宝钢典型循环冷却水系统微生物生长规律及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以上海宝钢股份有限公司的工业循环冷却水系统中微生物为研究对象,较全面系统地检测了四类典型水系统中(系统补水、清循环冷却水系统、纯水密闭系统、污循环系统)微生物的生长情况,研究并探讨宝钢循环冷却水系统中微生物的生长规律及控制方法。
     主要研究内容包括:循环冷却水系统中菌种分离及初步鉴定;系统管壁上固着型微生物生长规律研究;随季节变化微生物生长规律研究;不同的加药周期、加药浓度下微生物变化规律研究;非氧化性杀菌剂抗药性研究;高浓度倍数下氧化性杀菌剂适应性研究以及硫酸盐还原菌荧光原位杂交(FISH)快速检测技术研究等内容。希望通过这些研究,掌握钢铁企业典型循环冷却水系统中微生物的生长规律和抗药性的发生规律,提出药剂使用的改进方案,制定合理的应对措施,完善杀菌剂使用质量控制标准,保障宝钢的典型循环冷却水系统安全运行,节约运行成本,为宝钢创造一定的经济效益和环境效益,同时为其他行业的循环冷却水系统的微生物控制提供一定的参考依据。
     主要研究结论如下:
     1.在循环冷却水系统中共分离得到19株菌株。经初步鉴定,主要为奈瑟氏球菌属、假单胞菌属、芽孢杆菌属、葡萄球菌属、变形菌属等。其中芽孢杆菌属有6株,变形菌属有5株。
     2.通过试验检测,各循环冷却水系统中未发现有明显的固着型微生物生长。宝钢高炉鼓风清系统中挂片上的异养细菌数在10~4~10~5CFU/cm~2,铁细菌数在10~2个/cm~2;电炉系统中挂片上的异养细菌数在10~2~10~4CFU/cm~2,铁细菌数在10~2个/cm~2;热轧B系统中挂片上的异养细菌数在10~5~10~6CFU/cm~2,铁细菌数在10~4个/cm~2。微生物检测和金属挂片观察结果均表明目前的运行工况条件能有效地控制固着微生物的生长,循环冷却水系统中生物结垢和硫酸盐还原菌引起的生物腐蚀等得到有效控制。
     3.微生物季节性生长规律研究表明:
     a) 补给水系统、清循环系统、污循环系统中微生物以异养细菌为主,补给水系统在冬季、春季、秋季的异养细菌数均在10~2个/ml以下,夏季在10~2个/ml;清循环系统在冬季、春季、秋季的异养细菌数在10~3~10~4个/ml之间,夏季在10~4~10~5个/ml之间;相对其它季节,夏季微生物数量较多,因此在夏季应加强微生物控制。
     b) 纯水密闭系统中微生物以异养细菌为主。由于纯水密闭系统水温的季节变化较小,且密闭循环运行,所以各季节微生物的数量变化并不明显,其异养细菌数量都在10~4~10~5个/ml之间,其微生物的数量变化主要受投加杀菌剂的影响。
     4.通过对各典型水系统在加药周期内微生物生长变化规律的分析,得出:
     a) 宝钢典型循环水系统中微生物的检验周期以1周为最佳,且在加药前采样为宜。
    
    宝钢典型循环冷却水系统微生物生长规律从控制拟l)’匕
    b)对一J几洁抓环系统,氧化性杀菌剂和非氧化性杀菌剂交林使川效果明显。
    c)在污循环系统,卜,smg/L/周的氧化性杀菌剂JD一1加药剂员即.iJ‘有效控制微生物
     的‘!二长,建议污循环系统夏季加药剂量从少匕jiJ’的20mg/L/周减少为51119几/周,其
     他季节加药剂量从先前的IOmg/L/周减少为smg/L/周,这将为‘;之钢节省药剂费
     168万元/年。
    目前长期使用非氧化性杀菌剂S一103的纯水密闭系统中S一103的使)lJ效果不仕,I(lJ
    非氧化性杀菌剂N一7330杀菌效果良好,建议投加剂量为IO0ing几。
    纯水密闭系统中长期使用同一种二}「氧化性杀菌剂会使其t},的微生物)户,:‘_卜打〔药性。l:l
    前长期使用非氧化性杀菌剂S一103的纯水密闭系统中的微生物对S一103已产生抗药
    性。该抗药性的获得主要是由药物诱导所致,并不稳定。具有S一103抗药J性的微生
    物对另一药剂s一100不具有交叉耐药性。因此,对己显示抗药性的纯水密闭系统可
    采用更换不同类型的杀菌剂,将两种(或两种以上)不同类型的非氧化性杀菌剂交
    替使用的方法,以控制系统中微生物抗药性的产生。
    在浓缩倍数较高的‘i二钢清循环系统l一卜使用氧化卜l:杀菌剂,可起到明11泛的杀菌作川,
    在加药周期内各系统中微生物数量均在10,个/ml以下,没有超标,因此,!叮以认为
    目前使用的氧化性杀菌剂方案在目前系统较高的浓缩倍数一I.’使用是有效的。而进一
    步的实验室试验表明,目前的氧化性杀菌剂方案ijJ适应系统的pH和浓缩倍数继续
    提}苛。
    在进行系统的安全性和合理性分析的基础上,提出了微生物控制修门指标。清循环
    系统和污循环系统异养菌数应控制在sxlOS个/,111(夏天)、lxl05个/:111(冬天)以下;
    纯水密闭系统异养菌数应控制在lxl护个/ll 11以卜。
    在借鉴国外参考文献的纂础上,对FISH技术在硫酸盐还原菌检测,!,的实验方法和条
    {)I:等进行探索和研究,并应用于‘i之钢典型抓环冷却水系统‘I,,}:.物)jQ样.}l,的实际检测,
    结果表明FISH技术可对硫酸盐还原菌进行快速检测,其检测时间可山传统MPN法
    的21天缩短至2人,在循环冷却水系统有害微/}叫如均检测和控制,},(J’肴良好的应)}j
    前景。
Microorganism that studied in this thesis as an important research object was tested in circulating cooling water of Baosteel Co., Ltd. The growth condition of the microorganism in four kinds of classic water system, including make-up water system of circulation, water system of clean circulation, water system of closed-circuit circulation , water system of turbid circulation, was strictly examined and the growth regularity along with the control methods of microbe were also explored in details. Six major contents were involved: the separation and identification of fungus in closed water system; the growth regularity of sessile bacteria on the tube surface of system; the growth regularity of microbe in different seasons; the growth regularity of microbe in different bactericide adding periods and bactericide adding intensity; the study of drug-resistance of non-oxidizing bactericide and the flexibility of oxidizing bactericide under high concentrated multiple and using study of quikly check-up SRB in FISH. T
    hrough the research, we hope to understand the microbial growth rule of the typical recycling cooling water system of iron and steel enterprises as well as the drug-fast generating rule, to improve the medicament-using plan and come up with appropriate measures so as to improve the quality control standard of bactericide usage, guarantee the secure running of Baogang's typical recycling cooling water system and save its running cost, making economic and environmental benefits for the industry and laying a foundation for the improvement of the microbial controlling technology of recycling cooling water system for the entire iron and steel industry. Meanwhile, the research is of significance of a reference for the microbial controlling technology of recycling cooling water system in other industries. The thesis consists of the following conclusions:
    1. Ninteen strains of heterotropHic bacteria were separated from the closed water system. They are Neisseria, Pseudomonas, Bacillus, StapHylococcus, Proteus etc.
    2. Studying the growth regularity of sessile bacteria: no sessile bacteria was apparently discovered in all Baosteel water circulation system, the inspection of planktonic microbe reflects the whole living condition of microbe.
    3. Growth regularity of microbe in different seasons: heterotropHic bacteria was considered the main microbe in all the circulation system; in summer, the amount of microbe in the system is much higher than other seasons, more control methods should be intensified to the microbe during summer.
    4. Growth regularity of microbe in different adding bactericide periods: the best period of
    
    
    inspections is one week, and sampling before drag adding is much better. It has effect in evidence that the oxidizing bactericide and the no-oxidizing bactericide use alternatively in water system of clean circulation. Better performance of adding the oxidizing bactericide to the turbid circulation water system. The method of half reduction of dose could be available and 1,680,000 annual expenses could be saved for Baosteel Co., Ltd.
    5. Growth regularity of microbe in different drag adding intensity: it is not suitable to add non-oxidizing bactericide S-103 in the water system. Good effects have been proved by using non-oxidizing bactericide N-7330, 100mg/L of additive is suggested.
    6. The experiment of inhibition zones showed that the main factor microbile made drag-resist using the same non-oxidizing bactericide for long time in the water circulation system.The drug-resistance of the microbe to non-oxidizing bactericide S-103 which mainly induced by the drags has been proved in water system of closed-circuit circulation. The results obtained showed the drag-resistance caused by adaptation of microbile produced fast and reversibly or unstable. The experiment also gave such results that S-100 did not have the crossed-resistance which was opposite to S-103. Therefore, different kinds of bacteticide could be used in the closed water system in which the resistance was already appeared. To av
引文
1、GB50050-95.工业循环冷却水处理设计
    2、GB╱T1 4643.6-93.工业循环冷却水中铁细菌的测定,MPN法.1994.69-75
    3、GB╱T1 4643.5-93.工业循环冷却水中硫酸盐还原菌的测定,MPN法.1994.62-68
    4、R.E.布坎南,N.E.吉本斯等主编.《伯杰氏细菌手册》,科学出版社,1984.
    5、陈俊芹,吕人豪.应用噬菌体控制工业循环冷却水中有害微生物的研究,应用生态学报,1994,5(1):83-88.
    6、何世梅.有关循环水硫酸盐还原菌检测方法与控制指标的几点看法,工业水处理,2001:29—30.
    7、何杨.硝化菌群对循环冷却水系统的危害与防止,贵州化工,1999(4):31-32.
    8、靳文礼,刘菊梅,齐永红.高PH条件下冷却水系统微生物的控制,渭化科技,2000,1:57-60.
    9、李本高.循环冷却水处理技术面临新的形势和挑战,石油化工环境保护,2001:60—63.
    10、李本高,祁鲁梁,张金锐.循环冷却水处理技术进展(一),工业用水与废水,1999,30(1):3-5.
    11、李本高,叶飞宁,焦淑华,张宜梅.循环水常用的几种主要杀菌剂的结构和杀菌效果,石油炼制与化工,1998,29(4):53-55.
    12、李绍全.循环冷却水用杀菌剂综述,工业用水与废水,2000:7-9.
    13、李鹏.试论循环水浓缩倍数与节水,石油化工环境保护,1998,(1):26-28.
    14、梁威,邱东茹,熊丽.吴振斌.荧光原位杂交技术(FISH)及其在环境微生物学中的应用,生命科学,2002:186—187.
    15、郦和生,张春原,王吉龙,郭红卫.污水回用时pH、COD对细菌生长及杀菌性能的影响,工业水处理,2002,22(5):45-47.
    16、刘宏芳,董泽华,范汉香,许立铭.硫酸盐还原菌耐药性研究,微生物学通报,1997,24(6):344-346.
    17、刘宏芳,许立铭.杀菌剂的合并使用,石油学报,1999:93—96.
    18、刘靖,侯宝利,许立铭等.硫酸盐还原菌腐蚀研究进展,材料保护,2001,34(3):8-12.
    19、刘靖,刘宏芳,许立铭等.变异硫酸盐还原菌(SRB)对碳钢腐蚀行为的影响,腐蚀与防护,2002,23(2):57-60.
    20、刘玉秀,刘贵昌,战广深.硫酸盐还原菌引起的微生物腐蚀的研究进展,腐蚀与防护,2002,23(6):245-249.
    21、龙荷云.《循环冷却水处理》.江苏科学技术出版社,2001.
    
    
    22、吕人豪,刘琦,张英华,肖昌松.炼油厂循环冷却水系统中有害微生物的研究,微生物学报,1989,29(3):204.
    23、欧阳志.循环冷却水中生物黏泥偏高的原因及对策,工业水处理,2001:31—33.
    24、潘新明,崔红,陈萍.新型高效循环冷却水处理剂配方研究,石化技术与应用,2002,20(3):165-167.
    25、齐冬子.大化肥厂循环冷却水微生物的监测与控制工作,工业水处理,1981,1(1):16.
    26、钱吉,胡建华,李婉芳,陈治中等.宝钢原水、工业水生物本底的初步调查,复旦学报(自然科学版),1997,36(5):586—592.
    27、秋寅善,赵毅.循环冷却水PH波动影响因素及对策,大化科技,2000,(3):23-24.
    28、苏腾,陈中兴.酶法处理工业循环水中生物黏泥的研究,中国给水排水,2002:5—8.
    29、王劲松,胡勇有.循环冷却水中微生物的控制,广州环境科学,2002,17(3):5-8.
    30、王申坤.硫酸盐还原菌检测技术综述,石油与天然气化工,1998:192-194.
    31、王树武.硝化细菌在循环冷却水中的危害及控制,大氮肥,1994:382-384.
    32、王雪峰,李建宏,马宇翔,翁永萍,浩云涛,陈正林,濮传圣.微电解水处理器的杀菌作用研究,给水排水,2001:40—43.
    33、夏明珠,雷武,严莲荷,陈民生.工业冷却水用杀生剂的研究,现代化工,1998,(8):18-21.
    34、易绍金.工业循环水中固着型微生物检测方法与杀菌技术,工业用水与废水,2001,32(4):11-12.
    35、尹国梅等.提高清循环冷却水系统浓缩倍数的对策研究,工业加热,2002,(1):11-14.
    36、余利岩,徐平,姚天爵.新型Actinobacteria荧光原位杂交(FISH)探针的设计和应用,中国抗生素杂志,2000:401—406.
    37、俞毓馨,吴国庆,孟宪庭.《环境工程微生物检验手册》,中国环境科学出版社,1990.
    38、张学元,王凤平,杜元龙,杨春光.油气工业中细菌的腐蚀和预防,石油与天然气化工,1999,28(1):53-56.
    39、张宜莓,刘韵秋,沈伟文,李本高.宝钢现有水处理药剂评估,宝钢技术,1998,2:16.
    40、赵书培.浅谈真菌对木结构凉水塔的腐蚀及防护,大氮肥,2002,25(2):129-131.
    41、周本省.循环冷却水系统中微生物引起的腐蚀和黏泥的控制,腐蚀与防护,2002:301—304.
    42、周本省.冷却水系统中微生物生长的控制方法和控制指标,化工机械,1997,24
    
    (1):54-57.
    43、周本省,杨文忠.循环冷却水中的结垢及其控制,第十一届全国缓蚀剂学术讨论会论文集,59-64.
    44、周本省主编.《工业水处理技术》.化学工业出版社,1997.
    45、朱绒霞,那静彦,郭生武,陈志昕.硫酸盐还原菌的腐蚀机理,空军工程大学学报(自然科学版),2000,1(3):10-12.
    46、DiChristina,T.J.and E.F.Delong(1993). Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron and manganese-reducing bacterium Shewanella putrefaciens. Appl. Environ. Microbiol. 59:4152-4160.
    47、Elise S McLeod,Raynard MacDomald and Volker S Br(?)zel(2002). Distribution of Shewanella putrefaciens and Desulovibtio vulgaris in sulpHidogenic biofilms of industeial cooling water systems determined by fluorescent in situ hubridisation.Wat.SA.28:123-128.
    48、ENRIC LLOBET-BROSSA, RAMON ROSSELL(?)-MORA, AND RUDOLF AMANN(1998).Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July: 2691-2696.
    49、ENRIC LLOBET-BROSSA, RAMON ROSSELL(?)-MORA, AND RUDOLF AMANN(1998).Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July: 2691-2696.
    50、http://www.asmusa.org/edusrc/biofilm/infopage/043i.htm.
    51、K.P.H.Meesters,J.W.Van Groenestijn,J.Gerretse(2003).Biofouling reduction in recirculating cooling systems through biofiltration of process water.Water Research,37:525-532.
    52、MacDonald R and Br(?)zel VS (2000). In situ analysis of bacterial biofilms inindustria cooling water systems using fluorescently labeled rRNA-targeted oligonucleotide probes. Water Res. 34: 2439-2446.
    53、M.R. Viera, P.S. Guiamet, M.F.L. de Mele, H.A. Videla (1999) .Use of dissolved ozone for controlling planktonic and sessile bacteria in industrial cooling systems.International Biodeterioration & Biodegradation 44: 201—207.
    54、MacDonald R and Br(?0zel VS (2000). In situ analysis of bacterial biofilms inindustria cooling water systems using fluorescently labeled rRNA-targeted oligonucleotide probes. Water Res. 34: 2439-2446.
    55、MAN Almeida and FP de Franca(1998).Biofilm formation on brass coupons exposed to a cooling system of an oil refinery.Journal of industrial Microbiology & Biotechnology,20:39-44.
    
    
    56、MAURO TONOLLA, ANTONELLA DEMARTA, SANDRO PEDUZZI,DITTMAR HAHN, AND RAFFAELE PEDUZZI(2000). In Situ Analysis of Sulfate-Reducing Bacteria Related to Desulfocapsa thiozymogenes in the Chemocline of Meromictic Lake Cadagno (Switzerland). APPLIED AND ENVIRONMENTAL MICROBIOLOGY:820-824.
    57、Rudolf Amann, Bernhard M Fuehs and Sebastian Behrens (2001).The identification of microorganisms by fluorescence in situ hybridisation.Current Opinion in Biotechnology.12:231-236
    58、Sifdlarek H,D Wagner,WR Fischer and HH Paradies (1994).Microbiologically inflrenced corrosion of copper.The ionic transport propertied of biopolymers.Corr Sci 36:1751-1763.
    59、T.R. Bott (1998).Techniques forreducing the amount of biocide necessary to counteract the effects of biofilm growth in cooling water systems. Applied Thermal Engineering. 18:1059—1066.
    60、Volker S Br(?)zel, B.Pietersen and T.E.Cloete (1995). Resistance of bacterial cultures to non-oxidising water treatment bactericides by adaptation.Wat.Sci.Tech.31:169-175
    61、Wagner, M., G. Rath, H.-P. Koops, J. Flood & R. Amann, 1996.In situ analysis of nitrifying bacteria in sewage treatment plants.Wat. Sci. Technol. 34: 237-244.
    62、Emde K M E,Smith D W,Fancey R(1992).Initial Investigation of Microbially Influenced Corrosion (MIC) in a low Temperature Water Distribution System.Water Resources.26(2): 169-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700