脂肪酶固定化的新方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶是一种水解酶,其突出特点是能够在油-水界面实施催化功能,被广泛应用于食品、医药及手性化合物合成等领域。由于固定化酶具有稳定性高、易回收和重复利用等优点,一直以来是酶工程的热点研究领域之一。本文以有机相中酶法拆分消旋烯丙醇酮为对象,以制备高活性、高稳定性和高对映体选择性的固定化脂肪酶催化剂为目标,从固定化载体材料和固定化方法两个方面研究固定化过程对酶催化性能的影响规律及作用机制,研究新型的脂肪酶固定化方法。主要内容如下:
     (1)以廉价的天然无机材料硅藻土为载体,通过表面改性使之表面连接上不同的疏水性有机官能团,具体包括甲基丙烯酰氧基丙基、辛基、十二烷基、乙烯基等。采用吸附法对Arthrobacter sp.脂肪酶(ASL)进行固定化,研究载体表面性质对固定化酶催化性能的影响。结果表明,经疏水表面改性的载体能明显影响固定化酶的蛋白结合量、活力和稳定性,但影响规律不同。其中,甲基丙烯酰氧基丙基载体所得固定化酶的活力最高,但稳定性相对较低,而十二烷基固定化酶的活力和稳定性均相对较高。以十二烷基修饰的硅藻土为载体,研究载体疏水性强弱、酶与载体比例以及缓冲液pH等因素对吸附固定化酶性能的影响规律,并对固定化工艺进行优化,最终确定较佳的条件为:载体硅烷化程度0.08g/g载体、酶与载体的比例1/30-1/40、缓冲液为pH9.0,0.03M的Tris-HCl。在吸附的基础上用戊二醛进一步处理,得到酶聚集体包被法固定化酶。该固定化酶的蛋白结合量、活力及稳定性等均较吸附法有明显提高,总活力回收达到游离酶的8.5倍;E≥200;重复利用20天后,残余酶活力为原来的76%左右;
     (2)以氨丙基三甲氧硅烷和正硅酸乙酯(TEOS)为前体,采用溶胶凝胶法合成氨丙基凝胶,并用戊二醛对其进行活化使其末端带有游离的醛基。以该凝胶材料为载体分别采用共价结合和酶聚集体包被两种方法对脂肪酶ASL进行固定化。结果表明,这两种方法所得固定化酶的稳定性明显升高。其中,基于共价结合的酶聚集体包被法固定化酶在蛋白结合量和酶活力等方面均比单纯的共价结合法要高,其总酶活回收为游离酶的84%;E≥200;重复利用9次后,残余酶活在95%以上;
     (3)以非烷烃类的硅烷化试剂甲基丙烯酰氧基丙基三甲氧基硅烷(MAPTMS)和正硅酸乙酯(TEOS)为混合前体采用溶胶凝胶包埋法对脂肪酶ASL进行固定化,并将之与已报道的烷烃类硅烷前体所制备的包埋固定化酶进行比较。结果表明,该固定化酶在p-NPP水解以及烯丙醇酮转酯化拆分两个反应体系中均表现出比其它前体更高的酶活力,并且这些固定化酶活力的高低与凝胶材料的疏水性强弱无直接对应关系;此外,在烯丙醇酮的转酯化反应体系中,固定化酶的对映体选择性明显升高。研究包埋条件对固定化酶催化性能的影响规律,并对包埋工艺进行优化,包括MAPTMS与TEOS的摩尔比,前体水解过程中水的添加量以及酶的添加量等,最终在较佳的条件下固定化酶的总活力回收为游离酶的13.6倍,蛋白负载量为1.4mg/g固定化酶;最佳固定化条件下所得的包埋酶表现出比游离酶更高的稳定性,在烯丙醇酮转酯化反应体系中,固定化酶重复利用60天后残余酶活力为原来的54%左右;而游离酶重复利用20天后,残余酶活力为52%;
     (4)将溶胶凝胶包埋固定化酶用于烯丙醇酮转酯化拆分反应体系中,考察了反应温度、外扩散和内扩散效应、底物浓度和产物浓度等条件对酶活力、选择性以及反应过程的影响,结果表明上述反应条件的改变对酶的对映体选择性基本无影响;当摇床转速大于200r/min时可基本消除外扩散的影响;当固定化酶的粒径小于1.0mm时可基本消除内扩散限制;当底物浓度和产物浓度小于1.0mol/l时,酶催化过程无抑制现象存在。在无内外扩散及底物和产物抑制的前提下研究了溶胶凝胶包埋固定化酶催化转酯化反应拆分烯丙醇酮的动力学。根据乒乓反应机制建立了动力学模型,反应速率方程为(?),其中,V_m=1.00mmol/l/min,K_A=1.80mmol/l,K_B=131.84,K_(BA)=5.10,K_(QA)=366.66,K_(BQA)=0.52 l/mmol。此外,尝试了一种合成S-烯丙醇酮的新工艺,即以消旋烯丙基呋喃甲醇为起始原料,先经过生物拆分得到其S-对映体,然后采用化学重排的方法将S-烯丙基呋喃甲醇转化为S-烯丙醇酮。采用脂肪酶催化的转酯化反应对烯丙基呋喃甲醇进行动力学拆分,通过筛选催化剂和有机溶剂,优化反应条件,最终建立了较佳的酶法转酯化拆分烯丙基呋喃甲醇的反应体系,即脂肪酶Rhizopus arrhizus为催化剂,烯丙基呋喃甲醇与乙酸乙烯酯(酰基供体)的摩尔比为1/5,正己烷为溶剂,反应温度30℃。在该条件下,S-烯丙基呋喃甲醇的e.e.>98%,E为56;将前面开发的多种形式的固定化酶用于烯丙基呋喃甲醇的转酯化拆分中,酶的对映体选择性大幅度提高(E=99)。按照消旋烯丙醇酮的制备工艺,对S-烯丙基呋喃甲醇进行化学转化,最终得到消旋的烯丙醇酮。
Lipases are a kind of hydrolase. They have been widely used in food industrialand the synthesis of drugs and chiral chemical compounds because of their specificcharacteristic that they can carry out catalytic functions at oil-water interface. In mostcases, enzymes are preferably used in their immobilized states owing to manyadvantages, such as improved stability, ready reutilization of the catalyst andpossibility of continuous operation. So enzyme immobilization techniques havealways been one of the hot research issues. The aim of this dissertation is to prepareimmobilized lipases with high activity, stability and enantioselectivity by exploringnovel immobilization methods. The effects of immobilization including theimmobilized supports and immobilization methods on the catalytic properties of thelipase were studied. All the catalytic characteristics of lipases were investigated in thekinetic resolution of 4-hydroxy-3-methyl-2-(2-propenyl)-2-cyclopenten-1-one(HMPC) in organic solvents. The main contents of this work were as follows:
     (1) Lipase from Arthrobacter sp. (ASL) was immobilized onto low-costdiatomite materials for the resolution of HMPC by asymmetric acylation. The supportwas modified by the silane treatment and the support surface was grafted variousfunctional organic groups including methacryloxypropyl. octyl, dodecyl and vinyl.The surface modifications had great influences on the bound protein, activity andstability of the immobilized enzyme. Among them, the adsorbed lipase ontododecyl-modified support exhibited both higher activity and stability, while that ontomethacryloxypropyl-modified support showed highest activity but lower stability. Theimmobilization conditions including the activation degree of the support, the massratio of lipase to the support and the pH of the buffer were investigated and theoptimum values were 0.08g/g support, 1/30-1/40 and pH 9.0. 0.03M Tris-HCl buffer,respectively. The enzyme-aggregate coating method was performed based onadsorption, and the characteristics of this immobilized lipase were proved better than that by pure adsorption. It was shown that the enzyme-aggregate coated lipase yieldeda recovered activity of 8.5 folds of the free enzyme, and remained 76% of initialactivity after 20 d. Excellent enantioselectivity (E≥200) was also obtained.
     (2) The glutaraldehyde activated amino-silica gel which was synthesized bysol-gel technique using (3-aminopropyl)trimethoxysilane and tetraethoxysilane as theprecursors was applied as the support to immobilize ASL. The covalent attachmentand enzyme-aggregate coating methods were performed and the immobilizedenzymes were applied in the asymmetric acylation of HMPC. The results showed thatthe immobilized lipase by enzyme-aggregate coating possessed both higher activityand stability than those by covalent attachment, e.g. it obtained a recovered activity of84% of the free enzyme, and remained 95% of initial activity after 9 recycles.Excellent enantioselectivity (E≥200) was also obtained.
     (3)γ-(methacryloxypropyl)-trimethoxy silane (MAPTMS) and tetraethoxysilane(TEOS) were choosen as the precursors to immobilize ASL by sol-gel encapsulation.The catalytic properties of the encapsulated lipase were compared with other reportedsilanizing agents. The results turned out that the immobilized enzyme by thecopolymerization of MAPTMS and TEOS exhibited the highest activity in both thehydrolysis of p-nitrophenyl palmitate and the asymmetric acylation of HMPC, andobtained higher enantioselectivity. The effects of various immobilization parameterswere investigated, e.g. MAPTMS/TEOS (mol/mol), water/silane molar ratio (R value)and lipase loading. Under the optimum conditions the total activity of the immobilizedenzyme reached up to 13.6-fold of the free form and the bound protein was 1.4 mg/gimmobilized enzyme. Moreover, the encapsulated lipase exhibited higher stabilitythan the free form and retained 54% of the original activity after uses for 60 d, whilethe free enzyme left 52% after only 20 d.
     (4) The sol-gel encapsulated lipase was applied in the kinetic resolution ofHMPC in organic solvents. The effects of reaction conditions on the activity,enantioselectivity of the enzyme and the reaction course were investigated includingtemperature, external diffusion, internal diffusion and the concentration of thesubstrate and the product. The results turned out that no changes happened to the enantioselectivity of the enzyme under various reaction conditions; the external andinternal diffusion limitations could be reduced when the rotation speed was above 200r/min and the particle diameter of the immobilized enzyme was less than 1.0 mm.respectively. A kinetic model of this reaction was proposed based on ping-pongmechanism and the reaction rate could be expressed as(?) where V_m=1.00mmol/l/min,K_A=1.80mmol/l. K_B=131.84, K_(BA)=5.10, K_(QA)=366.66, K_(BQA)=0.52 l/mmol.Additionally, a new process to prepare S-HMPC was tried: firstly, synthesis ofS-(1-hydroxy-3-butenyl)-5-methylfuran (S-1) by enzymatic resolution of its racemiccompounds, then conversion of S-1 into S-HMPC by chemical rearrangement. Kineticresolution of racemic 1 via lipase-catalyzed transesterification was successfullyperformed in organic solvents. Lipase Rhizopus arrhizusn and hexane was choosen asthe catalyst and organic solvent, respectively. The e.e. value of S-1 reached up to 98%with an E value of 56 under the optimal reaction conditions, e.g. molar ratio of vinylacetate to rac-1 and reaction temperature were 5/1 and 30℃, respectively. LipaseRhizopus arrhizusn was immobilized by various methods mentioned above, and theenantioselectivity of the lipase was clearly improved with an E value of 99. Thechemical conversion of S-1 into S-HMPC was tried, however, racematic HMPC wasobtained until now and this process needed to be further studied.
引文
[1] Katchalski-Katzir E. Immobilized enzymes-learning from past successes and failures. Trends Biotechnol. 1993. 11:471-478.
    [2] Hartmeier W. Immobilisierte Biokatalysatoren. Springer, Berlin Heidelberg New York. 1986,18-20.
    [3] Buchholz K. Kasche V. Biokatalysatoren und Enzymtechnologie.VCH,Weinheim. 1997, 7-11.
    [4] Ivanov A E, Schneider M P. Methods for the immobilization of lipases and their use for ester synthesis. J. Mol. Cat B: Enzymatic 1997, 3: 303-309.
    [5] Blanco R M. Terreros P. Fernandez-Perez M. Otero C, Diaz-Gonzalez G. Functionalization of mesoporous silica for lipase immobilization characterization of the support and the catalysts. J. Mol. Cat B: Enzymatic 2004. 30: 83-93.
    [6] Reshimi R, Sanjay G Sugunan S. Enhanced activity and stability of α-amylase immobilized on alumina. Catal Commun. 2006. 7: 460-465.
    [7]张军,徐家立.固定化假丝酵母1619脂肪酶催化油酸油醇酯的合成.生物工程学报.1995.11:325-331.
    [8] EI-Masry M M, De Maio A, Di Martino S, Diano N, Bencivenga U, Rossi S. Grano V. Canciglia P, Portaccio M, Gaeta F S, Mita D G. Modulation of immobilized enzyme activity by altering the hydrophobicity of nylon-grafted membranes Part 1 :Isothermal conditions. J. Mol. Cat B: Enzymatic 2000, 9: 219-230.
    [9] Betancor L, Lopez-Gallego F, Hidalgo A, Alonso-Morales N, Mateo G D C. Fernandez-Lafuente R. Guisan J M. Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions. Enzyme Microb. Techmol. 2006, 39: 877-882.
    [10] Chiou S H. Wu W T. Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 2004. 25:197-204.
    [11] EI-Masry M M, Demaio A. Martelli P L, Casadio R, Moustafa A B. Rossi S. Mita D G. Influence of the immobilization process on the activity of (3-galactosidase bound to nylon membranes grafted with glycidyl methacrylate Part 1. Isothermol behavior. J. Mol. Cat B: Enzymatic 2001. 16:175-189.
    [12] Hicke H G, Bohme P, Becker M. Immobilization of enzymes onto modified polyacrylonitrile membranes: Application of the acyl azide method. J. Appl. Polym. Sci. 1996.60:1147-1161.
    [13] David A E. Wang N S, Yang V C, Yang A J. Chemically surface modified gel (CSMG): An excellent enzyme-immobilization matrix for industrial processes. J. Biotechnol. 2006. 125:395-407.
    [14] Jancsik V. Beleznai Z, Keleti T. Enzyme immobilization by poly(vinyl alcohol)gel entrapment. J. Mol Cat B: Enzymatic 1982, 14: 297-306.
    [15] Won K, Kim S, Kim K J, Park H W, Moon S J. Optimization of lipase entrapment in Ca-alginate gel beads. Proc. Biochem. 2005,40:2149-2154.
    [16]刘持标、黄葵、佘益民、单永奎、王玉洁.微胶囊固定化过氧化氢酶的制取及对H_2O_2的分解作用.生物化学杂志.1997(15):478-482.
    [17] Braun S, Rappoport S,Zusman R,Avnir D, Ottolenghi M. Biochemically active sol-gel glasses-the tapping of enzymes. Mater. Lett. 1990, 10:1-8.
    [18] Lin J, Brown C W. Sol-gel glass as a matrix for chemical and biochemical sensing. Trends Anal.Chem. 1997, 16:200-211.
    [19] Gill I, Ballesteros A. Encapsulation of biologicals within silicate, siloxane and hybrid sol-gel polymers: an efficient and generic approach. J. Am. Chem. Soc. 1998. 120:8587-8598.
    [20] Rao M S, Dave B C. Selective intake and release of proteins by organically modified silica sol-gels. J. Am. Chem. Soc. 1998, 120:13270-13271.
    [21] Kuenzelmann U. Boettcher H. Biosensor properties of glucose oxidase immobilized within silica gels. Sens. Actual. B. 1997, 39:222-228.
    [22] Williams A K, Hupp J T. Sol-gel-encapsulated alcohol dehydrogenase as a versatile. environmentally stabilized sensor for alcohols and aldehydes. J. Am. Chem. Soc. 1998, 120:4366-4371.
    [23] Gill I, Ballesteros A. Novel sol-gel matrixes for the immobilization of enzymes. Ann. New York Acad. Sci. 1996, 799:697-700.
    [24] Obert R, Dave B C. Enzymatic conversion of carbon dioxide to methanol production in silica sol-gel matrices. J. Am. Chem. Soc. 1999, 121:12192-12193.
    [25] Unen D J, Engbersen J F J, Reinhoudt D N. Sol-Gel Immobilization of Serine Proteases for Application in Organic Solvents. Biotechnol. Bioeng. 2001, 75:154-158.
    [26] Nguyen D T, Smit M Dunn B, Zink J I. Stabilization of Creatine Kinase Encapsulated in Silicate Sol-Gel Materials and Unusual Temperature Effects on Its Activity. Chem. Mater. 2002,14:4300-4306.
    [27] Vishwanath S K. Watson C R, Huang W. Bachas L G, Bhattacharyya D. Kinetic studies of site-specifically and randomly immobilized alkaline phosphatase on functionalized membraae. J. Chem. Technol. Biotechnol. 1997, 68: 294-302.
    [28] Stein T, Gerisch G. Oriented binding of a lipid-anchored cell adhesion protein onto a biosensor surface using hydrophobic immobilization and photoactive crosslinking. Anal. Biochem . 1996, 237:252-259.
    [29] Huang W, Wang J Q, Bhattacharyya D, Bachas L G. Improving the activity of immobilized subtilisin by site-directed attachment to surfaces. Annal. Chem. 1997, 69:4601-4607.
    [30] Spitznagel T M,Jacobs J W, Clark D S. Random and Site-specific immobilization of catalytic antibodies. Enzyme Microb. Techmol. 1993, 15: 916-921.
    [31] Min D J. Andrade J D, Stewart R J. Specific immobilization of in vivo biotinylated bacterial luciferase and FMN: NAD(P)H oxidoreductase. Annal. Biochem. 1999, 270:133-139.
    [32] Palomo J M, Munoz G, Fernandez-Lorente G, Mateo C, Fernandez-Lafuente R, Guisan J M. Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipase. J. Mol. Cat B: Enzymatic 2002. 19-20: 279-286.
    [33] Quiocho F A, Richards F M. Intermolecular cross-linking of a protein in the crystalline state: carboxypeptidase-A. Proc. Nat. Acad. Sci. USA. 1964, 52: 833-839.
    [34] Noritomi H, Sasanuma A, Kato S, Nagahama K. Catalytic properties of cross-linked enzyme crystals in organic media. Biochem. Eng. J. 2007. 33: 228-231.
    [35] Cao L, Rantwijk F, Sheldon R A. Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penecillin acylase. Org. Lett. 2000,2:1361-1364.
    [36] Pchelintsev N A, Youshko M I, Svedas V K. Quantitative characteristic of the catalytic properties and microstructure of cross-linked enzyme aggregates of penicillin acylase. J. Mol. Cat B: Enzymatic 2009,56:202-207.
    [37] Roberge C, Amos D, Pollard D, Devine P. Preparation and application of cross-linked aggregates of chloroperoxidase with enhanced hydrogen peroxide tolerance. J. Mol. Cat B: Enzymatic 2009, 56:41-45.
    [38] Zhao L, Zheng L, Gao G, Jia F, Cao S. Resolution of N-(2-ethyl-6-methylphenyl) alanine via cross-linked aggregates of Pseudomonas sp. Lipase. J. Mol. Cat B: Enzymatic 2008, 54:7-12.
    [39] Aytar B S, Bakir U. Preparation of cross-linked tyrosinase aggregates. Process Biochem. 2008,43:125-131.
    [40] Xi F, Wu J, Jia Z, Lin X. Preparation and characterization of trypsin immobilized on silica gel supported macroporous chitosan bead. Process Biochem. 2005. 40:2833-2840.
    [41] Yi S S, Noh J Mi. Lee Y S. Amino acid modified chitosan beads: Improved polymer supports for immobilization of lipase from Candida rugosa. J. Mol. Cat B: Enzymatic 2009. 57:123-129.
    [42] Zhou Y, Nie H. He Z, Zhu L. Immobilization of dual enzyme systems on magnetic chitosan nanoparticles for textile industry. J. Biotechnol. 2008, 136:S307-S308.
    [43] Rodrigues D S, Mendes A A. Adriano W S, Goncalves L R B. Giordano R L C. Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Cat B: Enzymatic 2008, 51: 100-109.
    [44] Wu S C, Lia Y K. Application of bacterial cellulose pellets in enzyme immobilization. J. Mol Cat B: Enzymatic 2008. 54:103-108.
    [45] Bryjak J, Liesiene J, Kolarz B N. Application and properties of butyl acrylate/pentaerythrite triacrylate copolymers and cellulose-based Granocel as carriers for trypsin immobilization. Colloid Surface B 2008, 61: 66-74.
    [46] Rauf S, Ihsan A, Akhtar K, Ghauri M A, Rahman M, Anwar M A, Khalid A M. Glucose oxidase immobilization on a novel cellulose acetate-polymethylmethacrylate membrane. J. Biotechnol. 2006, 121:351-360.
    [47] Li C. Yoshimoto M. Fukunaga K, Nakao K. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresource Technol. 2007. 98: 1366-1372.
    [48] Nagayama K, Yamasaki N, Imai M. Fatty acid esterification catalyzed by Candida rugosa lipase in lecithin microemulsion-based organogels. Biochem Eng J. 2002, 12:231-236.
    [49] Vamvakaki V, Fournier D, Chaniotakis N A. Fluorescence detection of enzymatic activity within a liposome based nano-biosensor. Biosens. Bioelectron. 2005, 21:384-388.
    [50] Miletic N, Vukovic Z, Nastasovic A. Loos K. Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins-Versatile immobilization supports for biocatalysts. J. Mol. Cat B: Enzymatic 2009, 56:196-201.
    [51] Marquez L D S, Cabral B V, Freitas F F, Cardoso V L, Ribeiro E J. Optimization of invertase immobilization by adsorption in ionic exchange resin for sucrose hydrolysis. J. Mol. Cat B: Enzymatic 2008, 51:86-92.
    [52] Wang Y, Zhao M, Meng Q. Synthesis of cross-linked polyethylene glycol diacrylate polymers and their application as supports for laccase immobilization. J. Biotechnol. 2008,136: S325.
    [53] Vaidya B K, Ingavle G C, Ponrathnam S, Kulkarni B D, Nene SN. Immobilization of Candida rugosa lipase on poly(allyl glycidyl ether-co-ethylene glycol dimethacrylate) macroporous polymer particles. Bioresource Technol. 2008, 99:3623-3629.
    [54]罗贵民,曹淑桂.张今.酶工程,北京:化学工业出版社.2002,37-52.
    [55] Peter F. Zarcula C. Kiss C, Csunderlik C, Poppe L. Enhancement of lipases enantioselectivity by entrapment in hydrophobic sol-gel materials: Influence of silane precursors and immobilization parameters. J. Biotechnol. 2007, 131: S109.
    [56] Takac S, Bakkal M. Impressive effect of immobilization conditions on the catalytic activity and enantioselectivity of Candida rugosa lipase toward S-Naproxen production. Proc. Biochem. 2007,42:1021-1027.
    [57] Sabbani S, Hedenstrom E, Nordin O. The enantioselectivity of Candida rugosa lipase is influenced by the particle size of the immobilising support material Accurel. J. Mol. Cat B: Enzymatic 2006,42:1-9.
    [58] Torres R, Ortiz C. Pessela B C C, Palomo J M, Mateo C, Guisan J M, Fernandez-Lafuente R. Improvement of the enantioselectivity of lipase (fraction B) from Candida antarctica via adsorpiton on polyethylenimine-agarose under different experimental conditions. Enzyme Microb. Techmol. 2006, 39:167-171.
    [59] Chaubey A, Parshad R, Koul S, Taneja S C, Qazi G N. Enantioselectivity modulation through immobilization of Arthrobacter sp. lipase: Kinetic resolution of fluoxetine intermediate. J. Mol. Cat B: Enzymatic 2006, 42:39-44.
    [60] Jacobsen E E, Andresen L S, Anthonsen T. Immobilization does not influence the enantioselectivity of CAL-B catalyzed kinetic resolution of secondary alcohols. Tetrahedron: Asymmetr. 2005, 16:847-850.
    [61] Kamori M, Hori T, Yamashita Y, Hirose Y, Naoshima Y. Immobilization of lipase on a new inorganic ceramics support, toyonite, and the reactivity and enantioselectivity of the immobilized lipase. J. Mol. Cat B: Enzymatic 2000, 9:269-274.
    [62] Palomo J M. Fernandez-Lorente G. Mateo C, Fuentes M, Fernandez-Lafuente R. Guisan J M. Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering. Kinetic resolution of (±)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron: Asymmetr. 2002,13: 1337-1345.
    [63]施安辉.周波.酯酶的微生物类群及其应用前景.中国酿造.2002,122:14.
    [64] Hasan F. Shah A A, Hameed A. Industrial applications of microbial lipases. Enzyme Microb. Techmol. 2006, 39:235-251.
    [65] Xu X. Mu H. Skands A R H. Parameters affection diacylglycerol formation during the production of specific-structured lipids by lipase-catalyzed interesterification. J. Am. Oil Chem. Soc. 1999,76: 175-181.
    [66] Louwrier A, Drtina G J. Klibanov A M. On the issue of interfacial activation of lipase in nonaqueous media. Biotechnol. Bioeng. 1996, 50:1-5.
    [67] Brzozowski A M, Derewenda U, Derewenda Z S, Dodson G G, Lawson D M. Turkenburg J P. Bjorkling F. Huge-Jensen B, Patkar S A. Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 1991, 351: 491-494.
    [68] Wilson L. Palomo J M, Fernandez-Lorente G, Illanes A, Guisan J M, Fernandez-Lafuente R. Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme Microb. Techmol. 2006, 38:975-980.
    [69] He J. Xu Y. Ma H, Zhang Q. Evans D G, Duan X. Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase. J. Colloid Interf. Sci. 2006, 298:780-786.
    [70] Shakeri M. Kawakami K. Effect of the structural chemical composition of mesoporous materials on the adsorption and activation of the Rhizopus oryzae lipase-catalyzed trans-esterification reaction in organic solvent. Catal. Commun. 2008, 10: 165-168.
    [71] Yu D. Wang Z, Zhao L, Cheng Y. Cao S. Resolution of 2-octanol by SBA-15 immobilized Pseudomonas sp. lipase. J. Mol. Cat B: Enzymatic 2007,48: 64-69.
    [72] Shakeri M, Kawakami K. Enhancement of Rhizopus oryzae lipase activity immobilized on alkyl-functionalized spherical mesocellular foam: Influence of alkyl chain length. Microp. Mesop. Mat. 2009, 118: 115-120.
    [73] Aucoin M G, Erhardt F A, Legge R L. Hyperactivation of Rhizomucor miehei lipase by hydrophobic xerogels. Biotechnol. Bioeng. 2004,85: 647-655.
    [74] Ye P. Jiang J. Xu Z K. Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface. Colloid Surface B 2007,60:62-67.
    [75] Othman S S, Basri M, Hussein M Z. Rahman M B A. Rahman R N Z A. Salleh A B. Jasmani H. Production of highly enantioselective (-)-menthyl butyrate using Candida rugosa lipase immobilized on epoxy-activated supports. Food Chem. 2008, 106: 437-443.
    [76] Reetz M T. Zonta A, Simpelkamp J. Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol. Bioeng. 1996, 49: 527-534.
    [77] Fidalgo A, Ciriminna R, Ilharco L M, Pagliaro M. Role of the alkyl-alkoxide precursor on the structure and catalytic properties of hybrid sol-gel catalysts. Chem. Mater. 2005, 17: 6686-6694.
    [78] Noureddini H, Gao X, Joshi S. Immobilization of Candida rugosa lipase by sol-gel entrapment and its application in the hydrolysis of soybean oil. Journal of the American Oil Chemists'Society 2003,80:1077-1083.
    [79] Noureddini H, Gao X, Joshi S, Wagner P R. Immobilization of Pseudomonas cepacia lipase by sol-gel entrapment and its application in the hydrolysis of soybean oil. Journal of the American Oil Chemists'Society 2002 .79: 33-40.
    [80] Cao X, Yang J. Shu L. Yu B, Yan Y. Improving esterification activity of Burkholderia cepacia lipase encapsulated in silica by bioimprinting with substrate analogues. Proc. Biochem. 2009, 44:177-182.
    [81] Lee S H, Doan T T N. Ha S H, Chang W J. Koo Y M. Influence of ionic liquids as additives on sol-gel immobilized lipase. J. Mol. Cat. B: Enzymatic 2007, 47:129-134.
    [82] Lee S H. Doan T T N. Ha S H, Chang W J. Koo Y M. Using ionic liquids to stabilize lipase within sol-gel derived silica.J. Mol. Cat B: Enzymatic 2007, 45:57-61.
    [83] Soares C M F, Santos O A, Olivo J E. Castro H F, Moraes F F, Zanin G M. Influence of the alkyl -substituted silane precursor on sol-gel encapsulated lipase activity. J. Mol. Cat B: Enzymatic 2004, 29:69-79.
    [84] Fukunaga K. Minamijima N, Sugimura Y, Zhang Z, Nakao K. Immobilization of organic solvent-soluble lipase in nonaqueous conditions and properties of the immobilized enzymes. J. Biotechnol. 1996,52:81-88.
    [85] Kim M I, Ham H O, Oh S D, Park H G Chang H N, Choi S H. Immobilization of Mucor javanicus lipase on effectively functionalized silica nanoparticles. J. Mol. Cat B: Enzymatic 2006,39: 62-68.
    [86] Palomo J M, Segura R L, Fernandez-Lorente G, Fernandez-Lafuente R, Guisan J M. Glutaraldehyde modification of lipases adsorbed on aminated supports: A simple way to improve their behaviour as enantioselective biocatalyst. Enzyme Microb. Techmol. 2007,40:704-707.
    [87] Lopez-Serrano P. Cao L, Rantwijk F, Sheldon R A. Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett 2002, 24: 1379-1383.
    [88] Yu H W, Chen H. Wang X, Yang Y Y, Ching C B. Cross-linked enzyme aggregates (CLEAs) with controlled particles: Application to Candida rugosa lipase. J. Mol. Cat B: Enzymatic 2006, 43: 124-127.
    [89] Aboul-Enein H Y, Wainer I W. The impact of stereochemistry on drug development and use. John Wiley & Sons Inc, New York, 1997.
    [90] Jamali F. Mehvar R, Pasutto F M. Enantioselective aspects of drug-action and disposition-therapeutic pitfalls. J. Pharm. Sci. 1989, 78: 695-715.
    [91] Stinson S C. Chiral drugs. Chem. Eng. News. 1993, 71: 38-65.
    [92] Nozaki H, Moriuti S. Yamabe M, Noyori R. Reactions of diphenyldiazomethane in presence of bis(acetylacetonato)copper(2). Modified diphenylmethylene reactions. Tetrahedron Lett. 1966, 1: 59-&.
    [93] Ohkuma T. Ooka H, Hashiguchi S. Practical enantioselective hydrogenation of aromatic ketones. J. Am. Chem. Soc. 1995, 117: 2675-2676.
    [94] Noyori R. Tomino I, Tanimoto Y. Nishizawa M. Asymmetric-synthesis via axially dissymmetric molecules. 6. rational designing of efficient chiral reducing agents-Highly enantioselective reduction of aromatic ketones by binaphthol-modified lithium aluminum hydride reagents. J. Am. Chem. Soc. 1984, 106: 6709-6716.
    [95] Lu J, Ji S J. Loh T P. Enantioselective allylation of aldehydes catalyzed by chiral indium(Ⅲ) complexes immobilized in ionic liquids. Chem. Commun. 2005:2345-2347.
    [96] Kwiatkowski P. Chaladaj W. Jurczak J. Catalytic asymmetric allylation of aldehydes using the chiral (salen)chromium(Ⅲ) complexes. Tetrahedron 2006, 62: 5116-5125.
    [97] Matsuda T, Marukado R, Mukouyama M. Harada T, Nakamura K.Asymmetric reduction of ketones by Geotrichum candidum: immobilization and application to reactions using supercritical carbon dioxide. Tetrahedron: Asymmetr. 2008, 19: 2272-2275.
    [98] Xie Y. Xu J H. Lu W Y. Lin G Q. Asymmetric reduction of aromatic ketones with a novel crude enzyme system from Adzuki beans. J. Biotechnol. 2008, 136:S379.
    [99] Zhu D, Malik H T, Hua L. Asymmetric ketone reduction by a hyperthermophilic alcohol dehydrogenase. The substrate specificity, enantioselectivity and tolerance of organic solvents. Tetrahedron: Asymmetr. 2006, 17: 3010-3014.
    [100]李根容,李志良.手性药物拆分技术研究进展.2005,14:969-974.
    [101] Nordin O, Nguyen B, Vorde C, Hedenstrom E. Hogberg H E. Kinetic resolution of primary 2-methyl-substituted alcohols via Pseudomonas cepacia lipase-catalysed enantioselective acylation. J. Chem. Soc. Perkin Trans. Ⅰ 2000:367-376.
    [102] Ghanem A. Schurig V. Lipase-catalysed transesterification of 1-(2-furyl)ethanol using isopropenylacetate. Chirality 2001,13:118-123.
    [103] Ghanem A. Schurig V. Peracetylated -cyclodextrin as additive in enzymatic reactions: enhanced reaction rate and enantiomeric ratio in lipase-catalyzed transesterifications in organic solvents. Tetrahedron: Asymmetr. 2001,12:2761-2766.
    [104] Lindner E. Ghanem A, Warad I, Eichle K, Mayer E, Schurig V. Asymmetric hydrogenation of an α,β-unsaturated ketone by diamine-(ether-phosphine)ruthenium(Ⅱ) complexes and lipase-catalyzed kinetic resolution: a consecutive approach. Tetrahedron: Asymmetr. 2003,14:1045-1053.
    [105] Ghanem A. Schurig V. Lipase-catalyzed transesterification of secondary alcohols using isopropenyl acetate as acyl donor in organic solvents. Monatshefte Chemie. 2003,134:1151-1157.
    [106] Ghanem A. Schurig V. Entrapment of Pseudomonas cepacia lipase with cyclodextrin in sol-gel: application to the kinetic resolution of secondary alcohols. Tetrahedron: Asymmetr. 2003,14:2547-2555.
    [107] Ghanem A. Schurig V. Lipase-catalyzed access to enantiomerically pure (R)- and (S)-trans-4-phenyl-3-butene-2-ol. Tetrahedron: Asymmetr. 2003, 14:57-62.
    [108] Krishna S H, Persson M. Bornscheuer U T. Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron: Asymmetr. 2002, 13:2693-2696.
    [109] Brackenridge 1, Mccague R, Roberts S M, Turner N J. Enzymatic resolution of oxalate of a tertiary alcohol using porcine pancreatic lipase. J. Chem. Soc. Perkin Trans. 1 1993,10:1093-1094.
    [110] Chen S T, Fang J M. Preparation of optically active tertiary alcohols by enzymatic methods. Application to the synthesis of drugs and natural products. J. Org. Chem. 1997, 62:4349-4357.
    [111] Kirke O, Christense M. Lipases from Candida antarctica: unique biocatalysts from a unique origin. Organic Process Res. Dev. 2002, 6: 446-451.
    [112] Zaka A, Klibanov A M. Enzymatic catalysis in organic media at 100℃. Science 1984,224:1249-1251.
    [113]薛振祥.拟除虫菊酯与立体化学.2002,5:2-7.
    [114]张育雷,薛章荣,缪利明等.酶拆分-化学转位法制备S-烯丙醇酮初探.上海化工.1999,10:7-8.
    [115] Fukashi H. Preparation of optically active allethrorone via allethronyl acid phthalate. US Patent 3931291.1976-1-6
    [116] Himyuki N. Optical Resolution of Allethrolone. Japan Patent 57145827. 1982-09-09
    [117] Mattel J J, Demoute J P, Teche A P. Tessier J R. A new general method of resolving racemic alcohols and its application to (rs)-2-hydroxy-2-(3-phenoxyphenyl)acetonitrile and (rs)-allethrolon. Pesticide Science 1984, 11:188-201.
    [118] Oi N, Kitahara H, Aoki F. Direct enantiomer separation by high-performance liquid-chromatography with chiral urea derivatives as stationary phases. J. Chromatogr A.1995,964:129-134.
    [119] Oi N, Kitahara H, Matsushita Y, Kisu N. Enantiomer separation by gas and high-performance liquid chromatography with tripeptide derivatives as chiral stationary phases. J. Chromatogr A. 1996,722:229-232.
    [120]周志强,王鹏,江树人,王敏.涂敷型淀粉类液相色谱手性固定相对丙烯菊醇对映体的拆分.色谱,2003,21:44-45.
    [121]赵玉巧,武慧渊,许建和,周琳婷.高选择性手性酯酶产生菌的筛选及应用.应用与环境生物学报.2002,8:640-643.
    [122] Chen Y, Xu J H. Pan J, Xu Y, Shi J B. Catalytic resolution of (RS)-HMPC acetate by immobilized cells of Acinetobacter sp. CGMCC 0789 in a medium with organic cosolvent. J. Mol. Cat B: Enzymatic 2004, 30:203-208.
    [123] Mitsuda S. Nabeshima S. Hirohara H. Studies on enantioselective hydrolysis of the acetic ester of a secondary alcohol with Arthrobacter lipase. Appl. Microbiol. Biotechnol. 1989, 31:334-337.
    [124] Manfred, F. Gerd. K. Gerdhard, European Patatent. Appl. EP 492497 (1992).
    [126] Wu H Y, Xu J H, Tsang S F. Efficient resolution of a chiral alcohol (RS)-HMPC by
    [125]丁永学,张铭俊.虞星炬.有机相固定化脂肪酶催化拆分环戊烯酮的研究.化学反应工程与工艺.2000,16:67-71. enzymatic transesterification with vinyl acetate using surfactant-modified lipase. Enzyme Microb.Techmol. 2004, 34:523-528.
    
    [127] Mitsuda S, Umemura T. Hirohara H. Preparation of an optically pure secondary alcohol of synthetic pyrethroids using microbial lipase. Appl. Microbiol. Bioiechnol. 1988, 29:310-315.
    
    [128] Danda H. Preparation of optically active secondary alcohols by combination of enzymatic hydrolysis and chemical transformation. Tetrahedron 1991, 47:8701-8716.
    
    [129] Foresti M L, Ferreira M L. Analysis of the interaction of lipases with polypropylene of different structure and polypropylene-modified glass surface. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2007. 294:147-155.
    
    [130] Fernandez-Lafuente R. Armisen P. Sabuquillo P. Fernandez-Lorente G, Guisan J M.Immobilization of lipases by selective adsorption on hydrophobic supports. Chem. Phys. Lipids 1998,93:185-197.
    
    [131] Bastida A. Sabuquillo P, Armisen P, Fernandez-Lafuente R, Huguet J, Guisan .1 M. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol. Bioeng. 1998. 58:486-493.
    
    [132] Kim B C. Nair S, Kim J. Kwak J H. Grate J W. Kim S H. Gu M B. Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. NanotechnologylWS. 16: S382-S388.
    
    [133] Bradford M A.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72:248-255.
    
    [134] Chen C S, Fujimoto Y. Girdaukas G, Sih C J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982. 104:7294-7299.
    
    [135] Palomo J M. Fernandez-Lorente G. Mateo C. Ortiz C. Fernandez-Lafuente R. Guisan J M.Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme Microb. Technol. 2002,31:775-783.
    
    [136] Menaa B. Herrero M. Rives V. Lavrenko M, Eggers D K. Favorable influence of hydrophobic surfaces on protein structure in porous organically-modified silica glasses.Biomaterials 2008, 29:2710-2718.
    
    [137] Yang Z, Zacherl D. Russell A J. pH dependence of subtilisin dispersed in organic solvents. J. Am. Chem. Soc. 1993, 115:12251-12257.
    
    [138] Munowitz M. Bachovchin W W. Herzfeld J, Dobson C M. Griffin R G. Acid-base and tautomeric equilibria in the solid state. 15N-NMR spectroscopy of histidine and imidazole. J. Am.Chem. Soc. 1982, 104:1192-1196.
    
    [139] Wang P. Dai S. Waezsada S D. Tsao A Y, Davison B H. Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnol. Bioeng. 2001.74:249-255.
    
    [140] Grazu V. Abian O. Mateo C. Batista-Viera F. Fernandez-Lafuente R. Guisan J M.Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol supports. Biotechnol. Bioeng. 2005, 90:597-605.
    
    [141] Santos J C, Mijone P D. Nunes GFM, Perez V H, Castro H F. Covalent attachment of Candida rugosa lipase on chemically modified hybrid matrix of polysiloxane-polyvinyl alcohol with different activating compounds. Colloid Surface B 2008, 61:229-236.
    
    [142] Li F, Chen W, Tang C, Zhang S. Development of hydrogen peroxide biosensor based on in situ covalent immobilization of horseradish peroxidase by one-pot polysaccharide-incorporated sol-gel process. Talanta. 2009. 77: 1304-1308.
    
    [143] Chaubey A, Parshad R. Taneja S C, Qazi G N. Arthrobacter sp. lipase immobilization on magnetic sol-gel composite supports for enantioselectivity improvement. Proc. Biochem. 2009.44:154-160.
    
    [144] Liang R P, Jiang J L, Qiu J D. Preparation of GOD/sol-gel silica film on prussian blue modified electrode for glucose biosensor application. Electroanalysis 2008. 20:2642-2648.
    
    [145] Farrington K, Regan F. Molecularly imprinted sol gel for ibuprofen: An analytical study of the factors influencing selectivity. Talanta. 2009.78: 653-659.
    
    [146] Chaubey A, Parshad R, Koul S, Taneja S C, Qazi G N. Arthrobacter sp. lipase immobilization for improvement in stability and enantioselectivity. Appl. Microbiol. Biotechnol.2006,73:598-606.
    
    [147] Bhushan I, Parshad R, Qazi G N, Ingavle G, Rajan C R, Ponrathnam S, Gupta V K. Lipase enzyme immobilization on synthetic beaded macroporous copolymers for kinetic resolution of chiral drugs intermediates.Process Biochem. 2008,43:321-330.
    
    [148] Avnir D, Braun S, Lev O, Ottolenghi M. Enzymes and other proteins entrapped in sol-gel materials. Chem. Mater. 1994, 6:1605-1614.
    
    [149] Glad M, Norrlow B, Sellergren B, Siegbahn N, Mosbach N. Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica. J. Chromatogr.1985,347:11-23.
    
    [150] Gill I, Ballesteros A. Bioencapsulation within synthetic polymers: sol-gel encapsulated biologicals. Trends Biotechnol. 2000, 18:282-296.
    
    [151] Kaufmann C G, Mandelbaum R T. Entrapment of atrazine chlorohydrolase in sol-gel glass matrix. J. Biotechnol. 1996, 51:219-225.
    
    [152] Rietti-Shati. M. Ronen D, Mandelbaum R T. Atrazine degradation by Pseudomonas strain ADP entrapped in sol-gel glass. J. Sol-gel Sci. Technol. 1996, 7: 77-79.
    
    [153] Inama L, Dire S. Carturan G, Cavazza A. Entrapment of viable microorganisms by silicon dioxide sol-gel layers on glass surfaces: trapping, catalytic performance and immobilization durability of Saccharomyces cerevisiae. J. Biotechnol. 1993,30: 197-210.
    
    [154] Reetz M T. Zonta A. Simpelkamp J. Efficient heterogeneous biocatalysts by entrapment of lipases in hydrophobic sol-gel materials. Angew. Chem. Int. Ed. Engl. 1995, 34: 301-303.
    
    [155] Reetz M T. Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv. Mater. 1997,9: 943-954.
    
    [156] Keeling-Tucker T. Rakic M, Spong C. Brennan J D. Controlling the material properties and biological activity of lipase within sol-gel derived bioglasses via organosilane and polymer doping. Chem. Mater. 2000. 12:3695-3704.
    
    [157] Vidinha P. Augusto V. Almeida M. Fonseca I. Fidalgo A. Ilharco L. Cabral J M S, Barreiros S. Sol-gel encapsulation: An efficient and versatile immobilization technique for cutinase in non-aqueous media. J. Biotechnol. 2006. 121:23-33.
    
    [158] Winkler U K, Stuckmann M. Glycogen. hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 1979. 138:663-670.
    
    [159] Chen J P, Lin W S. Sol-gel powders and supported sol-gel polymers for immobilization of lipase in ester synthesis. Enzyme Microb. Technol. 2003, 32: 801 -811.
    
    [160] Nakanishi K. Komura H. Takahashi R. Soga N. Phase separation in silica sol-gel system containing polyethylene oxide): 1. Phase relation and gel morphology. Bull Chem. Soc. Japan 1994.67:1327-1335.
    
    [161] Gottfried D S. Kagan A. Hoffman B M. Friedman J M. Impeded rotation of a protein in a sol-gel matrix. J. Phys. Chem. B 1999. 103: 2803-2807.
    
    [162] Edmiston P L. Wambolt C L. Smith M K. Saavedra S S. Spectroscopic characterization of albumin and myoglobin entrapped in bulk sol-gel glasses. J. Colloid Interface Sci. 1994. 163:395-406.
    
    [163] Schudok M. Kretzschmar G. Enzyme catalyzed resolution of alcohols using ethoxyvinyl acetate. Tetrahedron Lett. 1997. 38: 387-388.
    
    [164] Wei Y, Xu J. Feng Q. Dong H, Lin M. Encapsulation of enzymes in mesoporous host materials via the nonsurfactant-templated sol-gel process. Materials Lett. 2000.44:6-11.
    
    [165] Cleland W W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. Biochim. Biophys. Ada. 1963.67:104-137.
    
    [166] King E L, Altman C. A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem. 1956,60: 1375
    
    [167] Ganapati D. Yadav K, Manjula D. Immobilization lipase-catalysed esterfication and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem. Eng. Sci. 2004. 59: 373
    
    [168] Qian J H. Xu J H. Catalytic performance of a highly enantioselective (R)-ester hydrolase from a new isolate Acinetobacter sp. CGMCC 0789. J. Mol. Cat. B: Enzymatic 2004. 27:227-232.
    
    [169] Loh T P. Zhou J R. A catalytic enantioselective allylation reaction of aldehydes in an aqueous medium. Tetrahedron Lett. 2000, 41:5261 -5264.
    
    [170] Lu J. Ji S J. Loh T P. Enantioselective allylation of aldehydes catalyzed by chiral indium(III) complexes immobilized in ionic liquids. Chem. Commun. 2005:2345-2347.
    
    [171] Kwiatkowski P. Chaladaj W. Jurczak J. Catalytic asymmetric allylation of aldehydes using the chiral (salen)chromium(III) complexes. Tetrahedron 2006. 62:5116-5125.
    
    [172] Francesco S. Sergio R, Giacomo C. Effects of medium and of reaction conditions on the enantioselectivity of lipases in organic solvents and possible rationales. Tetrahedron: Asymmetr.1992.3:267-280.
    [173] Wescott C R, Klibanov A M The solvent dependence of enzyme specificity. Biochim.Biophys. Acta. 1994, 1206:1-9.
    
    [174] Carrea G, Ottolina G, Riva S. Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol. 1995, 13: 63-70.
    
    [175] Overbeeke P L A, Jongejan J A, Heijnen J. Solvent effect on lipase enantioselectiviry. Evidence for the presence of two thermodynamic states. Biotechnol. Bioeng. 2000, 70: 278-290.
    
    [176] Sakurai T, Margolin A L, Russel A J, Klibanov A M. Control of enzyme enantioselectivity by the reaction medium. J. Am. Chem. Soc. 1988. 110: 7236-7237.
    
    [177] Fitzpatrick P A, Klibanov A M. How can the solvent affect enzyme selectivity? J. Am. Chem.Soc. 1992,113:3166-3171.
    
    [178] Laane C, Boeren S, Vos K. On optimizing organic-solvents in multi-liquid-phase biocatalysis. Trends Biotechnol. 1985, 3:251-252.
    
    [179] Klibanov A M. Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 1997. 15:97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700