissat,B.An evolving hierarchical family classification for glycosyltransferases.J Mol Biol.2003,328:307-317.
    [6]Yamamoto,F.,Clausen,H.,White,T.,et al.Molecular genetic basis of the histo-blood group ABO system.Nature.1990,345:229-233.
    [7]Davies,G.and Henrissat,B.Structures and mechanisms of glycosylhydrolases.Structure.1995,3:853-859.
    [8]Franco,O.L.and Rigden,D.J.Fold recognition analysis of glycosyltransferase families:further members of structural superfamilies.Glycobiology.2003,13:707-712.
    [9]Liu,J.and Mushegian,A.Three monophyletic superfamilies account for the majority of the known glycosyltransferases.Protein Sci.2003,12:1418-1431.
    [10]Breton,C.,Bettler,E.,Joziasse,D.H.,et al.Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases.J Biochem.(Tokyo),2003,123:1000-1009.
    [11]Flint,J.,Taylor,E.,Yang,M.,et al.Structural dissection and high-throughput screening of mannosylglycerate synthase.Nat Struct Mol Biol.2005,12:608-614.
    [12]Colley K.J.Golgi localization of glycosyltransferases:more questions than answers.Glycobiology.1997,7:1-13.
    [13]Legaigneur P,Breton C,El Battari A,et al.Exploring the acceptor substrate recognition of the human beta-galactoside alpha 2,6-sialyltransferase.J Biol Chem.2001,276:21608-21617.
    [14]Vrielink A.R(u|¨)ger W,Driessen HP.and Freemont PS.Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose.EMBO.1994,13:3413-3422.
    [15]Lesk,A.M.NAD-binding domains of dehydrogenases.Curr Opin Struct Biol.1995,5:775-783.
    [16]Bourne Y.Henrissat B.Glycoside hydrolases and glycosyltransferases:families and functional modules.Curr OPin Struct Biol.2001,11:593-600.
    [17]Charnock,S.J.and Davies,G.J.Structure of the nucleotide-diphospho-sugar transferase,SpsA from Bacillus subtilis,in native and nucleotide-complexed forms.Biochemistry,1999,38:6380-6385.
    [18]Chiu,C.P.,Watts,A.G.,Lairson,L.L.,et al.Structural analysis of the sialyltransferase Cst Ⅱ from Campylobacter jejuni in complex with a substrate analog.Nat Struct Mol Biol.2004,11:163-170.
    [19]Brown,K.,Pompeo,F.,Dixon,S.,et al.Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli:a paradigm for the related pyrophosphorylase superfamily.EMBO.1999,18:4096-4107.
    [20]Campbell,R.E.,Mosimann,S.C.,Tanner,M.E.,and Strynadka,N.C.The structure of UDP-N-acetylglucosamine 2-epimerase reveals homology to phosphoglycosyl-transferases.Biochemistry.2000,39:14993-15001.
    [21]Wrabl,J.and Grishin,N.Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily.J Mol Biol.2001,314:365-374.
    [22]Breton,C.and Imberty,A.Structure-function studies of glycosyltransferases.Curr Opin Struct Biol.1999,9:563-571.
    [23]Persson,K.,Ly,H.D.,Dieckelmann,M.,et al.Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs.Nat Struct Biol.2001,8:166-175.
    [24]Tarbouriech,N.,Charnock,S.J.,and Davies,G.J.Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA:a comparison with related NDP-sugar glycosyltransferases.J Mol Biol.2001,314:655-661.
    [25]Boix,E.,Zhang,Y.,Swaminathan,G.J.,Brew,K.,and Acharya,K.R.Structural basis of ordered binding of donor and acceptor substrates to the retaining glycosyltransferase alpha-1,3-galactosyltransferase.J Biol Chem.2002,277:28310-28318.
    [26]Pedersen,L.C.,Darden,T.A.,and Negishi,M.Crystal structure of beta-1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA.J Biol Chem.2002,277:21869-21873.
    [27]Ramakrishnan,B.,Balaji,P.V.,and Qasba,P.K.Crystal structure of beta-l,4galactosyltransferase complex with UDP-Gal reveals an oligosaccharide binding site.J Mol Biol.2002,318:491-502.
    [28]Kakuda,S.,Shiba,T.,Ishiguro,M.,et al.Structural basis for acceptor substrate recognition of a human glucuronyltransferase,GlcAT-P,an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1.J Biol Chem.2004,279:22693-22703.
    [29]Boix,E.,Swaminathan,G.J.,Zhang,Y.,et al.Structure of UDP complex of UDP-galactose:P-galactoside-a-1,3-galactosyltransferase at 1.53A resolution reveals a conformational change in the catalytically important C-termirmsJ Biol Chem.2001,276:48608-48614.
    [30]Qasba,P.K.,Ramakrishnan,B.,and Boeggeman,E.Substrate induced conformational changes in glycosyltransferases.Trends Biochem Sci.2005,30:53-62.
    [31]Petrova,P.,Koca,J.,and Imberty,A.Potential energy hypersurfaces of nucleotide-sugars:Ab initio calculations,force-field parametrization,and exploration of the flexibility.J Am Chem Soc.1999,121:5535-5547.
    [32]Godzik,A.Fold recognition methods.Methods Biochem.Anal.2003,44:525-546.
    [33]Breton,C,Heissigerova,H.,Jeanneau,C,Moravcova,J.,and Imberty,A Comparative aspects of glycosyltransferases.Biochem Soc Symp.2002,69:23-32.
    [34]Kelley,L.A.,MacCallum,R.M.,and Sternberg,M.J.E.Enhanced genome annotation using structural profiles in the program 3D-PSSM-/ Mol Biol.2000,299:499-520.
    [35]Kikuchi,N.,Kwon,Y.D.,Gotoh,M.,and Narimatsu,H.Comparison of glycosyltransferase families using the profile hidden Markov model.Biochem Biophys Res Commun.2003,310:574-579.
    [36]Altschul,S.F.,Madden,T.L.,Schaffer,A.A.,et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs.Nucleic Acids Res.1991,25:3389-3402.
    [37]Eddy,S.R.Profile hidden Markov models.Bioinformatics.1998,14:755-763.
    [38]Wimmerova,M.,Engelsen,S.B.,Bettler,E.,Breton,C,and Imberty,A.Combining fold recognition and exploratory data analysis for searching for glycosyltransferases in the genome of Mycobacterium tuberculosis.Biochimie.2003,85:691-700.
    [39]Rosen,M.L.,Edman,M.,Sjostrom,M.,and Wieslander,A.Recognition of fold and sugar linkage for glycosyltransferases by multivariate sequence analysis.J Biol Chem.2004,279:38683-38692.
    [40]Gaboriaud,C,Bissery,V.,Benchetrit,T.,and Mornon,J.P.Hydrophobic cluster analysis:an efficient way to compare and analyse amino acid sequences.FEBSLett.1987,224:149-155.
    [41]Gastinel,L.N.,Bignon,C,Misra,A.K.,et al.Bovine al,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases.EMBOJ.2001,20:638-649.
    [42]Heissigerova,H.,Breton,C,Moravcova,J.,and Imberty,A.Molecular modeling of glycosyltransferases involved in the biosynthesis of blood group A,blood group B,Forssman and iGb3 antigens and their interaction with substrates.Glycobiology.2004,13:377-386.
    [43]Patenaude,S.I.,Seto,N.O.,Borisova,S.N.,et al.The structural basis for specificity in human ABO (H) blood group biosynthesis.Nat Struct Biol.2002,9:685-690.
    [44]Mor(?)ra,S.,Imberty,A.,Aschke-Sonnenbron,U.,Rüger,W.,and Freemont,P.S.T4 phage beta-glucosyltransferase:substrate binding an proposed catalytic mechanism.J MolBiol.1999,292:717-730.
    [45]Lariviere,L.,Gueguen-Chaignon,V.,and Morera,S.Crystal structures of the T4 phage beta-glucosyltransferase and the D100A mutant in complex with UDP-glucose:glucose binding and identification of the catalytic base for a direct displacement mechanism.JMolBiol.2003,330:1077-1086.
    [46]Edman,M.,Berg,S.,Storm,P.,et al.Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae.J Biol Chem.2003,278:8420-8428.
    [47]Hans,J.,Brandt,W.,and Vogt,T.Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-Oglucosyltransferase from Dorotheanthus bellidiformis.Plant J.2004,39:319-333.
    [48]Thorsee,K.S.,Bak,S.,Olsen,C.E.,et al.Determination of catalytic key amino acids and UDP-sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor.molecular modeling substantiated by site specific mutagenesis and biochemical analyses.Plant Physiol.2005,139 (2):664-73.
    [49]Ramakrishnan,B.and Qasba,P.K.Crystal structure of lactose synthase reveals a large conformational change in its catalytic component the beta 1,4-galactosyltransferase-I.J Mol Biol.2001,310:205-218.
    [50]Gunasekaran,K.and Nussinov,R.Modulating functional loop movements:the role of highly conserved residues in the correlated loop motions.Chembiochem.2004,5:224-230.
    [51]Snajdrova,L.,Kulhanek,P.,Imberty,A.,and Koca,J.Molecular dynamics simulations of glycosyltransferase LgtC.Carbohydr Res.2004,339:995-1006.
    [52]Lairson,L.L.and Withers,S.G.Mechanistic analogies amongst carbohydrate modifying enzymes.Chem Commun.2004,20:2243-2248.
    [53]Murray,B.W.,Takayama,S.,Schultz,J.,and Wong,C.H.Mechanism and specificity of human alpha-1,3-fucosyltransferase V.Biochemistry.1996,35:11183-11195.
    [54]Ramakrishnan,B.,Boeggeman,E.,Ramasamy,V.,and Qasba,P.K.Structure and catalytic cycle of beta-l,4-galactosyltransferase.CWr Opin Struct Biol.2004,14:593-600.
    [55]Lairson,L.L.,Chiu,C.P.,et al.Intermediate trapping on a mutant retaining alphagalactosyltransferase identifies an unexpected aspartate residue.J Biol Chem.2004,279:28339-22844.
    [56]Klein,H.W.,Im,M.J.,and Palm,D.Mechanism of the phosphorylase reaction.Utilization of D-gluco-hept-1-enitol in the absence of primer.Eur J Biochem.1986,157:107-114.
    [57]Tvaroska,I.Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC.Carbohydr Res.2004,339:1007-1014.
    [58]Raab,M.,Kozmon,S.,and Tvaroska,I.Potential transition-state analogs for glycosyltransferases.Design and DFT calculations of conformationa behavior.Carbohydr Res.2005,340:1051-1057.
    [59]Gibson,R.P.,Tarling,C.A.,Roberts,S.,et al.The donor subsite of trehalose-6-phosphate synthase:binary complexes with UDP-glucose and UDP2-deoxy-2-fluoro-glucose at 2A resolution.J Biol Chem.2004,279:1950-1955.
    [60]Plante OJ.Palmacci ER and Seeberger PH.Automated solid-phase synthesis of oligosaccharides.Science.2001,291(5508):1523-7.
    [61]Ohrlein R,Ernst B and Berger EG.Galactosylation of non-natural glycosides with human beta-D-galactosyltransferase on a preparative scale.Carbohydr Res.1992,236:335-8.
    [62]Chen X.Fang J,Zhang J,et al.Sugar nucleotide regeneration beads (superbeads):a versatile tool for the practical synthesis of oligosaccharides.J Am Chem Soc.2001,123:2081-2082.
    [63]Jolly L and Stingle F.Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria.Int Dairy J.2001,11:733-745.
    [64]van Kranenburg R,Vos HR,van Swaam II,et al.Functionnal analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci:complementation,expression,and diversity.JBacteriol.1999,181:6347-6353.
    [65]Lamothe GT,Jolly L,Mollet B and Stingele F.Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp.Bulgaricus.Arch Microbiol.2002,178:218-228.
    [66]Bouazzaoui K and Lapointe G.Use of antisense RNA to modulate glycosyltransferase gene expression and exopolysaccharide molecular mass in Lactobacillus rhamnosus.J Microbiol Methods.2006,65(2):216-25.
    [67]Janczarek M and Skorupska A.Exopolysaccharide synthesis in Rhizobium leguminosarum bv.trifolii is related to various metabolic pathways.Res Microbiol.2003,154(6):433-42.
    [68]Guerreiro N,Ksenzenko VN,et al.Elevated levels of synthesis of over 20 proteins results after mutation of the Rhizobium leguminosarum exopolysaccharide synthesis gene pssA.JBacteriol.2000,182(16):4521-32.
    [69]Skorupska A,Bialek U,et al.Two types of nodules induced on Trifolium pratense by mutants of Rhizobium leguminosarum bv.trifolii deficient in exopolysaccharide production.J Plant Physiol.1995,147:93-100.
    [70]Ling-yan Wang,Shi-tao Li,Yuan Li.Identification and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces.FEMS Microbiology Letters.2003,220(l):21-27.
    [71]Stingle F,Neeser J-R and Mollet B.Identification of the eps(exopolysaccharide) gene cluster from Streptomyces thermophilus.J Bacteriol.1996,178:1680-1690.
    [72]Luke J.Alderwick,Mathias Seidel,et al.Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis.J Biol Chem.2006,281(23):15653-15661.
    [73]Chunguang Wang,Vuokko Kovanena,et al.The glycosyltransferase activities of lysyl hydroxylase 3 (LH3) in the extracellular space are important for cell growth and viability.J Cell Mol Med.2008 Feb 24[Epub ahead of print]
    [74]Myllyla R,Wang C,Heikkinen J,et al.Expanding the lysyl hydroxylase toolbox:new insights into the localization and activities of lysyl hydroxylase 3 (LH3).J Cell Physiol.2007,212:323-9
    [75]Okajima T,Matsuura A and Matsuda T.Biological functions of glycosyltransferase genes involved in O-fucose glycan synthesis.J Biochem.2008,144,1-6.
    [76]Stingele F,Newell JW and Neeser JR.Unraveling the function of glycosyltransferases in Streptococcus thermophilus Sfi6.JBacteriol.1999,181(20):6354-60.
    [77]Welman AD and Maddox IS.Exopolysaccharides from lactic acid bacteria:perspectives and challenges.Trends Biotechnol.2003,21(6):269-74.
    [78]Minic Z,Marie C,et al.Control of EpsE,the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus,by EpsD tyrosine kinase.J Bacteriol.2007,189(4):1351-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700