脂肪酶拆分环氧丙醇和2-辛醇
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶催化拆分于性化合物是研究小分子和生物大分子之间作用机理的重要内容之,也足‘绿色’化合成手性药物、坏保农药、高档液品和高级香料的理想途径之一。
     本文以猪胰脂肪酶PPL生物催化剂、对脂肪酶水解环氧丙醇丁酸酯进行了探索,在最适反应条件下得到光学纯度超过98%的R型环氧丙醇丁酸酯。提出两步动力学拆分,在猪胰脂肪酶和Novozym 435共同催化下,同时得到两个高光学纯的环氧丙醇丁酸酯的异构体,总产率达到78%,极大的提高了底物的利用率。以固定化枯草杆菌脂肪酶PSL为催化剂,2-辛醇为底物、乙酸乙烯酯为酰化剂,钉复合物为消旋催化剂进行了动念动力学拆分的初步探索。在此基础上,模拟动态动力学拆分机制提出了在拆分的过程中同时引入固定酶,固定化氧化剂和固定化还原剂的方法,使底物得到充分的利用,并且把微波技术应用到该动态动力学拆分中,极大地提高了反应速率,得到99%ee的(s)-2-辛醇,总收率达到84%。
Enantiomerically pure alcohols and their derivatives are important synthetic intermediates, which have been widely used in many fields such as liquid crystals, medicaments, agricultural chemicals and organic non-linear materials. Kinetic resolution catalyzed by lipases which show high enantioselectivity for synthesizing these optically active compounds provides the most convenient methods. And many resolution methods had been wildly investigated by using lipases’transesterification and hydrolysis.
     2,3-epoxy-1-propanol (glycidol) and 2-octanol were used as substrates in the lipase catalytic resolution in this thesis. Enhanced activity and enantioselectivity for the lipases were obtained by optimizing the reaction conditions. The immobilized lipase exhibited very good reusability and microwave irradiation was also introduced to increase the velocity of the reaction. The intrinsic limitation for classic resolution is that the theoretical maximum yield cannot exceed 50% for either enantiomer. But in our experiment, substrate was sufficiently used by using two step resolution and dynamic kinetic resolution (DKR) which employs a catalyst for the in situ racemization together with the enzymatic resolution to overcome the limitation, increasing the yield up to 100% in theory. The industry feasibility of these routes was also investigated.
     There are three methods used for resolution of glycidol: 1. Hydrolysis of glycidyl butyrate by Porcine pancreatic lipase (PPL) (S-favored) with an E of 21 for production of (R)-glycidyl butyrate (13.2 mmol, 98% ee, 36% yield) under the optimal conditions. A rapid screening method for hydrolysis was found by using a water-soluble Quantum dot as luminescent pH probe. No product separation was needed and the probe also exhibited very high sensitivity. 2. The recovered (R)-enriched glycidol (19.8 mmol, 65% ee, 56% yield) from the first resolution was used as substrate for transesterification catalyzed by Novozym 435 (R-favored) with an E of 69 to obtain (S)-glycidyl butyrate (15.1 mmol, 98% ee, 42% yield) under the optimum conditions. 3. An efficient two-step enzymatic resolution process for production of both enantiomers of glycidyl butyrate was developed. Contrary to the transformations based on the classic kinetic resolution catalyzed by enzymes, where one enantiomer can be obtained with high enantiomeric excess, two-step enzymatic resolution is a method to obtain both enantionmers with high enantiomeric excess by subjecting the isolated enantiomerically enriched product of the first enzymatic resolution to the second, which results in the increase of the enantiomeric excess of the product in the second step. In the present study, an efficient method to produce (R)- and (S)-glycidyl butyrate with high enantiomeric purity is performed by using a two-step enzymatic resolution with sequential hydrolysis and transesterification by porcine pancreatic lipase (PPL) and the immobilized Candida antarctica lipase B (Novozym435) with the opposite enantioselectivity, respectively. The total yield of (R)- and (S)-glycidyl butyrate was 78% compared with the initial (R,S)-glycidyl butyrate added.
     On the second part, Lipase from Pseudomonas sp. (PSL) was immobilized on SBA-15 (a highly ordered hexagonal array mesoporous silica molecular sieve) through physical adsorption and the immobilized PSL was used in resolution of (R,S)-2-octanol with vinyl acetate as acyl donor. Enhanced activity and enantioselectivity were observed for the immobilized PSL compared with those of the free one. The effects of reaction conditions, such as solvents, temperature, water activity and substrate ratio were investigated. Under the optimum conditions, the residual (S)-2-octanol was recovered with 99% enantiomeric excess at 52% conversion. The results also indicated that the immobilized PSL exhibited very good reusability. The Shvo’catalyst was synthesized and used in racemization. And dynamic kinetic resolution was also investigated by using both of the immobilized lipase and Shvo’catalyst, 62% (S)-octanol with 99% ee was obtained under the optimum condition. Microwave irradiation is widely used in organic chemistry while it is proved to be clean, fast, and convenient energy source. Traditionally, organic synthesis is carried out by conductive heating with an external heat source; this is comparatively slow and inefficient to transfer energy into the system, because it depends on the thermal conductivity that must be penetrated, resulting in the temperature of the reaction vessel being higher than that of the reaction mixture. In contrast, microwave irradiation produces efficient internal heating by direct coupling of microwave energy with the molecules (solvents, reagents, catalysts) in the reaction mixture, and it usually shortens the reaction time, but with a higher yield. Since lipase-catalyzed reactions are rather sluggish in non-aqueous media, the synergism with microwave could be expected to enhance the reaction rate. From our results, microwave irradiation can not only increase the velocity of lipase catalytic reaction, but also can highly increase the oxidation and reduction. A mimic dynamic kinetic resolution process was proposed based on this phenomenon by introducing the immobilized oxidant (Chromium trioxide) and reductant (Sodium borohydride) as racemization catalyst under microwave irradiation. Under the optimum conditions, (R)-2-octanol acetate was obtained at 99% enantiomeric excess with 84% yield in 2 h.
引文
[1]张今,曹淑桂,罗桂民,张学忠,李正强,分子酶学工程导论,北京:科学出版社,2003,一版,P1.
    [2]罗贵民,曹淑桂,张今,酶工程,北京:化学工业出版社,2002,一版,P1-5.
    [3]邹国林,朱汝璠,酶学,武汉:武汉大学出版社,1997,一版,P315.
    [4] Sharma R, Chisti Y, Banerjee U C. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 2001. 19(8): 627-662.
    [5] Popp S, Packschies L, Radzwill N, Vogel K P, Steinhoff H J, Reinstein J. Structural Dynamics of the DnaK-Peptide Complex. J. Mol. Biol. 2005. 347(5): 1039-1052.
    [6] Simons J W, Gotz F, Egmond M R, Verheij H M. Biochemical properties of staphylococcal (phospho) lipases. Chem. Physics. Lipids. 1998. (93): 27-37.
    [7] Salis A, Svensson I, Monduzzi M, Solinas V, Adlercreutz P. The atypical lipase B from Candida antarctica is better adapted for organic media than the typical lipase from Thermomyces lanuginose. Biochimica. et Biophysica. Acta. 2003. 1646(1-2): 145-151.
    [8] Gutsche I, Essen L O, Baumeister W. Group II chaperonins: new TriC (k)s and turns of a protein folding machine. J. Mol. Biol. 1999. 293(2): 295-312.
    [9] Kim K K, Song H K, Shin D H, Hwang K Y, Suh S W. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure. 1997. 5(2): 173-185.
    [10] Overbeeke P L, Govardhan C, Khalaf N, Jongejan J A, Heijnen J J. Influence of lid conformation on lipase enantioselectivity. J. Mol. Catal. B-Enzym. 2000. 10 (4): 385-393.
    [11] Verger R. Interfacial activation of lipases: facts and artifacts. Trends. Biotech. 1997. 15(1): 32-38.
    [12] Jones G A, Wu Y. Effect of Limited Proteolysis on Phospholipase C- 1 Kinetics. Arch. Biochem. Biophys. 2000. 375(2): 229-239.
    [13] Miled N, Canaan S, Dupuis L, Roussel A, Riviere M, Carriere F, Caro A, Cambillau C, Verger R. Digestive lipases: From three-dimensional structure to physiology. Biochimie. 2000. 82(11): 973-986.
    [14] Cajal Y, Svendsen A, Bolos J D, Patkar S A, Alsina M A. Effect of the lipid interface on the catalytic activity andspectroscopic properties of a fungal lipase. Biochimie. 2000. 82(11): 1053-1061.
    [15] Bano M C, Gonzalez-Navarro H, Abad H. Long-chain fatty acyl-CoA esters induce lipase activation in the absence of a water-lipid interface. Biochimica. etBiophysica. Acta. 2003. 1632(1): 55-61.
    [16] Hu X, Machius M, Yang W. Monovalent cation dependence and pre- ference of GHKL ATPases and kinases. FEBS. Lett. 2003. 544(3): 268-273.
    [17] Cipiciani A, Bellezza F, Fringuelli F, Silvestrini M G. Influence of pH and temperature on the enantioselectivity of propan-2-ol-treated Candida rugosa lipase in the kinetic resolution of (+/-)-4-acetoxy-[2, 2]-paracyclophane. Tetrahedron-Asymmetr. 2001. 12(16): 2277-2281.
    [18] Nini L, Sarda L, Comeau L C, Boitard E, Dubes J P, Chahinian H. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study. Biochimica. et. Biophysica. Acta.2001. 1534(1): 34-44.
    [19] Parker D. Taylor R J. Analytical methods: Determination of enantiomeric purity. Asymmetric synthesis. 1st ed. London. Chapman & Hall. 1992. 33.
    [20] Fersht A. Enzyme structure and mechanism. 2nd ed. Freeman, New York. 1985.
    [21] Tokunaga M, Larrow J F, Kakiuchi F, Jacobsen E N. Asymmetric catalysis with water: Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science. 1997. 277(5328): 936-938.
    [22] Chen C S, Fujimoto Y, Girdaukas G, Sih C J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982. 104(25): 7294-7299.
    [23] Chen C S, Wu S H, Girdaukas H, Sih C J. Enzyme-catalyzed esterifications in water-organic solvent biphasic systems. J. Am. Chem. Soc. 1987. 109(9): 2812-2817.
    [24] Brady L, Brzozowski A M, Derewenda, Dodson Z S, Dodson G, Tolley S, Turkenburg J P, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Menge U. A Serine Protease Triad Forms the Catalytic Center of a Triacylglycerol Lipase. Nature. 1990. 343(6260): 767-770.
    [25] Winkler F K, Darcy A. Structure of human pancreatic lipase. Hunziker. Nature. 1990. 343(6260): 771-774.
    [26] Faber K. Biotransformations in organic chemistry, 3rd ed. Springer. Berlin. 1997.
    [27] Straathof A J, Jongejan J A. The enantiomeric ratio: origin, determination and prediction. Enzy. Microb. Technol. 1997. 21(8): 559-571.
    [28] Faber K, Riva S. Enzyme-Catalyzed Irreversible Acyl Transfer. Synthesis. 1992. 1992(10): 895-910.
    [29] Viloca M G, Gao J, Karplus M, Truhlar D G. How Enzymes Work: Analysis by Modern Rate Theory and Computer Simulations. Science. 2004. 303(5655): 186-195.
    [30] Rakels J L, Straathof A J, Heijnen J J. A simple method to determine theenantiomeric ratio in enantioselective biocatalysis. Enzyme Microb. Technol. 1993. 15(12): 1051-1056.
    [31]刘华杰,紫藤的缠绕茎与手性,科学,2002,54(5): 32-34.
    [32]王普善,加速手性技术的开发-迎接世界制药工业的手性挑战(一),中国新药杂志,1998,7(5): 335.
    [33]梁舒萍,手性化合物的生物活性与制取方法,佛山科学技术学院学报(自然科学版),1998,16(4): 59-64.
    [34]张玉彬,生物催化的手性合成,北京:化学工业出版社,2002,一版,P53.
    [35]林国强,陈耀全,陈新滋,李月明,手性合成——不对称反应及其应用,北京:科学出版社,2000,一版,P1.
    [36] Stinson S C, Chiral drug interactions. Chem. Eng. News. 1999. 77(41): 101-120.
    [37] Wang F, Khaled M G. Enantiomeric separations by nonaqueous capillary electrophoresis. J. Chromatogr. A. 2000. 875(1-2): 277-293.
    [38] Matchett M W, Branch S K, Jefferies T M. Application of modified cyclodextrins in capillary electrophoresis for enantiomeric resolution of propranolol and analogues. J. Chromatogr. A. 1995. 705(2): 351-361.
    [39] Na N, Hu Y, Ouyang J, Baeyens W R, Delanghe J R, Beer T D. Use of polystyrene nanoparticles to enhance enantiomeric separation of propranolol by capillary electrophoresis with Hp-beta-CD as chiral selector. Anal. Chim. Acta. 2004. 527(2): 139-147.
    [40] Servaisa A C, Filleta M, Chiapa P, Deweb W, Huberta P, Crommena J. Influence of the nature of the electrolyte on the chiral separation of basic compounds in nonaqueous capillary electrophoresis using heptakis (2,3-di-O-methyl-6-O-sulfo) -??-cyclodextrin. J. Chromatogr. A. 2005. 1068(1): 143-150.
    [41]杨春龙,蒋木庚,王鸣华,水解酶在制备旋光性农药中的应用,化学世界. 2000,(10): 507-519.
    [42] Pamies O, Backvall J E. Combination of Enzymes and Metal Catalysts. A Powerful Approach in Asymmetric Catalysis. Chem. Rev. 2003. 103(8): 3247-3262.
    [43] Tol J B, Jongejan J A, Geerlof A, Duine J A. Enantioselective enzymatic catalysis: 2. Applicability of methods for enantiomeric ratio determination. Recl. Trav. Chim. Pays-Bas. 1991. 110(5): 255-258.
    [44] Gravil E, Veschambre H, Chenevert R, Bolte J. First lipase catalysed resolution of epoxy enol esters. Tetrahedron. Letters. 2006. 47(34): 6153-6157.
    [45] Enzyme Nomenclature. Academic. Press. New York. NY. USA.1979.
    [46] Rotticci D. Understanding and Engineering the Enantioselectivity of Candida Antarctica Lipase B towards sec-Alcohols. Stockholm. 2000. 1-73.
    [47] Kastle J H. Concerning lipase, the fat-splitting enzyme, and the. reversibility of its action,Loevenhart. Am. Chem. J. 1900. 24(7): 491-525.
    [48] Zaks A, Klibanov A M. Enzymatic catalysis in organic media at 100°C. Science. 1984. 224(4654): 1249-1251.
    [49] Margolin A L, Klibanov A M. Peptide synthesis catalyzed by lipases in anhydrous organic solvents. J. Am. Chem. Soc. 1987. 109(12): 3802-3804.
    [50] Tsai S W, Cheng I C, Huang C M. Effects of hydrolysis and esterification side-reactions on the kinetic resolution of enzyme-catalyzed irreversible transesterification in organic solvents. Chem. Eng. Sci. 2000. 55(20): 4571-4582.
    [51] Therisod M, Klibanov A M. Regioselective acylation of secondary hydroxyl groups in sugars catalyzed by lipases in organic solvents. J. Am. Chem. Soc. 1987. 109(13): 3977-3981.
    [52]庄英萍,许建和,张嗣良,手性药物的酶法拆分研究近况,中国药学杂志,1998,33(4): 197-201.
    [53] Cao S G, Liu Z B, Feng Y, Ma L, Ding Z T, Cheng Y H. Esterification and transterification with immobilized Lipase in organic solvents. Appl. Biochem. Biotechnol. 1992. 32(1): 1-6.
    [54] Xu J H, Kawamoto T, Tanaka A. Efficient kinetic resolution of dl-menthol by lipase-catalyzed enantioselective esterification with acid anhydride in fed-batch reactor. Appl. Microbiol. Biotechnol. 1995. 43(4): 402-407.
    [55] Duan G, Chen J Y. Effect of polar additives on the enzyme enantioselectivity of an esterification reaction in organic solvents. Biotechnol. Lett. 1994. 16(11): 1065-1068.
    [56] Wisdom R A, Dunnill P, Lilly M D, Macrae R A. Enzyme esterification of fats: factors influencing the choice of support for immobilized lipase. Enzyme. Microb. Technol. 1984. 6(10): 443-446.
    [57] Shaw J F, Chang R C, Wang H J. Lipolytic activities of lipase immobilized on six support materials. Biotechnol. Bioeng. 1990. 35(2): 132-137.
    [58] Bouwer S T, Cuperus F P, Derksen J T. The performance of enzyme-membrane reactors with immobilized lipase. Enzyme. Microb. Technol. 1997. 21(4): 291-296.
    [59] Xu H, Li M, He B. Immobilization of Candida cylindracea lipase on methyl acrylate-divinyl benzene copolymer and its derivatives. Enzyme. Microb. Technol. 1995. 17(3): 194-199.
    [60] Shioji K, Ueno Y, Kurauchi Y, Okuma K. Lipase-catalyzed kinetic resolution of P-chiral phosphorus compounds: enantiopreference of Pseudomonas lipase and Candida antarctica lipase. Tetrahedron. Lett. 2001. 42(37): 6569-6571.
    [61] Vattinen E, Kanerva L T. Lipase-catalysed transesterification in thepreparation of optically active solketal. J. Chem. Soc. Perkin. Trans. 1994. 1(23): 3459-3463.
    [62] Brown S M, Davies S G, Sousa J A. Enhanced enantiomeric excesses and yields for the faster reacting enantiomer in lipase mediated kinetic resolutions. Tetrahedron: Asymmetry. 1993. 4(5): 813-822.
    [63] Guanti G, Riva R. Synthesis of Optically Active N-Benzyl-2,4-Bis (hydroxymethyl) Substituted Azetidines by Lipase Catalyzed Acetylations. Tetrahedron: Asymmetry. 1995. 6(12): 2921-2924.
    [64] Li Y X, Adrie J J. Hanefeld S U. Enantioselective formation of mandelonitrile acetate—investigation of a dynamic kinetic resolution. Tetrahedron: Asymmetry. 2002. 13(7): 739-743.
    [65] Sugai T, Ikeda H, Ohta H. Biocatalytic Approaches to Both Enantiomers of (2R, 3S)-2-Allyloxy-3,4,5,6-tetrahydro-2H-pyran-3-ol. Tetrahedron. 1996. 52(24): 8123-8134.
    [66] Kim M J, Ahn Y, Park J. Dynamic kinetic resolutions and asymmetric transformations by enzymes coupled with metal catalysis. Curr. Opin. Biotechnol. 2002. 13(6): 578-587.
    [67] Kim M J, Choi M Y, Han M Y, Choi Y K, Lee J K, Park J. Asymmetric Transformations of Acyloxyphenyl Ketones by Enzyme-Metal Multicatalysis. J. Org. Chem. 2002. 67(26): 9481-9483.
    [68] Pamies O, Ell A H, Samec J S, Hermanns N, Backvall J E. An efficient and mild ruthenium-catalyzed racemization of amines: application to the synthesis of enantiomerically pure amines. Tetrahedron. Letters. 2002. 43(46): 4699-4702.
    [69] Huerta F F, Minidis A B, Backvall J E. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 2001. 30(6): 321-331.
    [70] Choi J H, Kim Y H, Nam S H, Shin S T, Kim M J, Park J. Aminocyclopentadienyl Ruthenium Chloride: Catalytic Racemization and Dynamic Kinetic Resolution of Alcohols at Ambient Temperature. Angew. Chem. Int. Ed. Engl. 2002. 41(13): 2373-2376.
    [71] Turner N J. Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Curr. Opin. Chem. Biol. 2004. 8(2): 114-119.
    [72] Veum L, Hanefeld U. Enantioselective formation of mandelonitrile acetate: investigation of a dynamic kinetic resolution II. Tetrahedron: Asymmetry. 2004. 15(23): 3707-3709.
    [73] Allan G R, Carnell A J, Kroutil W. One-pot deracemisation of an enol acetate derived from a prochiral cyclohexanone. Tetrahedron. Lett. 2001. 42(34): 5959-5962.
    [74] Lin H Y, Tsai S W. Dynamic kinetic resolution of (R, S)-naproxen 2, 2, 2-trifluoroethyl ester via lipase-catalyzed hydrolysis in micro-aqueous isooctane. J. Mol. Catal. Enzym. B. 2003. 24-25(1): 111-120.
    [75] Ebbers E J, Ariaans J A, Houbiers J P, Bruggink A, Zwanenburg B. Controlled Racemization of Optically Active Organic Compounds: Prospects for Asymmetric Transformation. Tetrahedron. 1997. 53(28): 9417-9476.
    [76] Liljeblad A, Kiviniemi A, Kanerva L T. Aldehyde-based racemization in the dynamic kinetic resolution of N-heterocyclic a-amino esters using Candida antarctica lipase A. Tetrahedron. 2004. 60(3): 671-677.
    [77] Mingos D M, Baghurst D R. Application of microwave dielect ric heating effect s to synthetic problems in chemistry. J. Chem. Soc. Rev. 1991. (21): 1-47.
    [78] Gedye R, Smith F, Westawa K. Microwave assisted syntheses in household microwave ovens. Tetrahedron. Lett. 1986. 27(3): 279-283.
    [79]黄卡玛,刘永清,唐敬贤,等.微波化学─一门新兴的交叉学科[J ] .电子科技导报,1994,(1) :20 -21.
    [80]金钦汉,戴树珊,黄卡玛.微波化学[M] ,北京:科学出版社, 1999.
    [81] Sun W C, Guy P M, Jahngen J H. Microwave-induced hydrolysis of phospho anhydride bonds in nucleotide triphosphates. J. Org. Chem. 1988. 53(18): 4414- 4416.
    [82]蔡汉成,方云,夏咏梅等,有机化学,2003,23 (3): 298- 3041.
    [83] Jin Q H. Microwave Chemistry. Science Press. Beijing. 1999.
    [84] Parker M C, Besson T, Lamare S, Legoy M D. Microwave radiation can increase the rate of enzyme-catalysed reactions in organic media. Tetrahedron. Lett. 1996. 37(46): 8383-8386.
    [85] CarrilloMunoz J R, Bouvet D, Guidbe J E, Loupy A, Petit A. Microwave-Promoted Lipase-Catalyzed Reactions. Resolution of (±)-1-Phenylethanol. J. Org. Chem. 1996. 61(22): 7746-7749.
    [86] Hanessian S. Total synthesis of natural products: the Chiron approach. Pergamon Press. Oxford. 1983.
    [87] Sharpless K B. Asymmetric synthesis, 1985. Vol. 5. Academic Press. London.
    [88] Pawar A S, Chattopadhyay S, Chattopadhyay A, Mamdapur V R. Novel synthesis of a 1,4-dienic macrolide pheromone of Cucujid grain beetles. J. Org. Chem. 1993. 58(26): 7535-7536.
    [89] Kulkarni B A, Chattopadhyay S, Chattopadhyay A, Mamdapur V R. Synthesis of some bioactive acetylenic alcohols, components of the marine sponge Cribrochalina vasculum. J. Org. Chem. 1993. 58(22): 5964-5966.
    [90] Kasai N, Suzuki T, Furukawa Y. Chiral C3 epoxides and halohydrins: Theirpreparation and synthetic application. J. Mol. Catal. B: Enzym. 1998. 4(5-6): 237-252.
    [91] Shimizu S, Ogawa J, Kataoka M, Kobayashi M. Screening of novel microbial enzymes for the production of biologically and chemically useful compounds. Adv. Biochem. Eng. Biotechnol. 1997. (58): 46-83.
    [92] Hanson R M. The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols. Chem. Rev. 1991. 91(4): 437-475.
    [93] Baer E, Fisher H O. 1,2,5,6-Diacetone d-Mannitol and 1,2,5,6-Diacetone l-Mannitol. J. Am. Chem. Soc. 1945. 67(2): 338-339.
    [94] Emons C H, Koster B M, Vekemans J M, Sheldon R A. A new convenient method for the synthesis of chiral C3-synthons.Tetrahedron: Asymm. 1991. 2(5): 359-362.
    [95] Jung M E, Shan T J. Total synthesis of (R)-glycerol acetonide and the antiepileptic and hypotensive drug (-)-.gamma.-amino-.beta.-hydroxybutyric acid (GABOB): use of vitamin C as a chiral starting material. J. Am. Chem. Soc. 1980. 102(20): 6304-6311.
    [96] Jackson D Y. An improved preparation of (+)-2,3-O-isopropylidene- Image–glyceraldehyde. Synth. Commun. 1988. (18): 337-341.
    [97] Kangan H B. Phat D T. Asymmetric catalytic reduction with transition metal complexes. I. Catalytic system of rhodium(I) with (-)-2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, a new chiral diphosphine. J. Am. Chem. Soc. 1972. 94(18): 6429-6433.
    [98]赵军,杨世琰,王亚东,合成化学,1996, 4(1): 88.
    [99] Kim B M, Sharpless K B. Heterogeneous Catalytic Asymmetric Dihydroxylation: Use of a Polymer-Bound Alkaloid. Tetrahedron Lett. 1990. 31(21): 3003-3006.
    [100] Lee N H, Jacobsen E N. Enantiomerically Pure Epoxychromans via Asymmetric Catalysis. Tetrahedron. Lett. 1991. 32(38): 5055-5058.
    [101] Yamada S, Tsujoka I, Shibatani T. Efficient alternative synthetic route to diltiazem via (2R, 3S)-3-(4-methoxyphenyl) glycidamide. Chem. Pharm. Bull. 1999. 47(2): 146-150.
    [102] Wu D R, Cramer S M, Belfort G. Kinetic resolution of racemic glycidyl butyrate using a multiphase membrane enzyme reactor: experiments and model verification. Biotechnology and Bioengineering. 1993. 41(10): 979-990.
    [103] Golding B T. Chem. Ind (London). 1988. 615.
    [104] Shimizu S, Kataoka M. Production of Chiral C3- and C4-Units by Microbial Enzymes. Adv. Biochem. Eng. Biotechnol. 1999. (63): 110-122.
    [105] Somers N A, Kazlauskas R J. Mapping the substrate selectivity andenantioselectivity of esterases from thermophiles. Tetrahedron: Asymmetry. 2004. (15): 2991-3004.
    [106] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996. (271): 933-937.
    [107] Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998. (281): 2013-2016.
    [108] Han M, Gao X, Su J Z, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001. (19): 631-635.
    [109] Chan W C. Maxwell D J, Gao X H, Bailey R E, Han M Y, Nie S M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002. (13): 40-46.
    [110] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005. 307(5709): 538-544.
    [111] Xu H X, Sha M Y, Wong E Y, Uphoff J, Xu Y H, Treadway J A, Truong A, OBrien E, Asquith S, Stubbins M, Spurr N K, Lai E H, Mahoney W. Multiplexed SNP genotyping using the Qbead (TM) system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res. 2003. 31(8): E43.
    [112] Alexson D, Chen H F, Cho M, Dutta M, Li Y, Shi P, Raichura A, Ratmadurai D, Parikh S, Stroscio M A, Vasudev M. Semiconductor nanostructures in biological Applications. J. Phys.: Condens. Matter. 2005. 17(26): R637-R656.
    [113] Parak W J, Pellegrino T, Plank C. Labelling of cells with quantum dots. Nanotechnology. 2005. 16(2): R9-R25.
    [114] Xie H Y, Liang H G, Zhang Z L, Liu Y, He Z K, Pang D W. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochimica. Acta. Part. A. 2004. 60(11): 2527–2530.
    [115] Bellezza F, Cipiciani A, Ricci G, Ruzziconi R. On the enzymatic hydrolysis of methyl 2-fluoro-2-arylpropionates by lipases. Tetrahedron. 2005. 61(33): 8005-8012.
    [116] Lakowicz J R. Principles of Fluorescence Spectroscopy. New York: Plenum Press. 1983. 187-256.
    [117] Halling P J. Organic liquids and biocatalysts: theory and practice, Trends in Biotechnology. 1989. 7(3): 50-52.
    [118] Lang D A, Mannesse M L, Haas G H, Verheij H M, Dijkstra B W. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. Eur. J. Biochem. 1998. 254(2): 333-340.
    [119] Nguyen B V. Chiral Building Blocks for Synthesis of Pine Sawfly Sex Pheromones, Enantioselective Lipase Catalysed Acylations and Esterifications of Primary Alcohols and Acids and Synthesis of the Sex Pheromone of the Pine SawflyMicrodiprion pallipes. Sundsvall. Doctoral Thesis. 2000. 1-64.
    [120] Tuomi W V, Kazlauskas R J. Molecular Basis for Enantioselectivity of Lipase from Pseudomonas cepacia toward Primary Alcohols. Modeling, Kinetics, and Chemical Modification of Tyr29 to Increase or Decrease Enantioselectivity. J. Org. Chem. 1999. 64(8): 2638-2647.
    [121] Kim K K, Song H K, Shin D H, Hwang K Y, Sub S W. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure. 1997. 5(2): 173-185.
    [122] Schulz T, Pleiss J, Schmid R D. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model, Protein. Sci .2000. 9(6): 1053-1062.
    [123] Piao G, Akagi K, Shirakawa H. Chiroptical titanium complexes as catalytically active chiral dopants available for asymmetric acetylene polymerization. Synthetic. Metals. 1999. 101(1-3): 92-93.
    [124] Blaser H U, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Selective Hydrogenation for Fine Chemicals: Recent Trends and New Developments. Adv. Synth. Catal. 2003. 345(1-2) 103-151.
    [125] Everett D H. In IUPAC Mannul of Symbols and Terminology. Pure. Appl. Chem. 1972. 31(1): 578-638.
    [126] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992. 359(6397): 710-712.
    [127] Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992. 114(27): 10834-10843.
    [128] Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic Triblock and Star Diblock Copolymer and Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998. 120(24): 6024-6036.
    [129] Humphrey H P, Yiu, Paul A W. Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid J. Mater. Chem. 2005. 15(35-36): 3690-3700.
    [130] Ma H, He J, David G, Duan X. Immobilization of lipase in a mesoporous reactor based on MCM-41. J. Molec. Catal. B Enzymatic. 2004. 30(5-6): 209-217.
    [131] Rosa M, Blanco P T, Monica F P, Cristina O, Guadalupe D. Functionalization of mesoporous silica for lipase immobilization Characterization of the support and the catalysts. J. Molec. Catal. B Enzymatic. 2004. 30(2): 83-93.
    [132] Humphrey H P, Yiu, Paul A W, Nigel P. Botting. Enzyme immobilisation usingSBA-15 mesoporous molecular sieves with functionalised surfaces. J. Molec. Catal. B Enzymatic. 2001. 15(1): 81-92.
    [133] Lisa W K, Victoria L, Jimenez, Kenneth J, Balkus J. Cytochrome c immobilization into mesoporous molecular sieves. J. Molec. Catal. B Enzymatic. 2000. 10(5): 453-469.
    [134] Humphrey H P, Yiu, Catherine H, Botting N P, Botting, Paul A W. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve. Phys. Chem. Chem. Phys. 2001. (3): 2983-2985.
    [135] Gais H J, Weiden I. Preparation of Enantiomerically Pureα-Hydroxymethyl S-tert-Butyl Sulfones by Candida Antarctica Lipase Catalyzed Resolution. Tetrahedron-Asymmetr. 1996. 7(5): 1253-1256.
    [136] Brenelli E C, Fernandes J L. Stereoselective acylations of 1,2-azidoalcohols with vinyl acetate, catalyzed by lipase Amano PS. Tetrahedron-Asymmetr. 2003. 14(10): 1255-1259.
    [137] Adam W, Blancafort L, Saha-Moller C R. Kinetic resolution of racemic halohydrins, precursors of optically active di- and trialkyl-substituted epoxides, with lipase from Pseudomonas sp. Tetrahedron-Asymmetr. 1997. 8(19): 3189-3192.
    [138] Brand S, Jones M F, Rayner C M. The first examples of dynamic kinetic resolution by enantioselective acetylation of hemithioacetals: An efficient synthesis of homochiralα-Acetoxysulfides. Tetrahedron. Lett. 1995. 36(46): 8493-8496.
    [139] Larissegger-Schnell B, Glueck S M, Kroutil W, Faber K. Enantio-complementary deracemization of (±)-2-hydroxy-4-phenylbutanoic acid and (±)-3-phenyllactic acid using lipase-catalyzed kinetic resolution combined with biocatalytic racemization. 2006. 62(12): 2912-2916.
    [140] Bornscheuer U T, Kazlauskas R J. Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations Wiley-VCH: Weinheim, 1999.
    [141] Larsson A L, Persson B A, Backvall J E. Enzymatic resolution of alcohols coupled with ruthenium-catalyzed racemization of the substrate alcohol. Angew. Chem. Int. Ed. 1997. 36(11): 1211-1212.
    [142] Persson B A, Larsson A L, Ray M L, Backvall J E. Ruthenium- and enzyme-catalyzed dynamic kinetic resolution of secondary alcohols. J. Am. Chem. Soc. 1999. 121(8): 1645-1650.
    [143] Varma R S, Dahiya R, Saini R K. Lodobenzene diacetate on alumina: rapid oxidation of alcohols to carbonyl compounds in solventless system using microwaves. Tetrahedron. Lett. 1997. 38(40): 7029-7032.
    [144] Varma R S, Saini R K. Microwave-assisted reduction of carbonyl compounds in solid state using sodium borohydride supported on alumina. Tetrahedron. Lett. 1997. 38(25): 4337-4338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700