核酸酶TatDN1和磷酯酸磷酸酶PAP2d、PAP2L2的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过分析肝癌基因芯片,我们发现了一个显著上调表达的基因,确定其为TatDN1基因。保守功能域分析中,TatDN1被预测为一个核酸酶。在已有研究中表明肿瘤细胞内常存在着特定染色体区段的缺失,造成大量基因表达失调,从而将促进肿瘤的生成及发展。核酸酶是生命体核酸代谢、消化酶,可广泛或特异的作用细胞内核酸。病理条件下,过表达的核酸酶存在破坏基因结构作用的可能性。TatDN1作为核酸酶在肝癌中上调表达引起了我们对其关注。实验及信息学揭示TatDN1可广泛表达于多种组织,尤其在肿瘤组织细胞内可侦测到较高表达水平。其后,TatDN1在肝癌细胞株中的广泛上调表达被使用定量RT-PCR确证。所检测的4种不同来源肝癌细胞株中相对正常肝细胞L02有3株TatDN1是上调表达,但在HepG-2细胞中并未有显著差异,提示TatDN1基因与肿瘤的关系并不是简单的相关,可能参与癌症发生的不同发育阶段或与发病原因不同的特异型癌症有关。TatDN1在肿瘤组织和细胞内的上调高表达,使其成为潜在的肿瘤诊断的标志基因。为阐明TatDN1基因功能及理解该基因的生理、病理意义,我们成功克隆了人TatDN1基因、纯化到重组TatDN1蛋白。首次,对人TatDN1蛋白进行了较详细的酶学、生化鉴定。证实了TatDN1具有金属离子(Mg~(2+)、Ca~(2+))依赖的双链和单链DNA水解活性,其最优活性在酸性pH 4.5左右,这一活性特征区别于已发现的DNaseⅠ和DNaseⅡ类型酶。此外,TatDN1的三维模型被通过Threading建模构建。基于此模型和序列比对数据,我们选取了在氨基酸序列中绝对保守且在三维空间上比邻的几个氨基酸进行了定点突变研究。当TatDN1酶的E112,H149,H174,E220,D222位点分别被突变为A后,发现活性将显著降低。表明了这些位点对维持TatDN1酶学活性至关重要性,可能来自活性位点区。TatDN1的亚细胞定位在通常情况下是全细胞分布。但在应对氧化压力刺激时,TatDN1在肝癌QGY细胞内是更多地集中到细胞核,提示可能出现有核转位现象,TatDN1可能将作用于核内DNA水解。肝癌细胞株QGY中过表达TatDN1造成S期细胞减少,而G0-G1期细胞增多,提示细胞分裂可能更多停滞在G1检测点。而TatDN1过表达却未对检测的细胞凋亡产生明显的影响,推测TatDN1在肿瘤中的上调可能是肿瘤发展中的结果。而要对肿瘤的上调表达TatDN1的生理、病理意义深入理解,仍需要大量实验研究工作来阐明。这里我们报道一个新的酸性、金属离子依赖的人类核酸酶TatDN1的起始研究。TatDN1作为DNase可能在肝癌中受到特殊的调控而发挥其生理作用。
     磷脂酸磷酸酶Ⅱ(PAP2)作为重要的整合膜磷酸酶,不仅在脂代谢中发挥作用,而且在生命体内对重要的脂级联信号转导起到关键的消减、转换调控作用。这里我们对先前实验室已克隆的一个新的人类PAP2d基因开展了初步的研究。对PAP2d的肿瘤细胞表达潜进行了初步的调查,以期能进一步对比正常组织细胞表达谱得到PAP2d特定病理条件下功能的提示。PAP2d在脑胶质瘤细胞U251和血癌细胞Jurkat,宫颈癌上皮Hela中表达水平要高于检测的其他细胞株,而在胶质瘤细胞C6中35个循环PCR后未能检测到PAP2d。有关PAP2d在肿瘤中表达的情况需进一步扩大样本分析规模,才可能得出有统计意义的结果。在PAP2d的亚细胞定位分析中,绿色荧光融合蛋白EGFP-PAP2d主要分布于HEK293细胞的胞质,提示了PAP2d可能在细胞质中的内质网或高尔基体内被修饰后,才将转运到细胞的质膜系统上发挥磷脂酸磷酸酶作用。为对PAP2d进行酶学和结构功能研究,获得大量提纯的蛋白是必要的。但遗憾的是,我们在所使用的原核过表达系统中并没够能获得重组蛋白的表达。
     除了真核PAP2磷酸酶,细菌中也发现了大量的膜结合的PAP2相似蛋白(PAP2-like protein)。作为真核PAP2蛋白的同源物,这些细菌的膜蛋白同样具有磷脂酸磷酸酶活性。膜整合PAP2磷酸酶具有重要的生物学作用。但相对而言PAP2家族酶结构和功能关系研究较少。主要的原因之一是PAP2家族酶是整合膜蛋白且低表达,妨碍了PAP2蛋白的大量提纯和相关研究。这里我们依靠筛选嗜热菌的基因组文库,成功克隆了一个热稳定的PAP2同源物编码基因,命名为PAP2L2。其后我们对这个膜结合的新的PAP2相似蛋白进行了成功表达、纯化和生化、酶学鉴定。作为PAP2的紧密同源物,提纯的PAP2L2蛋白为进一步进行PAP2家族蛋白结构和功能深入研究提供了基础。此外作为一个热稳定的膜蛋白,对PAP2L2蛋白进行深入的研究还将有助于我们对整合膜蛋白的热稳定性机理的理解。
Nucleases are a class of most important hydrolases in organisms.So far,they are believed to take important roles in different aspects of basic genetic mechanisms, including their participation in mutation avoidance,gene repair,DNA replication, recombinantion,and apoptotic chromatin degradation.By comparing gene expression profiles of hepatocellular carcinoma(HCC) with those of corresponding noncancerous liver in cDNA microarry,we identified an up-regulated gene-TatD domain containing 1 (TatDN1).In following analysis,TatDN1 was predicted to be as a nuclease.Based on informatics and experiment analysis,TatDN1 is ubiquitously distributed in many human tissues and the expression is high in several tumor tissues.The up-regulated of TatDN1 in HCC cell lines was confirmed by quantitative RT-PCR.The result indicated that TatDN1 was up-regulated in 3 HCC cell lines than that in liver cell L02,but is not so in HepG-2 cell line,which implying that up-regulation of TatDN1 in HCC is depended on HCC types and HCC development.The high level expression in HCC make TatDN1 becomes a potential biomarker for HCC diagnosis.To address the TatDN1 function,we initially biochemical characterized TatDN1 by using a purified recombinant TatDN1.We confirmed the predicted DNase activity of TatDN1,which is metal-dependent and acid DNsae(Mg~(2+),Ca~(2+),opt pH 4.5) hydrolyzing single or double strand DNA.And a 3D model of TatDN1 was constructed by threading algorithm.Based on this model and sequence alignment,we analyzed several high-conserved amino acids in TatDN1 by site-directed mutation.The result showed that TatDN1 mutant protein in either of E112A, H149A,H174A,E220A,and D222A would lose its majority activity,indicating these amino acids from its activity sites.Furthermore,TatDN1 is detected ubiquitously in cell nuclear and cytoplasm by EGFP-TatDN1 expression.However,a nuclear translocation for EGFP-TatDN1 in QGY cell was found when cells were treated with 0.2 mM H_2O_2. Moreover,apoptosis of the over-expressed TatDN1 cell lines appeared to be similar to that of cells as control,implying that TatDN1 protein could have no significant effect on cell apoptosis.However,cell cycle analysis of over-expressed TatDN1 in QGY cell showed that S-phase cells was decreased and more cells entered into Gl-phase,implying over-expression of TatDN1 could partially inhibit cell proliferation.Here,we reported initial characterizations of a novel HCC up-regulated TatDN1 gene,which could be involved in hepatocarcinogenesis as a DNase.
     Most members in type 2 phosphatidic acid phosphatase(PAP2) superfamily are integral membrane phophatases involved in the lipid related signal transduction and metabolism.In previously,a novel PAP2 family member(named PAP2d) from Homo sapiens was reported by our lab.In this study,we further investigated PAP2d subcellular location and overexpression effect to cell cycle.Moreover,we also examined its tumor cell lines expression pattern.In order to understand PAP2 enzyme molecular mechanism, we expected to obtain a large scale purified PAP2d using E.coli expression system. Regretfully,we failed to over-express recombinant PAP2d since heterogously membrane protein expression hardness.However,a gene encoding a PAP2-like protein from thermophilic Geobacillus toebii T-85,termed PAP2L2,was successfully cloned, expressed and purified in Escherichia coli.The deduced PAP2L2 protein contains 212 amino acids and shows a limited homology to other known PAP2s,especially at conserved phosphatase motifs and similar six-transmembrane topology structure.The purified recombinant PAP2L2 is catalytically active and highly stable,making it ideal as a candidate on which to base further PAP2 structure/function studies.
引文
Bernardi G, Griffe M, Appella E. Isolation and characterization of spleen acid deoxyribonuclease. Nature. 1963; 198:186-187.
    Borah B, Chen CW, Egan W, Miller M, Wlodawer A, Cohen JS. Nuclear magnetic resonance and neutron diffraction studies of the complex of ribonuclease A with uridine vanadate, a transition-state analogue. Biochemistry. 1985; 24:2058-2067.
    Cal S, Tan KL, McGregor A, Connolly BA. Conversion of bovine pancreatic DNase I to a repair endonuclease with a high selectivity for abasic sites. EMBO J. 1998;17: 7128-7138.
    Campbell RL, Petsko GA. Ribonuclease structure and catalysis: crystal structure of sulfate-free native ribonuclease A at 1.5-A resolution. Biochemistry. 1987; 26: 8579-8584.Chem. 1999; 274, 37450-37454.
    Counis MF, Torriglia A, Acidic DNases and their interest among apoptotic endonucleases. Biochimie 2006;88:1851-1858.
    David L Nelson, Michael M.cox, Lehninger Principles of Biochemistry, 4~(th) edn. W.H.Freeman, New York, 2004.
    Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA, Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 1980;65:404-411.
    Demaurex N. pH homeostasis of cellular organelles. News PhysiolScL 2002; 17:1-5.
    Doherty AJ, Worrall AF, Connolly BA, Mutagenesis of the DNA binding residues in bovine pancreatic DNase 1: an investigation into the mechanism of sequence discrimination by a sequence selective nuclease. Nucleic Acids Res. 1991; 19:6129-6132.
    Drake WP, Schmukler M, Pendergrast WJ Jr, Davis AS, Lichtenfeld JL, Mardiney MR Jr, Abnormal profile of human nucleolytic activity as a test for cancer. J Natl Cancer Inst. 1975; 55:1055-9
    Durward A, Forte V, Shemie SD. Resolution of mucus plugging and atelectasis after intratracheal rhDNase therapy in a mechanically ventilated child with refractory status asthmaticus. Crit Care Med. 2000; 28:560-562.
    Evans CJ, Aguilera RJ, DNase Ⅱ: genes, enzymes and functioⅡn. Gene. 2003; 322:1-5.
    Falcone RA Jr, Stern LE, Kemp CJ, Shin CE, Erwin CR, Warner BW, Apoptosis and the pattern of DNase I expression following massive small bowel resection. J Surg Res. 1999;84:218-222.
    Ho TY, Wu SL, Hsiang CH, Chang TJ, Hsiang CY, Identification of a DN A-binding domain and an active site residue of pseudorabies virus DNase. Biochem J. 2000; 346:441-445.
    Howell DP, Krieser RJ, Eastman A, Barry MA, DeoxyribonucleaseⅡ is a lysosomal barrier to transfection.Mol Ther.2003;8:957-963.
    Krieser RJ,MacLea KS,Longnecker DS,Fields JL,Fiering S,Eastman A,Deoxyribonuclease Ⅱalpha is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality.Cell Death Differ.2002;9:956-962.
    Lechardeur D,Drzymala L,Sharma M,Zylka D,Kinach R,Pacia J,Hicks C,Usmani N,Rommens JM,Lukacs GL,Determinants of the nuclear localization of the heterodimeric DNA fragmentation factor(ICAD/CAD).J Cell Biol.2000;150:321-334.
    Liao TH,The Subunit Structure and Active Site Sequence of Porcine Spleen Deoxyribonuclease.J Biol Chem.1985;260:10708-10713.
    Liu YF,Liao TH,Mechanism for inhibition of deoxyribonuclease activity by antisera.J Protein Chem.1997;16:75-82.
    Maruoka K,Yamanaka M,Misago M,Nakata K,Tsukada J,Nagata K,Sato T,Mori N,Oda S,Chiba S,Clinical significance of determination of serum RNase activities in patients with eosinophilia--Ⅱ.Measurements using polyuridylic acid and polycytidylic acid as substrates.Rinsho Byori.1990;38:1161-11616
    Mcllroy D,Tanaka M,Sakahira H,Fukuyama H,Suzuki M,Yamamura K,Ohsawa Y,Uchiyama Y,Nagata S,An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes.Genes Dev.2000;14:549-558.
    Melzer MS,Influence of carcinogens and group specific compounds on DNAse Ⅱ.Can J Biochem.1969;47:987-989.
    Morikawa N,Kawai Y,Arakawa K,Kumamoto T,Miyamori I,Akao H,Kitayama M,Kajinami K,Lee JD,Takeshita H,Kominato Y,Yasuda T,Serum deoxyribonuclease I activity can be used as a novel marker of transient myocardial ischemia:results in vasospastic anginapectoris induced by provocation test.Eur Heart J.2007;28:2992-2997.
    Napirei M,Karsunky H,Zevnik B,Stephan H,Mannherz HG,M(o|")r(o|")y T,Features of systemic lupus erythematosus in DNasel-deficient mice.Nature Genet.2000;25,177-181.
    Nishimoto S,Kawane K,Watanabe-Fukunaga R,Fukuyama H,Ohsawa Y,Uchiyama Y,Hashida N,Ohguro N,Tano Y,Morimoto T,Fukuda Y,Nagata S,Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens.Nature.2003;424:1071-1074.
    Odaka C,Mizuochi T.Role of macrophage lysosomal enzymes in the degradation of nucleosomes of apoptotic cells.J Immunol.1999;163:5346-5352.
    Polzar B,Zanotti S,Stephan H,Rauch F,Peitsch MC,Irmler M,Tschopp J,Mannherz HG.
    Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur J Cell Biol. 1994; 64:200-210.
    Price PA, Liu TY, Stein WH, Moore S, Properties of chromatographically purified bovine pancreatic deoxyribonuclease. J Biol Chem. 1969; 244:917-923.
    Price PA, Stein WH, Moore S, Effect of divalent cations on the reduction and re-formation of the disulfide bonds of deoxyribonuclease. J Biol Chem. 1969; 244:929-932.
    Prince WS, Baker DL, Dodge AH, Ahmed AE, Chestnut RW, Sinicropi DV, Pharmacodynamics of recombinant human DNase I in serum. Clin Exp Immunol. 1998; 113: 289-296.
    Puterman AS, Weinberg EG, rhDNase in acute asthma. Pediatr PulmonoL 1997; 23:316-317.
    Reddi KK, Holland JF. Elevated serum ribonuclease in patients with pancreatic cancer._Proc Natl AcadSci USA. 1976 Jul;73(7):2308-10.
    Samejima K and Earnshaw WC, Trashing the genome: the role of nucleases during apoptosis. Nature. 2005; 6: 677-688
    Shack J, The influence of sodium and magnesium ions on the action of deoxyribonuclease Ⅱ. J Biol Chem. 1959; 234:3003-3006.
    Suck D, Crystallization and preliminary crystallographic data of bovine pancreatic deoxyribonuclease UMolBiol. 1982; 162:511-513.
    Tullis R, Price PA, The effect of calcium and magnesium on the ultraviolet spectrum of bovine pancreatic deoxyribonuclease A. J Biol Chem. 1974; 249:5033-5037.
    Wang CC, Lu SC, Chen HL, Liao TH, Porcine spleen deoxyribonuclease Ⅱ. Covalent structure, cDNA sequence, molecular cloning, and gene expression. J Biol Chenu1998 273:17192-17198.
    Weston SA, Lahm A, Suck D, X-ray structure of the DNase Ⅰ-d (GGTATACC) 2 complex at 2.3 A resolution. J Mol Biol. 1992; 226:1237-1256.
    Wiberg JS, On the mechanism of metal activation of deoxyribobuclease I. Arch Biochem Biophys. 1958; 73:337-358.
    Wolf BB, Schuler M, Echeverri F, Green DR, Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J Biol Chem. 1999; 274:30651 -30656.
    Wyllie AH, Morris RG, Smith AL, Dunlop D, Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 1984;142:67-77.
    Yasuda T, Kawai Y, and Ueki K. Clinical application of DNase Ⅰ, a genetic marker already used for forensic identification.Legal Med.2005;7:274-277.
    Zhang J,Lee H,Agarwala A,Wen LD & Xu M,DNA fragmentation factor 45 mutant mice exhibit resistance to kainic acid-induced neuronal cell death.Biochem Biophys Res Commun.2001;285,1143-1149.
    Zhang,J.,Wang,X.,Bove,K.E.& Xu,M.DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wild-type control cells.J Biol Chem.1999;274:37450-37454
    沈同、王镜岩,生物化学,高等教育出版社出版.北京.1991.
    郑宇哲、陈威戎、廖大修.脱氧核醣核酸酶之结构与功能.生物医学.2008;1:199-206
    Alderton,F.,Darroch,P.,Sambi,B.,McKie,A.,Ahmed,I.S.,Pyne,N.and Pyne,S.G-protein-coupled receptor stimulation of the p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate phosphatases 1,la,and 2 in human embryonic kidney 293 cells.J Biol Chem 2001;276:13452-13460
    An S,Zheng Y,Bleu T._Sphingosine 1-phosphate-induced cell proliferation,survival,and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5.J Biol Chem.2000;75:288-96.
    Brindley DN,English D,Pilquil C,Buri K,Ling ZC.Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids.Biochim Biophys.Acta.2002;1582:33-44
    Brindley DN,Waggoner DW.Phosphatidate phosphohydrolase and signal transduction.Chem Phys Lipids.1996;80:45-57.
    Brindley,D.N.Intracellular translocation of phosphatidate phosphohydrolase and its possible role in the control of glycerolipid synthesis.Prog Lipid Res.1984;23:115-133
    Brindley,D.N.Lipid phosphate phosphatases and related proteins:signaling functions in development,cell division,and cancer.J.Cell.Biochem.2004;92:900-912
    Burnett C and Howard K.Fly and mammalian lipid phosphate phosphatase isoforms differ in activity both in vitro and in vivo.EMBO Rep.2003;4:793-799
    Carman GM,Han GS.Roles of phosphatidate phosphatase enzymes in lipid metabolism.Trends Biochem Sci.2006;31:694-9.
    Carman,G.M.and Henry,S.A.,Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes.Prog.Lipid Res.1999,38:361-399
    English D,Cui Y,Siddiqui RA.,Messenger functionso f phosphatidic acid.Chem Phys Lipids 1996;80:117-132
    Escalante-Alcalde D,Hernandez L,Le Stunff H,Maeda R,Lee HS,Jr-Gang-Cheng,Sciorra VA,Daar I,Spiegel S,Morris A J and Stewart C L.The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning.Development 2003;130:4623-4637
    Flores I,Casaseca T,Martinez AC,Kanoh H,Merida I.Phosphatidic acid generation through interleukin 2(IL-2)-induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation.J Biol Chem.1996;271:10334-10340.
    Fourcade O.,Simon M.F.,Viode C.,Rugani N.,Leballe F.,Ragab A.,Fournie B.,Sarda L.,Chap H.,Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells,Cell.1995;80:919-927.
    Ghosh S,Strum JC,Sciorra VA,Daniel L,Bell RM,Raf-I kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid,J.Biol.Chem.1996;271:8472-8480.
    Goetzl E.J.,An.S.,Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate,FASEB J.1998,12:1589-1598.
    Ha KS,Exton JH,Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine,J.Cell Biol.1993;123:1789-1796.
    Han GS,Wu WI,Carman GM.,The Saccharomyces cerevisiae lipin homolog is a Mg~(2+)-dependent phosphatidate phosphatase enzyme.J Biol Chem.2006;281:9210-9218
    Hashida-Okado T,Ogawa A,Endo M,Yasumoto R,Takesako K,Kato 1.AURI,a novel gene conferring aureobasidin resistance on Saccharomyces cereuisiae:A study of defective morphologies in Aurlp-depleted cells.Mol Gen Genet.1996;251:236-244.
    Humtsoe JO,Feng S,Thakker GD,Yang J,Hong J,Wary KK.Regulation of cell-cell interactions by phosphatidic acid phosphatase 2b/VCIP.EMBO J.2003;22:1539-54
    Jia YJ,Kai M,Wada I,Sakane F,Kanoh H.Differential localization of lipid phosphate phosphatases 1and 3 to cell surface subdomains in polarized MDCK cells.FEBS Lett.2003;552:240-246
    Jones D.,Morgan C.,Cockcroft S.,Phospholipase D and membrane traffic potential roles in regulated exocytosis,membrane delivery and vesicle budding,Biochim.Biophys.Acta.1999;1439:229-244.
    Kai M,Wada I,lmai S,Sakane F,Kanoh H.Identification and cDNA cloning of 35-kDa phosphatidic acid phosphatase(type 2) hound to plasma membranes.J Biol Chem.1996;271:18931-18938.
    Kai M,Wada I,Imai S,Sakane F,Kanoh H.,Cloning and characterization of two human isozymes of Mg~(2+)-independent phosphatidic acid phosphatase.J Biol Chem.1997;272:24572-24578
    Kanoh H.Kai M,Wada 1..Molecular properties of enzymes involved in diacylglycerol and phosphatidate metabolism.J Lipid Mediat Cell Signal.1996;14:245-250.
    Kocsis MG,Weselake RJ.1996.Phosphatidate phosphatases of mammals,yeast and higher plants.Lipids 31:785-802.
    K(u|")hl M,Sheldahl LC,Park M,Miller JR,Moon RT.,The Wnt/Ca~(2+) pathway:a new vertebrate Wnt signaling pathway takes shape.Trends Genet.2000;16:279-83
    Lee M.,Van Brocklyn J.R.,Thangada S.,Liu C.H.,Hand A.R.,Menzeleev R.,Spiegel S.,Hla T.,Sphingosine 1-phosphate as a ligand for the G-protein-coupled receptor EDG-1,Science 1998,279:1552-1555.
    Mandala SM,Thornton R,Galve-Roperh I,Poulton S,Peterson C,Olivera A,Bergstrom J,Kurtz MB,
    Spiegel S. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1- phosphate and induces cell death. Proc NatlAcadSd USA. 2000; 97:7859-7864
    Nanjundan M and Possmayer F, Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am. J. Physiol. Lung Cell MoL Physiol 2003; 284: L1-L23
    P(?)pped H, Schmidt C, Wilson V, Hume CR, Dodd J, Krumlauf R, Beddington RS. Misexpression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 1997; 124: 2997-3005
    Pyne S, Lee SC, Long J, Pyne NJ. Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease Cell Signal 2008 Aug 15
    Roberts R, Sciorra VA, Morris AJ., Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J Biol Chem.1998; 273: 22059-22067
    Sciorra VA, Morris AJ. Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim Biophys Acta. 2002; 1582:45-51
    Sigal YJ, McDermott MI, Morris AJ. Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem J. 2005; 387:281-293.
    Siorra VA, Morris AJ, Sequential actions of Phospholipase D and type-2 phosphatidic acid phosphohydrolase generate diacylglycerol in detergent-resistant membrane microdomains, Mol. Biol.Cell 1999; 10: 3863-3876.
    Smith SW, Weiss SB, Kennedy EP. The enzymatic dephosphorylation of phosphatidic acids.J. Biol Chem 1957; 228, 915-922
    Sorger, D. and Daum, G. Triacylglycerol biosynthesis in yeast. Appl Microbiol BiotechnoL 2003; 61: 289-299
    Starz-Gaiano M, Cho NK, Forbes A, Lehmann R. Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development 2001; 128: 983-991
    Ulrix W, Swinnen JV, Heyns W, Verhoeven G., Identification of the phosphatidic acid phosphatase type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP. J Biol Chem. 1998; 273: 4660- 4665.
    Waggoner DW, Xu J, Singh I, Jasinska R, Zhang QX, Brindley DN, Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction. Biochim Biophys Acta.1999; 1439: 299-316.
    Wang X,Devaiah SP,Zhang W,Welti R.Signaling functions of phosphatidic acid._Prog Lipid Res.2006;45:250-78
    Yatomi Y,Ruan F,Hakomori S,Igarashi Y,Sphingosine 1-phosphate:a platelet activating sphingolipid released from agonist-stimulated human platelets,Blood.1995;86:193-202.
    Yue J,Yokoyama K,Balazs L,Baker DL,Smalley D,Pilquil C,Brindley DN.and Tigyi G,0 Mice with transgenic overexpression of lipid phosphate phosphatase-1 display multiple organotypic deficits without alteration in circulating lysophosphatidate level.Cell Signalling.2004;16:385-399
    Zeng L,Fagotto F,Zhang T,Hsu W,Vasicek TJ,Perry WL 3rd,Lee JJ,Tilghman SM,Gumbiner BM,Costantini F.The mouse Fused locus encodes Axin,an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation.Cell.1997;90:181-192
    Zhang N,Sundberg JP and Gridley T,Mice mutant for Ppap2c,a homolog of the germ cell migration regulator wunen,are viable and fertile.Genesis.2000;27:137-140
    Zhang N,Zhang J,Purcell KJ,Cheng Y,Howard K The Drosophila protein Wunen repels migrating germ cells.Nature.1997;385:64-67
    Zhang QX,Pilquil CS,Dewald J,Berthiaume LG,Brindley DN.,Identification of structurally important domains of lipid phosphate phosphatase-1:implications for its sites of action.Biochem J.2000;345:181-184
    贾海泉,陆应麟,磷脂酸在细胞信号转导中的作用,军事医学科学院院刊 2008:32:76-80
    Bennett-Lovsey RM,Herbert AD,Steinberg MJ,Kelley LA,Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre.Proteins.2008;70:611-625
    Chung YH,Kim JA,Song BC,Lee GC,Koh MS,Lee YS,Lee SG,Suh DJ.Expression of transforming growth factor-alpha mRNA in livers of patients with chronic viral hepatitis and hepatocellular carcinoma.Cancer.2000;89:977-982
    Counis MF,Torriglia A.Acidic DNases and their interest among apoptotic endonucleases.Biochimie 2006;88:1851-1858.
    Ikeguchi M,Hirooka Y.Expression of c-myc mRNA in hepatocellular carcinomas,noncancerous livers,and normal livers.Pathobiology 2004;71:281-286
    Kim YC,Song KS,Yoon G,Nam MJ,Ryu WS.Activated ras oncogene collaborates with HBx gene of hepatitis B virus to transform cells by suppressing HBx-mediated apoptosis.Oncogene 2001;20:16-23
    Niu ZS,Wang M.Expression of c-erbB-2 and glutathione S-transferase-pi in hepatocellular carcinoma and its adjacent tissue.Wold J Gastroenterol.2005;11:4404-4408
    Parrish JZ,Xue D,Functional genomic analysis of apoptotic DNA degradation in C.elegans,Mol Cell.2003;11:987-996.
    Perczel A,Park K and Fasman GD,Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm:a practical guide.Anal Biochem.1992;203:83-93.
    Provencher SW,Glockner J,Estimation of globular protein secondary structure from circular dichroism.Biochemistry.1981;20:33-37.
    Qiu JZ,Yoon JH,Shen BH,Search for apoptotic nucleases in yeast-Role of Tat-D nuclease in apoptotic DNA degradation.J Biol Chem.2005;280:15370-15379.
    Rost B,Yachdav G and Liu J,The PredictProtein Server.Nucleic Acids Research 2004;32:W321-W326.
    Samejima I,Yanagida M,Bypassing anaphase by fission yeast cut9 mutation:requirement of cut9+to initiate anaphase.J Cell Biol.1994;127:1655-1670
    Samejima K and Earnshaw WC,Trashing the genome:the role of nucleases during apoptosis.Nature.2005;6:677-688
    Su AI,Cooke MP,Ching KA,A gene atlas of the mouse and human protein-encoding transcriptomes.PNAS.2002;99:10571-10574
    Sung CO,Yoo BC,Koh KC,Cho JW,Park CK.Prognostic significance of p53 overexpression after hepatic resection of hepatocellular carcinoma.Korean J Gastroenterol.2005;45:425-430
    Tsai JF,Jeng JE,Chuang LY,You HL,Wang LY,Hsieh MY,Chen SC,Chuang WL,Lin ZY,Yu ML,Dai CY.Serum insulin-like growth factor-Ⅱ as a serologic marker of small hepatocellular carcinoma.Scand J Gastroenterol.2005;40:68-75
    Velculescu VE,Zhang L,Vogelstein B,and Kinzler KW,Serial analysis of gene expression.Science 1995;270:484-487
    Wang XW,Hussain SP,Huo TI,Wu CG,ForguesM,Hofseth LJ,Brechot C,Harris CC.Molecular pathogenesis of human hepatocellular carcinoma.Toxicology.2002;182:43-47
    Wexler M,Sargent F,Jack RL,Stanley NR,Bogsch EG,Robinson C,Berks BC,Palmer T,TatD is a cytoplasmic protein with DNase activity-No requirement for TatD family proteins in Sec-independent protein export." J Biol Chem.2000;275:16717-16722
    Wiberg JS.On the mechanism of metal activation of deoxyribobuclease I.Arch Biochem Biophys.1958;73:337-358.
    Wilson DM 3rd,Deutsch WA,Kelley MR,Cloning of the Drosophila ribosomal protein S3:another multifunctional ribosomal protein with AP endonuclease DNA repair activity.Nucleic Acids Res.1993;21:2516
    白阳秋,丁光伟,杨玉秀,肝癌发生过程中的差异基因表达,世界华人消化杂志2008;16:2537-2541
    肖开银,彭民浩.原发性肝癌流行病学研究进展.中国普外基础与临床杂志.2000;7:272-274
    Adams MW,Kelly RM,Finding and using hyperthermophilic enzymes.Trends Biotechnol.1998;16:329-33218
    Bernard R,Ghachi M E,Mengin-Lecreulx D,Chippaux M& Denizot F,BcrC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance.J Biol Chem.2005;280:28852-28857
    Carman GM,Deems RA,Dennis EA,Lipid signaling enzymes and surface dilution kinetics,J Biol Chem.1995;270:18711-18714
    Dillon DA,Wu WI,Riedel B,Wissing JB,Dowhan W,Carman GM,The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity.J Biol Chem.1996;271:30548-30553
    Fleming IN,Yeaman SJ,Purification and characterization of N-ethylmaleimide-insensitive phosphatidic acid phosphohydrolase(PAP2) from rat liver.Biochem J.1995;308:983-989
    Gasteiger E,Gattiker A,Hoogland C,Ivany I,Appel RD,Bairoch A,ExPasy:the proteomics server for in-depth protein knowledge and analysis.Nucleic Acids Res,2003;31:3784-3788
    Ghachi ME,Derbise A,Bouhss A& Mengin-Lecreulx D,Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase(UppP) Activity in Escherichia coli.J Biol Chem.2005;280:18689-18695
    Ishikawa K,Mihara Y,Gondoh K,Suzuki E,Asano Y,X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate.EMBO J,2000;19:2412-2423
    Ishikawa K,Mihara Y,Gondoh K,Suzuki E,Asano Y,X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate.EMBO J,2000;19:2412-2423
    Kashino Y,Separation methods in the analysis of protein membrane complexes,J Chromatogr B,2003;797:191-216
    Kyte J,Doolittle RF,A simple method for displaying the hydropathic character of a protein.J Mol Biol,1982;157,105-32
    Marchesi JR,Sato T,Weightman AJ,Martin TA,Fry JC,Hiom SJ,Dymock D,Wade WG,Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA.Appi Environ Microbiol.1998;64:795-799
    Neuwald AF, An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci. 1997; 6: 1764-1767
    Roberts R, Sciorra VA, Morris AJ, Human type 2 phosphatidic acid phosphohydrolases substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J Biol Client.1998; 273: 22059-22067
    Sambrook J, Russell DW, Molecular cloning: a Laboratory Manual. 3rd edn, Cold Spring Harbor Press, 2001
    Sigal YJ, McDermott MI& Morris AJ, Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem J. 2005; 387: 281-293
    Siorra VA, Morris AJ, Sequential actions of Phospholipase D and type-2 phosphatidic acid phosphohydrolase generate diacylglycerol in detergent-resistant membrane microdomains, Mol Bio Cell 1999; 10:3863-3876.
    Stukey J, Carman GM, Identification of a novel phosphatase sequence motif. Protein Sci. 1997; 6: 469-472
    Sun LY, Gu SH, Sun YQ, Zheng D, Wu QH, Li X, Dai JF, Dai JL, Ji CN, Xie Y, Mao YM, Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d vl and PAP2d v2. Mol Cell Biochem. 2005; 272: 91-96
    Takeuchi M, Harigai M, Momohara S, Ball E, Abe J, Furuichi K, Kamatani N, Cloning and characterization of DPPL1 and DPPL2, representatives of a novel type of mammalian phosphatidate phosphatase. GENE. 2007; 399: 174-18020
    Tanyi JL, Hasegawa Y, Lapushin R, Morris AJ, Wolf JK, Berchuck A, Lu K, Smith DI, Kalli K, Hartmann LC, McCune K, Fishman D, Broaddus R, Cheng KW, Atkinson EN, Yamal JM, Bast RC,Felix EA, Newman RA, Mills GB. Role of decreased levels of lipid phosphate phosphatase-1 in accumulation of lysophosphatidic acid in ovarian cancer. Clin Cancer Res. 2003;9:3534-3545
    Tanyi JL, Morris AJ, Wolf JK, Fang X, Hasegawa Y, Lapushin R, Auersperg N, Sigal YJ, Newman RA, Felix EA, Atkinson EN, Mills GB.The human lipid phosphate phosphatase-3 decreases the growth, survival, and tumorigenesis of ovarian cancer cells: validation of the lysophosphatidic acid signaling cascade as a target for therapy in ovarian cancer. Cancer Res. 2003;63:1073-82
    Toke DA, McClintick ML, Carman GM, Mutagenesis of the phosphatase sequence motif in diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae. Biochemistry. 1999,38:14606-14613
    Ulrix W, Swinnen JV, Heyns W, Verhoeven G., Identification of the phosphatidic acid phosphatase
    type 2a isozyme as an androgen-regulated gene in the human prostatic adenocarcinoma cell line LNCaP.J Biol Chem.1998;273:4660-4665.
    Waggoner DW,Gomez-Munoz A,Dewald J,Brindley DN,Phosphatidate phosphohydrolase catalyzes the hydrolysis of ceramide 1-phosphate,lysophosphatidate,and sphingosine 1-phosphate,J Biol Chem.1996;271:16506-16509
    Wu WI,Liu Y,Riedel B,Wissing JB,Fischl AS,Carman GM,Purification and characterization of diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae.J Biol Chem.1996;271:1868-1876
    Zhang N,Zhang J,Purcell KJ,Cheng Y,Howard K,The Drosophila protein Wunen repels migrating germ cells.Nature,1997;385:64-67
    Zhang QX,Pilquil CS,Dewald J,Berthiaume LG & Brindley DN,Identification of structurally important domains of lipid phosphate phosphatase-1:implications for its sites of action.Biochem J,2005;280:181-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700