杨木废弃物预处理技术和水解反应动力学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以纸厂备料段的杨木废弃物为原料,对预处理工艺(包括湿氧化法、亚硫酸氢钠法、机械法和黄孢原毛平革菌法)的效果进行了研究,采用X-射线衍射、扫描电镜、热重分析仪、红外光谱、高效液相色谱和气质联用等分析手段对预处理所得物料和预处理液进行了分析,从而表征预处理过程中发生的物理化学变化;探讨了物料水解工艺(包括浓硫酸、稀硫酸和纤维素酶水解)对纤维转化率的影响,对水解残渣和水解液进行了表征,并建立了相应的动力学模型;最后对酶解液进行发酵成功制取了乙醇。
     湿氧化预处理是氧和碱在热高压条件下与木质纤维原料反应的处理工艺,可以有效地脱除半纤维素,获得以纤维素为主的物料(预处理物料的纤维素含量63.26%,聚戊糖含量2.77%),且所得物料的可酶解性较高。较优的工艺条件为:初始pH值为10,最佳保温时间15min,氧压1.2MPa,温度195oC,在此条件下得到的还原糖产率为46.75%。X-射线衍射图谱显示原料的结晶度从85.42%降到了65.74%,扫描电镜显示纤维细纤维化程度增强,红外光谱分析显示木素发生了降解反应,这些变化均有利于后续纤维素酶水解反应的进行。湿氧化预处理工艺是一种行之有效的预处理手段,为木质生物质制取燃料乙醇开辟了新的途径。
     NaHSO_3预处理是基于木素的磺化溶出反应来增强木质纤维原料的可酶解性。较优的工艺条件为:NaHSO_3用量6.0%,液比1:3,温度200oC,保温时间30min,在此条件下所得预处理物料残余木素占原料的16.7%,聚戊糖占1.66%,物料酶解所得还原糖产率为41.55%。X-RD表明预处理后物料的结晶度降为31.57%,SEM显示出纤维表面呈鱼鳞状凸起,比表面积增加,为后续纤维素酶的水解提供了有利条件。
     机械预处理通过改变纤维粒度及增大比表面积来改善其酶解性,但是改善效果不明显,破碎预处理物料的比表面积比盘磨预处理物料大,但可酶解性较差(酶解还原糖产率分别为8.11%和9.88%)。进一步对机械预处理物料进行亚硫酸氢钠处理后,两者物料的酶解性能都有很大提高,而且破碎预处理物料的可酶解性高于盘磨预处理(酶解还原糖产率分别为45.17%和42.56%)。
     黄孢原毛平革菌预处理可以选择性地降解木质纤维原料中的木素,从而改善物料的酶解效果。在接种量25%,33oC环境中静置培养28天的预处理物料经过灭菌和碱处理后,酶解还原糖得率为14.51%。木素被选择性地脱除(占原料的13.98%)。碱抽提液的GC-MS分析显示,木素中的C_α-C_β键发生氧化断裂,部分木素发生了甲基化等反应。
     经过对比,湿氧化预处理效果最好,所得底物的酶解性能最高,NaHSO_3预处理次之,而机械预处理和白腐菌预处理效果较差,因此,继续研究了湿氧化预处理底物的酶解历程和酶解液的发酵。
     利用纤维素酶对湿氧化预处理物料进行了水解,响应面分析法得到酶水解的最优工艺条件为:酶解温度49oC,酶解时间56h,酶用量38FPU/g,在此条件下所得纤维转化率为96.39%。水解液中只含有葡萄糖和木糖两种单糖,其中葡萄糖含量最多(占总糖量的97.54%),水解残渣的结晶度大幅下降。对纤维素酶水解过程进行了研究,得出纤维素酶水解动力学方程式可以表达为YC=17.84×C~(0.4244)×(1-e~(-0.2023t))×100%(R~2=0.8658)。
     采用浓硫酸对杨木废弃物进行水解,响应面分析法得到浓酸水解的最优工艺为:温度50.97oC,时间120min,硫酸浓度60%,所得纤维转化率为90.81%。HPLC分析结果表明所得水解液的主要成分为葡萄糖(占总糖量的60.49%,木糖占19.84%),另含有单糖降解物(主要为乙酸和羟甲基糠醛)。X-RD表明水解残渣结晶度下降幅度较大,浓酸水解动力学方程YC=39.24×T~(0.1808)×(1-e~(-0.0726t))×100%(R~2=0.8105)。
     采用稀酸对杨木废弃物进行水解,响应面分析法得到稀酸水解的最优工艺为:温度158oC,时间5min,酸浓2.5%,所得纤维转化率为52.97%。水解液中主要成分是木糖(占总糖量的64.80%,葡萄糖占18.93%),而水解液中的单糖降解物很少,说明在稀酸水解过程中只有极少量的碳水化合物发生了降解,水解物料的结晶度降低。
     对酿酒酵母发酵工艺(以葡萄糖为底物)进行了优化,得到最佳发酵条件为:发酵温度33oC,底物浓度7.5g/L,发酵液初始pH值5.25,接种量5%,转速160r/min,发酵时间48h,在此条件下所得乙醇转化率为82.99%。对湿氧化预处理物料的纤维素酶水解液进行浓缩和脱毒后在最佳发酵条件下发酵,所得乙醇转化率为70.83%。对杨木废弃物湿氧化预处理-酶解-发酵过程进行了物料衡算,得出乙醇产率相当于理论产率的50%。
Selection and optimization of pretreatment operations on poplar wood processing residues,including chemical method (wet-oxygen, sodium hydrosulfite), mechanical method (platerefiner and miller) and biological method (fungi strain: Phanerochaete chrysosporium), prior tohydrolysis, were investigated in this thesis. Some modern analysis instruments such as X-RD,SEM, TG, FT-IR, HPLC and GC-MS were employed to characterize physical and chemicalchanges of poplar stocks and hydrolyzate with different pretreatment methods. To compareconversion effects of different hydrolysis conditions on production of reducing sugars, acidichydrolysis (concentrated and low-consistency sulfuric acid) and enzymolysis (cellulase) wereapplied, the hydrolyzed residual solids and hydrolyzate were analyzed, and kinetic modelswere explored. Finally, fermentation of enzymic hydrolyzate by yeast was carried out toproduce bio-ethanol.
     Wet oxidation, a lignin and hemicellulose-selective oxidation operation combining oxygenand alkali at higher pressure condition, was applied to pretreatment of poplar wood processingresidues. Results show that hemicellulose was removed effectively, and cellulose (cellulose63.26%, pentose2.77%) contents was enriched in pretreated stock and the performance ofenzymic hydrolysis was enhanced. The optimal conditions of wet-oxidation were proposed,such as: initial pH number of10, reaction time15min, elevated temperature195°C, and oxygenpressure1.2MPa. The optimal wet-oxidation conditions was verified and crystallinity ofpretreated stock decreased from85.42%to65.74%(by X-RD), fiber surface corrodedextensively (by SEM), de-lignification effectively (by FT-IR) and provided enzymic hydrolysisof pretreated poplar wood processing residues a reducing sugar yield of46.75%. It could beconcluded that this pretreatment operation can benefit to sequenced enzymolysis operation.
     Sodium hydrosulfite (NaHSO_3) pretreatment was based on the lignin dissolution withsulfonation reaction, resulting to enforced the stock enzymolysis. The proper conditions wereproposed as: dosage of NaHSO_36%(w/w), solid to liquor ratio1:3, temperature200oC and time30min, lignin and hemicellulose was removed obviously (lignin content decreased from23.6%to16.7%, hemicellulose content referred as pentose from18.7%to1.66%). Afterenzymic hydrolysis, the reducing sugar yield of41.55%can be obtained. The crystallinity ofpretreated stock was decreased to31.57%, the specific surface area of cell-walls increasedwhich also can benefit to the followed enzymolysis.
     The proposed of mechanical method, breaking up and grinding, could increase the fiberspecific surface area to improve stock enzymolysis, however, the effect was limited. Theenzymolysis of pretreated stock was not increased corresponding with higher BET surface area(reducing sugar yield was8.11%and9.88%, respectively). The two kinds of stocks werefurther treated by sodium hydrosulfite, and the enzymolysis properties were increased greatly.The reducing sugar yield was45.17%and32.56%, respectively.
     Phanerochaete chrysosporium pretreatment could remove lignin in raw material andincrease reducing sugar yield. The proposed condition for this pretreatment as: inoculationamount25%, training28days at33oC environment quietly. After sterilization and alkalineextraction, the stock was enzymolysis by cellulase, and14.51%of reducing sugar yield couldbe obtained. Lignin in raw material was selectively removed (13.98%of raw material), GC-MSshowed the fracture of C_α-C_βbond and methylation of lignin during pretreatment.
     During these pretreatments, the effect of wet oxidation was the best, the effects ofmechanical and Phanerochaete chrysosporium pretreatment were limited. Therefore, wetoxidation pretreatment was chosed to discuss enzymolysis progress and fermentation.
     Cellulase was employed for hydrolysis of wet oxidation pretreated stock, the proposedcondition was: temperature49oC, time56h, enzyme loading38FPU/g. Under above condition,the cellulose conversion of96.39%could be obtained. The hydrolysate just contained glucose(97.54%) and xylose, and the crystallinity of residue dropped substantially. The kinetic ofenzymolysis can be expressed as: Y_C=17.84×T0.4244×(1-e~(-0.2023t))×100%(R~2=0.8658).
     Concentrated sulfite acid was employed for hydrolysis of Poplar wood processing residue,the proposed concentrated sulfite acid hydrolysis condition was: temperature50.97, time120min, H_2SO_4concentration60%. The optimal mesh number of poplar wood processing residue grain size was160-200. Under above condition, the cellulose conversion of90.81%can beobtained. The hydrolyzate contained glucose (60.49%) and xylose (19.84%), what’s more,acetic acid and hydroxyl methyl furfural (HMF) was the main degradation products. Thecrystallinity of residue decreased greatly. The kinetic of concentrated sulfite acid hydrolysiscan be expressed as: YC=39.24×T~(0.1808)×(1-e~(-0.0726t))×100%(R~2=0.8105).
     Comparing with concentrated sulfite acid hydrolysis, low-consistency sulfuric acidhydrolysis was chosen. The proposed low-consistency sulfuric acid hydrolysis condition was:temperature of158oC, time5min, H2SO4concentration2.5%, and under these conditions,52.97%of cellulose conversion could be obtained. The hydrolyzate contained xylose (64.80%),glucose (18.93%) and small amount of degradation products. The crystallinity of residue wasdecreased.
     The fermentation process of Saccharomyces cerevisiae (with glucose as the substrate) wasoptimized as: fermentation temperature33oC, substrate concentration7.5g/L, initial pH5.25,inoculation amount5%, rotated speed160r/min and fermentation time48h. Under abovecondition,82.99%of ethanol conversion could be resulted. The ethanol conversion of70.83%can be obtained with enzymolysis hydrolyzate of wet oxygen pretreated stock as substract.Finally, material balances for the conversion of poplar wood processing residue to ethanol (wetoxidation pretreatment-enzymolysis-fermentation) was calculated. According to the effectiveexperimental results, the ethanol yield (equivalent to theory production) of50%can beobtained.
引文
[1] Mathew A. K.,Chaney K.,Crook M.,et al.Alkaline pre-treatment of oilseed rape straw for bioethanolproduction: Evaluation of glucose yield and pre-treatment energy consumption[J].BioresourceTechnology,2011,102(11):6547~6553
    [2]王革华.新能源—人类的必然选择[M].北京:化学工业出版社,2010,22~25
    [3] BP Statistical Review of World EnergyJune [M].2011,6~34
    [4]程序.生物质能与节能减排及低碳经济[J].中国生态农业学报,2009,17(2):375~378
    [5]闫强,陈毓川,王安建等.我国新能源发展障碍与应对:全球现状评述[J].地球学报,2010,31(5):759~767
    [6]冯飞,张蕾.新能源技术与应用概论[M].北京:化学工业出版社,2011,4~8
    [7]常杪,杨亮,王世汶.日本住宅用太阳能补贴政策的调整分析[J].环境保护,2009,14:76~77
    [8]李振邦.展望21世纪风能的利用与发展[J].运筹与管理,2006,6:124~129
    [9]孙国旺.德国太阳能领域发展现状[J].全球科技经济瞭望,2008,23(9):5~9
    [10] Http://www.xnyfd.com/gcal/html/?11681.html
    [11]刘伯谦,洪慧,王立刚.能源工程概论[M].北京:化学工业出版社,2009,126~127
    [12]杜风光,冯文生.燃料乙醇发展现状和前景展望[J].现代化工,2006,26(1):6~9
    [13]吴创之,周肇秋,阴秀丽等.我国生物质能源发展现状与思考[J].农业机械学报,2009,40(1):91~99
    [14]陈砺,王红林,方利国.能源概论[M].北京:化学工业出版社,2009,105
    [15]张建安,刘德华.生物质能转化技术[M].北京:化学工业出版社,2009,9~12
    [16]董玉平,王理鹏,邓波等.国内外生物质能源开发利用技术[J].山东大学学报:工学版,2007,37(3):64~69
    [17]李全林.新能源与可再生能源[M].南京:东南大学出版社,2008,126~127
    [18]闫丽珍,闵庆文,成升魁.中国农村生活能源利用与生物质能开发[J].资源科学,2005,27(1):8~13
    [19]王海滨.国外生物质能转化技术与应用[J].能源基地建设,2000,6:15~16
    [20]刘荣厚,张春梅.我国生物质热解液化技术的现状[J].可再生能源,2004,3:11~14
    [21]钟浩,谢建.生物质热解气化技术的研究现状及其发展[J].云南师范大学学报:自然科学版,2001,21(1):41~45
    [22]张洪勋,李林.纤维素类生物质热解技术研究进展[J].北京联合大学学报:自然科学版,2004,18(1):16~19
    [23] Fu X.,Zhong Z..Biomass Pyrolysis Liquefaction Technology and its Impact Factors[J].EnergyResearch&Utilization,2008,3:16~19
    [24]刘守新,张世润.生物质的快速热解[J].林产化学与工业,2004,24(3):95~101
    [25] Ger El H. F..The production and evaluation of bio-oils from the pyrolysis of sunflower-oilcake[J].Biomass and Bioenergy,2002,23(4):307~314
    [26] P. T. N. A., zcan A.,P. T. N. E..Pyrolysis of hazelnut shells in a fixed-bed tubular reactor:yields andstructural analysis of bio-oil [J].Journal of Analytical and Applied Pyrolysis,1999,52(1):33~49
    [27] Scholze B.,Hanser C.,Meier D..Characterization of the water-insoluble fraction from fast pyrolysisliquids (pyrolytic lignin):Part II. GPC, carbonyl goups, and13C-NMR [J].Journal of Analytical andApplied Pyrolysis,2001,58:387~400
    [28]陈蔚萍,陈迎伟,刘振峰.生物质气化工艺技术应用与进展[J].河南大学学报:自然科学版,2007,37(1):35~41
    [29]米铁,唐汝江,陈汉平等.生物质气化技术及其研究进展[J].化工装备技术,2005,26(2):50~56
    [30]任铮伟,徐清,陈明强等.流化床生物质快速裂解制液体燃料[J].太阳能学报,2002,23(4):462~466
    [31] Chen G.,Andries J.,Spliethoff H.,et al.Biomass gasification integrated with pyrolysis in a circulatingfluidised bed [J].Solar Energy,2004,76(1):345~349
    [32]赵增立,李海滨,吴创之等.生物质等离子体气化研究[J].太阳能学报,2005,26(4):468~472
    [33]曹小玲,蒋绍坚,翁一武.生物质高温空气气化分析,现状及前景[J].节能技术,2004,22(1):47~49
    [34] Calzavara Y.,Joussot-Dubien C.,Boissonnet G.,et al.Evaluation of biomass gasification in supercriticalwater process for hydrogen production [J].Energy Conversion and Management,2005,46(4):615~631
    [35]赵军,王述洋.我国生物质能资源与利用[J].太阳能学报,2008,29(1):90~94
    [36]李志合,易维明.生物质能源利用及发展[J].山东工程学院学报,2000,14(4):34~38
    [37]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75~80
    [38]常杰.生物质液化技术的研究进展[J].现代化工,2003,23(9):13~16
    [39] Meier D.,Faix O..State of the art of applied fast pyrolysis of lignocellulosic materials-a review[J].Bioresource Technology,1999,68(1):71~77
    [40]颜涌捷,任铮伟.纤维素连续催化水解研究[J].太阳能学报,1999,20(1):55~58
    [41] Demirbas A..Mechanisms of liquefaction and pyrolysis reactions of biomass [J].Energy Conversion andManagement,2000,41(6):633~646
    [42] Demirbas A..Yields of oil products from thermochemical biomass conversion processes [J].EnergyConversion and Management,1998,39(7):685~690
    [43]殷福珊.中国生物质能源的发展现状及趋势[J].日用化学品科学,2007,29(11):1~2
    [44]刘晓娟,殷卫峰.国内外生物质能开发利用的研究进展[J].洁净煤技术,2008,14(4):7~9
    [45] Demirbas A..Biodiesel from vegetable oils via transesterification in supercritical methanol [J].EnergyConversion and Management,2002,43(17):2349~2356
    [46]孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,(2):78~82
    [47]陈砺,王红林,方利国.能源概论[M].北京:化学工业出版社,2009,139~140
    [48] Kumar R.,Singh S.,Singh O. V..Bioconversion of lignocellulosic biomass:biochemical and molecularperspectives [J].Journal of Industrial Microbiology&Biotechnology,2008,35(5):377~391
    [49]王效华,高树铭.中国农村能源可持续发展:现状,挑战与对策[J].中国沼气,2004,21(4):41~43
    [50] Hu X., Xie W..Fixed-bed adsorption and fluidized-bed regeneration for breaking the azeotrope ofethanol and water [J].Separation Science and Technology,2001,36(1):125~136
    [51]刘娅,刘宏娟,张建安等.新型生物燃料—丁醇的研究进展[J].现代化工,2009,28(6):28~31
    [52]钱伯章.生物乙醇与生物丁醇及生物柴油技术与应用[M].北京:科学出版社,2010,53~55
    [53]孙昆山,吴绵斌.利用可再生纤维素资源生物转化生成木糖醇的研究进展[J].食品与发酵工业,2001,27(9):74~78
    [54] Alves L. A.,Felipe M. G. A.,Silva J.. B. A. E.,et al.Pretreatment of sugarcane bagassehemicellulose hydrolysate for xylitol production by Candida guilliermondii [J].Applied BiochemistryAnd Biotechnology,1998,70(1):89~98
    [55] Preziosi-Belloy L.,Nolleau V., Navarro J..Xylitol production from aspenwood hemicellulosehydrolysate by Candida guilliermondii [J].Biotechnology Letters,2000,22(3):239~243
    [56] Oh D. K.,Kim S. Y..Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis[J].Applied Microbiology and Biotechnology,1998,50(4):419~425
    [57] Kim S. Y.,Kim J. H.,OH D. K..Improvement of xylitol production by controlling oxygen supply inCandida parapsilosis [J].Journal of Fermentation and Bioengineering,1997,83(3):267~270
    [58] Horitsu H.,Yahashi Y.,Takamizawa K.,et al.Production of xylitol from D‐xylose by candidatropicalis:Optimization of production rate [J].Biotechnology and Bioengineering,1992,40(9):1085~1091
    [59] Paraj J.,Dominguez H.,Dom Nguez J..Production of xylitol from concentrated wood hydrolysates byDebaryomyces hansenii:effect of the initial cell concentration [J].Biotechnology Letters,1996,18(5):593~598
    [60] Paraj J. C.,Dom Nguez H.,Dom Nguez J. M..Biotechnological production of xylitol. Part2:Operationin culture media made with commercial sugars [J].Bioresource Technology,1998,65(3):203~212
    [61] Von Blottnitz H.,Curran M. A..A review of assessments conducted on bio-ethanol as a transportationfuel from a net energy, greenhouse gas, and environmental life cycle perspective [J].Journal ofCleaner Production,2007,15(7):607~619
    [62] Hamelinck C. N.,Hooijdonk G.,Faaij A. P. C..Ethanol from lignocellulosic biomass:techno-economicperformance in short-, middle-and long-term [J].Biomass and Bioenergy,2005,28(4):384~410
    [63]姚秀清,张全.植物纤维原料发酵生产燃料乙醇研究进展[J].可再生能源,2011,29(2):59~64
    [64] Zaldivar J.,Nielsen J.,Olsson L..Fuel ethanol production from lignocellulose:a challenge formetabolic engineering and process integration [J].Applied Microbiology and Biotechnology,2001,56(1):17~34
    [65] Gnansounou E., Dauriat A..Techno-economic analysis of lignocellulosic ethanol: A review[J].Bioresource Technology,2010,101(13):4980~4991
    [66]王仲颖,勇强,张正敏.中国生物液体燃料发展战略与政策[M].北京:化学工业出版社,2010,84~89
    [67]管天球.我国生物质能源产业发展存在的问题及其优化对策[J].湖南科技学院学报,2010,31(4):71~74
    [68] Margeot A.,Hahn-Hagerdal B.,Edlund M.,et al.New improvements for lignocellulosic ethanol[J].Current Opinion in Biotechnology,2009,20(3):372~380
    [69] Zhang X.,Tu M.,Paice M.,et al.Bioconversion of knot rejects from a sulphite pulp mill to ethanol[J].Bioresources,2010,5(1):23~42
    [70]徐有明,黄月琴.木质纤维素原料生产燃料酒精开发技术研究进展[J].生物质化学工程,2006,40(B12):182~187
    [71] Chandra R.,Bura R.,Mabee W.,et al.Substrate pretreatment:The key to effective enzymatichydrolysis of lignocellulosics?[J].Biofuels,2007,67~93
    [72] Taherzadeh M. J.,Karimi K..Pretreatment of lignocellulosic wastes to improve ethanol and biogasproduction:a review [J].Int J Mol Sci,2008,9(9):1621~1651
    [73] Mosier N.,Wyman C.,Dale B.,et al.Features of promising technologies for pretreatment oflignocellulosic biomass [J].Bioresource Technology,2005,96(6):673~686
    [74] Zheng Y.,Pan Z.,Zhang R..Overview of biomass pretreatment for cellulosic ethanol production[J].International Journal of Agricultural and Biological Engineering,2009,2(3):51~68
    [75] Avellar B. K.,Glasser W. G..Steam-assisted biomass fractionation. I. Process considerations andeconomic evaluation [J].Biomass and Bioenergy,1998,14(3):205~218
    [76] Mosier N. S.,Hendrickson R.,Brewer M.,et al.Industrial scale-up of pH-controlled liquid hot waterpretreatment of corn fiber for fuel ethanol production [J].Applied Biochemistry And Biotechnology,2005,125(2):77~97
    [77] Yang B.,Wyman C. E..Pretreatment: the key to unlocking low-cost cellulosic ethanol [J].Biofuels,bioproducts and biorefining,2008,2(1):26~40
    [78] Lynd L. R.,Elamder R. T.,Wyman C. E..Likely features and costs of mature biomass ethanoltechnology [J].Applied Biochemistry And Biotechnology,1996,57(1):741~761
    [79] Lee D.,Yu A. H. C.,Wong K. K. Y.,et al.Evaluation of the enzymatic susceptibility of cellulosicsubstrates using specific hydrolysis rates and enzyme adsorption [J].Applied Biochemistry AndBiotechnology,1994,45(1):407~415
    [80] Mosier N.,Hendrickson R.,Dreschel R.,et al.Principles and economics of pretreating cellulose in waterfor ethanol production,F,2003[C]
    [81] Mosier N. S.,Hendrickson R.,Welch G.,et al.Corn fiber pretreatment scale-up and evaluation in anindustrial corn to ethanol facility,F,2003[C]
    [82]计红果,庞浩,张容丽等.木质纤维素的预处理及其酶解[J].化学通报,2008,5:329~335
    [83] Nah I W.,Kang Y. W.,Hwang K. Y.,et al.Mechanical pretreatment of waste activated sludge foranaerobic digestion process [J].Water Research,2000,34(8):2362~2368
    [84] Mosier N.,Hendrickson R.,Ho N.,et al.Optimization of pH controlled liquid hot water pretreatment ofcorn stover [J].Enzyme,2005,96:1986~1993
    [85] Weil J R.,Sarikaya A.,Rau S. L.,et al.Pretreatment of corn fiber by pressure cooking in water[J].Applied Biochemistry And Biotechnology,1998,73(1):1~17
    [86] Wyman C. E.,Dale B. E.,Elander R. T.,et al.Coordinated development of leading biomass pretreatmenttechnologies [J].Bioresource Technology,2005,96(18):1959~1966
    [87] Hacking A..Electron treatment of cellulose for viscose fiber [J].Chemical Fiber International,1995,45(6):454~459
    [88] Mamar S.,Hadjadj A..Radiation pretreatments of cellulose materials for the enhancement of enzymatichydrolysis [J].International Journal of Radiation Applications and Instrumentation Part C RadiationPhysics and Chemistry,1990,35(1-3):451~455
    [89] Han Y. W.,Catalano E. A.,Ciegler A..Chemical and physical properties of sugarcane bagasseirradiated with. gamma. rays [J].Journal of Agricultural and Food Chemistry,1983,31(1):34~38
    [90] Chang K. L.,Thitikorn-Amorn J.,Hsieh J. F.,et al.Enhanced enzymatic conversion with freezepretreatment of rice straw [J].Biomass and Bioenergy,2011,35(1):90~95
    [91] Taherzadeh M J.,Karimi K..Acid-based hydrolysis processes for ethanol from lignocellulosic materials:A review [J].2007,2(3):472~499
    [92]王栋,龚大春,田毅红等.酸法—酶法处理麦秆木质纤维素的工艺研究[J].可再生能源,2008,26(2):50~53
    [93] Silverstein R. A.,Chen Y.,Sharma-Shivappa R. R.,et al.A comparison of chemical pretreatmentmethods for improving saccharification of cotton stalks [J].Bioresource Technology,2007,98(16):3000~3011
    [94] Zhao X., Zhang L., Liu D..Comparative study on chemical pretreatment methods for improvingenzymatic digestibility of crofton weed stem [J].Bioresource Technology,2008,99(9):3729~3736
    [95] De La Rosa L. B.,Reshamwala S.,Latimer V. M.,et al.Integrated production of ethanol fuel andprotein from coastal bermudagrass [J]. Applied Biochemistry And Biotechnology,1994,45(1):483~497
    [96] Zhao X.,Cheng K.,Liu D..Organosolv pretreatment of lignocellulosic biomass for enzymatichydrolysis [J].Applied Microbiology and Biotechnology,2009,82(5):815~827
    [97] Brosse N.,Sannigrahi P.,Ragauskas A..Pretreatment of Miscanthus x giganteus using the ethanolorganosolv process for ethanol production [J].Industrial&Engineering Chemistry Research,2009,48(18):8328~8334
    [98] Sun F.,Chen H..Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatichydrolysis of wheat straw [J].Bioresource Technology,2008,99(13):5474~5479
    [99] Honglu X.,Tiejun S..Wood liquefaction by ionic liquids [J]. Holzforschung,2006,60(5):509~512
    [100] Pu Y.,Jiang N.,Ragauskas A. J..Ionic liquid as a green solvent for lignin [J].Journal of WoodChemistry and Technology,2007,27(1):23~33
    [101] Zhu S.,Wu Y.,Chen Q.,et al.Dissolution of cellulose with ionic liquids and its application:amini-review [J].Green Chem,2006,8(4):325~327
    [102] Heinze T.,Schwikal K.,Barthel S..Ionic liquids as reaction medium in cellulose functionalization[J].Macromolecular Bioscience,2005,5(6):520~525
    [103] Huddleston J. G.,Visser A. E.,Reichert W M,et al.Characterization and comparison of hydrophilicand hydrophobic room temperature ionic liquids incorporating the imidazolium cation [J].Green Chem,2001,3(4):156~164
    [104] Dadi A. P.,Varanasi S.,Schall C. A..Enhancement of cellulose saccharification kinetics using anionic liquid pretreatment step [J].Biotechnology and Bioengineering,2006,95(5):904~910
    [105] Homsen A. N. N. E. B E. T..Pretreatment of Corn Stover Using Wet Oxidation to Enhance EnzymaticDigestibility [J].Applied Biochemistry And Biotechnology,2003,104:37~50
    [106] Mart C.,Klinke H B.,Belinda A..Wet oxidation as a pretreatment method for enhancing the enzymaticconvertibility of sugarcane bagasse [J].Enzyme and Microbial Technology,2007,40:426~432
    [107] Schmidt A. S.,Thomsen A. B..Optimization of wet oxidation pretreatment of wheat straw[J].Bioresource Technology,1998,64(2):139~151
    [108] Chang J.,Cheng W.,Yin Q.,et al.Effect of steam explosion and microbial fermentation on celluloseand lignin degradation of corn stover [J].Bioresource Technology,2012,104:587~592
    [109] Ramos, L.P..The chemistry involved in the steam treatment of lignocellulosic materials [J].QuímicaNova,2003,26(6):863~871
    [110] Ibrahim M.,Glasser W. G..Steam-assisted biomass fractionation. Part III:a quantitative evaluation ofthe “clean fractionation” concept [J].Bioresource Technology,1999,70(2):181~192
    [111] Heitz M.,Capek-Meard E.,Koeberle P.,et al.Fractionation of Populus tremuloides at the pilot plantscale:optimization of steam pretreatment conditions using the STAKE II technology [J].BioresourceTechnology,1991,35(1):23~32
    [112] Glasser W. G.,Wright R S..Steam-assisted biomass fractionation. II. Fractionation behavior of variousbiomass resources [J].Biomass and Bioenergy,1998,14(3):219~235
    [113]王联结,陈建华.木质纤维原料预处理技术的研究现状[J].新能源产业,2007,2:46~51
    [114] Kim Y.,Hendrickson R.,Mosier N. S.,et al.Enzyme hydrolysis and ethanol fermentation of liquid hotwater and AFEX pretreated distillers' grains at high-solids loadings [J].Bioresource Technology,2008,99(12):5206~5215
    [115]李辉,袁兴中,曾光明等.混合溶剂对稻草亚/超临界液化行为影响初探[J].农业工程学报,2008,24(5):200~203
    [116]刘孝碧,曲敬序,李栋等.玉米秸在亚/超临界乙醇-水中液化的初步研究[J].农业工程学报,2006,22(5):130~134
    [117] Zhu J.,Zhu W.,Obryan P.,et al.Ethanol production from SPORL-pretreated lodgepole pine:preliminary evaluation of mass balance and process energy efficiency [J].Applied Microbiology andBiotechnology,2010,86(5):1355~1365
    [118] Wang G.,Pan X.,Zhu J.,et al.Sulfite pretreatment to overcome recalcitrance of lignocellulose(SPORL) for robust enzymatic saccharification of hardwoods [J].Biotechnology Progress,2009,25(4):1086~1093
    [119] Zhu W.,Zhu J.,Gleisner R.,et al.On energy consumption for size-reduction and yields fromsubsequent enzymatic saccharification of pretreated lodgepole pine [J].Bioresource Technology,2010,101(8):2782~2792
    [120] Kurakake M.,Ide N.,Komaki T..Biological pretreatment with two bacterial strains for enzymatichydrolysis of office paper [J].Current microbiology,2007,54(6):424~428
    [121] P. Rez J.,Munoz-Dorado J.,De La Rubia T.,et al.Biodegradation and biological treatments ofcellulose, hemicellulose and lignin:an overview [J].International Microbiology,2002,5(2):53~63
    [122]高扬,王双飞,林鹿等.甘蔗渣采用白腐菌生物降解的研究[J].华南理工大学学报:自然科学版,2008,12:37~43
    [123]邓耀杰,林鹿.白腐菌对芳香化合物的降解及其机制[J].环境科学与技术,1999,3:8~12
    [124]江凌,吴海珍,韦朝海等.白腐菌降解木质素酶系的特征及其应用[J].化工进展,2007,26(2):198~203
    [125]马登波,刘紫鹃.木素生物降解的研究进展[J].纤维素科学与技术,1996,4(1):1~12
    [126]韩善明.木质素生物降解机理及其在清洁高效制浆过程中的作用[D].北京:中国林业科学研究院,2008,8~14
    [127] Sun Y., Cheng J..Hydrolysis of lignocellulosic materials for ethanol production: a review[J].Bioresource Technology,2002,83(1):1~11
    [128] Clausen E. C.,Gaddy J. L..Concentrated sulfuric acid process for converting lignocellulosic materialsto sugars [M].Google Patents.1993,46~48
    [129]王玉高,赵炜,贡士瑞等.纤维素水解的研究进展[J].化工时刊,2009,23(5):70~73
    [130]欧阳平凯,陈茺.木质纤维素原料浓酸水解的动力学研究[J].林产化学与工业,1993,13(1):77~82
    [131] Nguyen Q. A.,Tucker M. P.,Keller F. A.,et al.Dilute acid hydrolysis of softwoods [J].AppliedBiochemistry And Biotechnology,1999,77(1):133~142
    [132] Roberto I. C.,Mussatto S. I.,Rodrigues R. C. L. B..Dilute-acid hydrolysis for optimization ofxylose recovery from rice straw in a semi-pilot reactor [J].Industrial Crops and Products,2003,17(3):171~176
    [133]张毅民,杨静,吕学斌等.木质纤维素类生物质酸水解研究进展[J].世界科技研究与发展,2007,29(1):48~54
    [134]徐明忠,庄新姝,袁振宏等.木质纤维素类生物质稀酸水解技术研究进展[J].可再生能源,2008,26(3):43~47
    [135]廖传华,黄振仁.超临界CO2流体萃取技术:工艺开发及其应用[M].化学工业出版社工业装备与信息工程出版中心,2004,76~79
    [136]苏茂尧,张力田.纤维素的酶水解糖化[J].纤维素科学与技术,1995,3(1):11~15
    [137] Delgenes J.,Escare M.,Laplace J.,et al.Biological production of industrial chemicals, ie xylitoland ethanol, from lignocelluloses by controlled mixed culture systems [J].Industrial Crops andProducts,1998,7(2-3):101~111
    [138]章冬霞,亓伟,孙秀云等.木质纤维素酶水解技术的研究[J].吉林化工学院学报,2009,26(1):1~5
    [139] Almodares A.,Hadi M..Production of bioethanol from sweet sorghum:A review [J].African Journal ofAgricultural Research,2009,4(9):772~780
    [140]沈煜,王颖,鲍晓明等.酿酒酵母木糖发酵酒精途径工程的研究进展[J].生物工程学报,2003,19(5):636~640
    [141] Cardona C. A.,Quintero J. A.,Paz I..Production of bioethanol from sugarcane bagasse: status andperspectives [J].Bioresource Technology,2010,101(13):4754~4766
    [142]李江,谢天文,刘晓风.木质纤维素生产燃料乙醇的糖化发酵工艺研究进展[J].化工进展,2011,30(2):284~291
    [143]张作阳,田沈,孟繁艳等.基因组改组及其在木质纤维素水解液乙醇发酵菌种选育中的应用展望[J].微生物学通报,2009,36(6):900~904
    [144] Sanchez O. J.,Cardona C. A..Trends in biotechnological production of fuel ethanol from differentfeedstocks [J].Bioresource Technology,2008,99(13):5270~5295
    [145] Quintero J.,Montoya M.,Snchez O.,et al.Fuel ethanol production from sugarcane and corn:Comparative analysis for a Colombian case [J].Energy,2008,33(3):385~399
    [146]王晓娟,王斌,冯浩等.木质纤维素类生物质制备生物乙醇研究进展[J].石油与天然气化工,2008,36(6):452~461
    [147] Zs. Kádár, Zs. Szengyel, K. RéczeyK..Simultaneous saccharification and fermentation (SSF) ofindustrial wastes for the production of ethanol [J].Industrial Crops and Products,2004,20(1):103~110
    [148]刘振,王金鹏,张立峰等.木薯干原料同步糖化发酵生产乙醇[J].过程工程学报,2005,5(3):353~356
    [149] Wingren A.,Galbe M.,Zacchi G..Techno-Economic Evaluation of Producing Ethanol from Softwood:Comparison of SSF and SHF and Identification of Bottlenecks [J].Biotechnology Progress,2003,19(4):1109~1117
    [150] Gomez P. F.,Ingram L..Cloning, sequencing and characterization of the alkaline phosphatase gene(phoD) from Zymomonas mobilis [J].FEMS microbiology letters,1995,125(2-3):237~245
    [151] Olsson L.,Hahn-H Gerdal B..Fermentation of lignocellulosic hydrolysates for ethanol production[J].Enzyme and Microbial Technology,1996,18(5):312~331
    [152] Chen H.,Jin S..Effect of ethanol and yeast on cellulase activity and hydrolysis of crystalline cellulose[J].Enzyme and Microbial Technology,2006,39(7):1430~1432
    [153] Bjerre A. B.,Schmidt A. S.,Ris F..Development of chemical and biological processes for productionof bioethanol:Optimization of the wet oxidation process and characterization of products [M].RisNational Laboratory,1997,32~37
    [154] Varga E.,Schmidt A. S.,Rczey K.,et al.Pretreatment of corn stover using wet oxidation to enhanceenzymatic digestibility [J].Applied Biochemistry And Biotechnology,2003,104(1):37~50
    [155] Miller G. L..Use of dinitrophenyl acid reagent for the determination of reducing sugar [J].Anal Chem,1959,31:420~428
    [156] Ghose T..Measurement of cellulase activities [J].Pure Appl Chem,1987,59(2):257~268
    [157]朱文远.SPORL预处理技术在木质生物质转化中应用研究[D].广州:华南理工大学,2010,29
    [158]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003,50~51
    [159] Himmel M. E.,Ding S Y.,Johnson D. K.,et al.Biomass recalcitrance:engineering plants and enzymesfor biofuels production [J].Science,2007,315(5813):804~807
    [160] Zhu J.,Pan X.,Wang G.,et al.Sulfite pretreatment (SPORL) for robust enzymatic saccharificationof spruce and red pine [J].Bioresource Technology,2009,100(8):2411~2418
    [161] Zhu J. Y.,Wang G. S.,Pan X. J.,et al.Specific surface to evaluate the efficiencies of milling andpretreatment of wood for enzymatic saccharification [J].Chemical Engineering Science,2009,64:474~485
    [162]余惠生.白腐菌Panus conchatus降解稻草木素机理研究:(二)木素降解产物高分子[J].纤维素科学与技术,1998,6(4):41~49
    [163]詹怀宇.白腐菌预处理芦苇制浆的研究[J].造纸科学与技术,2002,21(5):5~8
    [164]柳荣展,王广建.白腐菌在制浆造纸工业中的应用进展[J].青岛大学学报:工程技术版,2001,16(3):46~50
    [165] Alvira P.,Tom S-Pej E.,Ballesteros M.,et al.Pretreatment technologies for an efficient bioethanolproduction process based on enzymatic hydrolysis: A review [J].Bioresource Technology,2010,101(13):4851~4861
    [166] Wang W.,Powell A.,Oates C..Pattern of enzyme hydrolysis in raw sago starch: effects of processinghistory [J].Carbohydrate Polymers,1995,26(2):91~97
    [167] Li W.,Wu Z..Preliminary study on the conditions for enzymatic hydrolysis of wood[J].RenewableEnergy Resources,2007,2:41~43
    [168] Um B H.,Van Walsum G. P..Evaluation of Enzyme Mixtures in Releasing Fermentable Sugars fromPre-pulping Extracts of Mixed Northeast Hardwoods [J].Applied Biochemistry and Biotechnology,2010,161(1-8):432~447
    [169] Tu Q. L.,Fu S. Y.,Zhan H. Y.,et al.Kinetic modeling of formic acid pulping of bagasse [J].Journalof Agricultural and Food Chemistry,2008,56(9):3097~3101
    [170] Garrote G.,Dom H.,Parajo J. C..Kinetic modelling of corncob autohydrolysis [J].BiotechnologyLetters,2001,36:571~578
    [171] Gregg D.,Saddler J. N..A techno-economic assessment of the pretreatment and fractionation steps of abiomass-to-ethanol process [J].Applied Biochemistry And Biotechnology,1996,57(1):711~727
    [172]岑沛霖,吴健.植物纤维浓硫酸水解动力学研究[J].化学反应工程与工艺,1993,9(1):34~41
    [173] Schell D. J.,Farmer J.,Newman M.,et al.Dilute-sulfuric acid pretreatment of corn stover in pilot-scalereactor [J].Applied Biochemistry And Biotechnology,2003,105(1):69~85
    [174] Sreenath H.,Jeffries T..Production of ethanol from wood hydrolyzate by yeasts [J].BioresourceTechnology,2000,72(3):253~260
    [175] Chang V. S.,Kaar W. E.,Burr B.,et al.Simultaneous saccharification and fermentation of lime-treatedbiomass [J].Biotechnology Letters,2001,23(16):1327~1333
    [176] Rao T.,Sonolikar R.,Saheb S. P..Influence of magnetic field on the performance of bubble columnsand airlift bioreactor with submersed microorganisms [J].Chemical Engineering Science,1997,52(21):4155~4160
    [177] Rizzi M., Harwart K., Erlemann P., et al.Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis[J].Journal of Fermentationand Bioengineering,1989,67(1):20~24
    [178] Shi, J., Ebrik, M.A., Wyman, C.E..Sugar yields from low-consistency sulfuric acid and sulfur dioxidepretreatments and subsequent enzymatic hydrolysis of switchgrass[J]. Bioresource technology,2011,102(19):8930~8938

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700