米曲霉氨基酰化酶的固定化及其拆分N-乙酰-DL-苯甘氨酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次以氨基酰化酶为酶源拆分非天然氨基酸—N-乙酰-DL-苯甘氨酸。实验首先以固定化米曲霉菌体为酶源在间歇反应器中进行初步拆分,进而利用拆分效率相对较高的固定化酶在连续床中进行最后拆分。本文采用理论分析与实验研究相结合的方法,综合运用数学建模、过程模拟等多种手段,对氨基酰化酶拆分N-乙酰-DL-苯甘氨酸的酶解体系进行了较全面系统的研究,内容涉及菌体的培养、菌体和酶的固定化及其性质表征、酶分子的作用机理及酶促反应动力学、反应器的模型计算等方面,主要包括
    1通过对各种不同类型培养基的比较,筛选出了适宜的液体培养基—豆汁培养基,得到了菌体培养的适宜条件:30℃,pH值自然,转速130rpm,接种量4%,培养40h。该菌体用于拆分N-乙酰-DL-苯甘氨酸时菌体的比酶活可达1600-1800U·g-1。以甲醛为交联剂,惰性蛋白明胶为包埋剂和活性保护剂,对米曲霉菌体进行固定化。在正交实验的基础上利用人工神经网络得到了较优的固定化条件:菌体与固定液的用量比(固液比)为1:8,其中固定液中明胶浓度为0.5%,甲醛浓度为0.5%,固定化时间为1.5h。在此条件下制得的固定化菌体比酶活达到1500U·g-1,酶活保留率超过80%。固定化后米曲霉菌体热稳定性明显增强,在连续反应器中的操作半衰期可达77d。最佳反应条件pH值从7.0变为8.0、温度由52℃变为63℃,最适反应条件明显变宽。Co2+浓度为1×10-3mol·L-1时对固定化菌体的激活作用达到最强。
    2研究了固定化米曲霉菌体拆分N-乙酰-DL-苯甘氨酸的的催化特性。当底物浓度大于200mmol·L-1时,产生底物抑制。产物乙酸和L-苯甘氨酸(L-PG)分别产生非竞争性抑制和竞争性抑制。在37℃条件下,固定化菌体的米氏常数、底物抑制常数、产物乙酸的抑制常数和L-苯甘氨酸的抑制常数分别为19.8mmol·L-1、225.5mmol·L-1、38.7mmol·L-1和20.23mmol·L-1。
     3从酶反应动力学基本方程出发,考虑各种抑制物的作用特点,提出了新的分子作用机理,建立了新的动力学方程。固定化菌体在间歇反应器中的实验数据表明,当底物浓度较低时,该方程与Warburton方程和Cleland方程均能很好地与实验结果相吻合;随着底物浓度的增大和反应的进行,除新的动力学方程仍能很好地与实验结果吻合外,其它两个方程与实验结果的偏差越来越大,表明本文提出的分子作用机理更为合理。
    4采用结构与DEAE-Sephadex极其相似的大孔弱碱性树脂DEAE-E/H作为氨基酰化酶的固定化载体。考察了影响固定化结果的因素,确定了适宜的固定化条
    
    件:自由酶液浓度为120U·ml-1,pH值6.5左右,温度为室温。在此条件下制得的固定化氨基酰化酶比酶活可达1200-1500U·g-1,酶活保留率超过60%,与文献报道的DEAE-Sephadex固定化效果相当,固定化后酶的稳定性大大提高。固定化酶的米氏常数、底物抑制常数、产物乙酸和苯甘氨酸的抑制常数和分别为5.668mmol·L-1、763mmol·L-1、400mmol·L-1和10.0mmol·L-1。
    5 对固定床反应器中固定化氨基酰化酶连续拆分N-乙酰-DL-苯甘氨酸的反应进行模拟,用推广的割线法求解模型,模型的计算值与实验结果吻合较好。最后所得产品D-苯甘氨酸的旋光度为= -157o (C=1,1mol·L-1 HCl),产品的光学纯度为99.4%。理论收率达到65.1%。
Immobilized enzyme (mycelium) technology, as a new technology, was used in various fields, and the optical resolution of amino acid was one of the major applications. In this paper, aminoacylase from Aspergillus oryzae was used to resolute N-Ac-DL-phenylglycine, which was the materials of semi-synthetic antibiotics. This work was divided into two parts. In the first part, immobilized mycelium pellet was used as biocatalyst in batch stir tank reactor, and the second was that immobilized enzyme was used to continuous resolution process in packed reactor. The dissertation covered the submerged culture of Aspergillus oryzae in liquid, the immobilization of pellets, the kinetics and reaction mechanism, the immobilization of aminoacylase, properties of immobilized enzyme and continuous reactor.
    Because bean medium had the greatest industrial application value among the media studied, the bean medium was selected for the shaking flask culture of pellet. The effects of culture time, shaking flask rate and inoculum size on enzyme activity and biomass were investigated. The optimum cultivation conditions were obtained: culture temperature was 30℃, shaking rate 130 rpm, inoculum size 4% and the culture time 40h. The specific activity of mycelium pellet was more than 1600-1800U·g-1. Moreover, the L-aminoacylase activities of W001 in vivo and in vitro were tested. The result showed that W001 was a cell-bound enzyme and discharged only a small quantity in the liquid medium during the period of growth. Aspergillus oryzae W001 mycelium pellets were immobilized by entrapping-cross-linking method with gelatin and formaldehyde. Based on the orthogonal design table L16(45), a four-layer artificial neural network (ANN) model with back-propagation of error (BP) was used to optimize the immobilization conditions. The optimal condition was obtained: 1g wet pellets were added into 8ml immobilization solution, containing 0.5% gelatin and 0.5% formaldehyde, and the immobilization time was 1.5h. The immobilized enzyme activity was 1500U·g-1 and the activity yield was more than 80%. Compared to free pellet, the optimum pH of reaction system changed from 7.0 to 8.0, temperature changed from 52℃ to 63℃. The operational half-life was 77d. In addition, Co2+ was proved to be a good activator for the immobilized pellet in the concentration of 1×10-3 mol·L-1. To determine the catalysis properties of the enzyme reaction, experiments were carried out. The result showed that there were substrate inhibition, competitive inhibition of L-phenylglycine and noncompetitive inhibition of acetic acid. For the immobilized pellet, the Michaelis-Menten constant and the inhibition constants of the substrate, L-phenylglycine and acetic acid at 37℃ were =19.8 mmol·L-1, =225.5 mmol·L-1, =20.23mmol·L-1 and =
    
    38.7mmol·L-1, respectively.
    Based on the theoretical analysis and experimental data, the kinetics and reaction mechanism of aminoacylase were analyzed in detail. In terms of the reaction mechanism of Ordered Uni-Bi, the Cleland Equation was deduced, and hence the Warburton Equation was obtained, which was widely used to describe the hydrolysis of penicillin with penicillin amidase. But the predictions by the two equations deviated from experiment data at high concentration of substrate. Taking into account substrate inhibition and product inhibition, a novel equation was established, which was in good agreement with the experiment data. And the essential relationship of the novel equation and other equations was discussed.
    Immobilization of aminoacylase was carried out by the method of ion combination. The novel carrier of DEAE-E/H was a kind of weakly basic macro porous anion exchanger, which was the first time to be used as the carrier of enzyme. The immobilization was carried out at room temperature, pH6.5 and the enzyme concentration 120U.ml-1. The preparation immobilized on DEAE-E/H showed satisfactory activity. The specific activity was up to 1200U·g-1-1500 U·g-1 and the activity yield was more than 60%, which had the same level as
引文
1. Dong-Cheel Lee, Hak-Sung Kim. Optimization of a heterogeneous reaction system for the production of optically active D-amino acids using thermostable D-hydantoinase. Biochem. Bioeng., 1998, 60(6): 638-648
    2. 曹者瑜. 3-2奈基-D-丙氨酸的制备. 氨基酸杂志, 1987, (1):7-11
    3. Nagata Yoko. D-amino acids in nature. Adv. Biochirality, 1998:274-283
    4. 王道宾, 何炳林. 用固定化氨基酰化酶拆分DL-对氯苯丙氨酸. 化学通报, 1994, (1): 50-52
    5. 夏仕文. 酶在光学活性药物合成中的应用. 合成化学, 1996, 4(3): 201-208
    6. 陈绍怡, 杨秀, 秦玉静. 手性药物合成中的生物转化. 生物工程进展, 2000, 20(4): 60-63
    7. 国家药品监督管理局信息中心文献资料室. 全球手性药物开发现状. 制药原料及中间体专题资料, 1999, (8):11
    8. 国家药品监督管理局信息中心文献资料室. 世界氨基酸发展新动向. 制药原料及中间体专题资料, 1999, (12): 48
    9. 国家药品监督管理局信息中心文献资料室. 药物中间体-氨基酸需求增长推动新科技发展. 制药原料及中间体专题资料, 2000,(5):14, 28
    10. Secor R M. Resolution of optical isomers by crystallization procedures. Chem. Rev., 1963, 63: 297-309
    11. Veronica M. Processes and phenomena of purity decrease during the optical resolution of D,L-threonine by preferential crystallization. Physicochem. Eng. Aspects, 2000,164: 315-324
    12. Barrett G C. Resolution of amino acids. Chem. Biochem. Amino Acids, 1985: 338-353
    13. 郭勇. 酶在食品工业中的应用. 北京: 中国轻工业出版社, 1995. 5-6
    14. Antonio Bodalo, Santoyo. Production of optically pure L-alanine by immobilized Pseudomonas sp. BA2 Cells. J. Chem. Technol. Biotechnol., 1998, 73: 197-202
    15. Steliana Maxim, Aurelia Fondor. Optical resolution of D,L-acetylmethionine with immobilized aminoacylase on acrylic supports. J. Mol. Catal., 1992, 72: 351-359
    16. Alessandra Bossi. Production of D-phenylglycine from racemic D,L-phenylglycine via isoelectrically-trapped Penicillin G acylase. Biochem. Bioeng., 1998, 60(4): 454-461
    17. Andreas S, Bommarius. Biocatalysis to amino acid-based chiral pharmaceuticals. J. Mol. Catal. B: Enzymatic, 1998, 5 (1): 1-11
    18. 国家药品监督管理局信息中心文献资料室. 生物催化剂展露广阔前景. 制药原料及中间体专题资料, 1999,(11):29
    19. 王春生, 邵继智. 利用猪肾氨基酰化酶拆分DL-蛋氨酸. 脏器生化制药, 1981, 1: 37-38
    20. 王晓平, 刘一鸣. 米曲氨基酰化酶的纯化及固定化酶法拆分DL-丙氨酸. 吉林大学自然科学学报, 1998, (4) :81-84
    21. Tripathi C K, Vinol Bihari. Microbial production of D-amino acids. Process Biochem., 2000, 35: 1247-1251
    
    
    22. Kaneko T. Synthetic production and utilization of amino acids, New York: John Wiley & Sons Inc. 1974
    23. 国家药品监督管理局信息中心文献资料室. 手性药物的生物合成与转化. 制药原料及中间体专题资料, 2000, (10):5
    24. Noriyuki Nimura. Reversed-phase liquid chromatographic resolution of underivatized D,L-amino acids using chiral eluents. J. Chromatogr., 1982, 239: 671-675
    25. 许旭. 手性药物的高效毛细管电泳拆分方法. 化学进展, 1997, 9(4): 416-427
    26. Stanley Lam. Resolution of optical isomers of DL-amino acids by high-performance liquid chromatography with L-Histidine and its derivatives in the mobile phase. J. Chromatogr., 1982, 239: 451-462
    27. 郭秀斌, 刘庆彬. 不对称转换在a-氨基酸拆分中的应用. 化学研究与应用, 1998,14(2): 464-469
    28. 王晓丽. 半合成青霉素、头孢菌素及其侧链. 沈阳化工, 1995,(3): 39-41
    29. Wiyakrutta S. A stereo-inverting D-phenylglycine amine transferase from Pseudomonas ST-201 purification, characterization and application for D-phenylglycine synthesis. J. Biotechnol., 1997, 55(3):193-203
    30. 贾倍焕,宋立贤. D-(-)-a-苯甘氨酸的合成.河北化工, 1993, (1):12-13
    31. 王京平. 左旋对羟基苯甘氨酸的技术进展. 河北化工, 1999, (4): 1-4
    32. 李纪太. D,L-a-苯甘氨酸合成方法的改进. 合成化学, 1997, (2): 215-217
    33. 陈胜荣. 对羟基苯甘氨酸的合成. 辽宁化工, 2000, 29(2): 63-64
    34. 王景翔. D-(-)-苯甘氨酸甲酯的合成. 石家庄化工, 1997,(4):20
    35. 郭秀斌. N-乙酰-苯甘氨酸的合成研究. 化学研究与应用, 1998,10(6): 661-662
    36. 江宁, 贺鹏. N-氨甲酰基-D-苯甘氨酸不对称热水解反应的研究. 生物工程学报, 1998, 14(20): 220-223
    37. Garcia, Maria J. Production of ring-substituted D-phenylglycine by microbial or enzymic hydrolysis/deracemization of the corresponding DL-hydrantoins. Tetrahedron: Asymmetry, 1997, 8(1):85-92
    38. Shirawa, Tadashi. Asymmetric transformation of N-acetyl-(RS)-2-phenylglycine III. Technol. Rep. Kansai. Univ., 1989, 31: 97-102
    39. Tye Heather. Catalytic asymmetric process. Perkin,2000,(3): 275-298
    40. Marten Terpstra. Patent Survey. Process Biochem., 2000, 35: 1057-1061
    41. Touet Joeel, Brown Eric. Resolving agents benyl ethers of (R)-(-)and (S)-(+)-2-aminobutan and their use in the resolution of N-acyl derivatives of phenylglycine and p-hydroxyphenylglycine. Tetrahedron, 1995, 51(6): 1709-1720
    42. Shirawa Tadashi, Baba Yoshihisa. Optical resolution and asymmetric transformation of (RS)-N-alkyl- and (RS)-N, N-dialkyl-2-phenylglycines. Bull. Chem. Soc. Jpn., 1993, 66(5): 1430-1437
    43. Shirawa, Tadashi. Asymmetric transformation of N-acetyl-(RS)-phenylglycine. Chem. Express, 1988, 3(7): 415-418
    
    
    44. 邓金根. 化学拆分的新方法研究. 合成化学, 1999, (4): 340-345
    45. Shirawa Tadashi. Optical resolution by preferential crystallization of 1,1,3,3-tetramethylbutylammonium salt of N-formyl-DL-α-phenylglycines. Bull. Chem. Soc. Jpn., 1987, 60(2): 661-666
    46. Wegman M A, Hacking M A. Drnamic kinetic resolution phenylglycine esters via lipsase-catalyzed ammonolysis. Tetrahedron: Asymmetry, 1999,10(9): 1739-1750
    47. Gokhale D V. Chemoenzymic synthesis of D(-)-phenylglycine using hedantoinase of Pseudomonas desmolyticum resting cells. Enzyme Microbi. Technol., 1996, 18(5): 353-357
    48. Bossi A. Production of D-phenylglycine from racemic (D, L)-via isoelectrically- trapped penicillin G acylase. Biotechnol. Bioeng., 1998, 60(4):454-461
    49. 国家药品监督管理局信息中心文献资料室. 氨基酸中间体的生产商及核心技术. 制药原料及中间体专题资料, 2000, (5):16
    50. Sanford M,Birnbaum. Specificity of amino acid acylases. J. Biol. Chem., 1952, 194: 455-469
    51. Easton, Christopher. Acylase I catalyzed hydrolysis of para-substituted (s)-phenylamine derivatives from mixtures of the racemic ortho- and para- substituted isomers. Tetrahedron Lett., 1998, 39(29): 5269-5272
    52. Chibata I, Tetsuya Tosa, Tadashi Sato. Production of L-amino acids by aminoacylase absorbed on DEAE-Sephadex. Methods Enzymol., 1976, 44 (51): 746-759
    53. Greenstein J P. Resolution of DL-mixtures of (-amino acids, in Method in Enzymology, Vol 3. New York: Academic Press, 1957. 554-570
    54. Lugay J C, Aronson J N. Palo Verde (Parkinsonia aculesta L-) seed aminoacylase. Biochim. Biophys. Acta, 1969, 191: 397-414
    55. Pierpoint W S. An N-acylamino acid acylase from Nicotiana tabacum leaves. Phytochemistry, 1973, 12: 2359-2364
    56. 施华芳, 黄伟达. 水稻氨基酰化酶的分类纯化与性质分析. 生物化学杂志, 1997, 13(1): 54-58
    57. 邢来君,李明春,张峻. 米曲氨基酰化酶菌株的选育. 微生物学通报, 1991, 18(4): 203-206
    58. Kikuchi M, Koshiyama I, Fukushima D. A new enzyme proline acylase (N- acyl- L-proline aminohydrolase) from Pseudomonas species. Biochim. Biophys. Acta, 1983, 744: 180-188
    59. Kubo K, Ishikura T, Fukagawa Y. Deacetylation of PS-5, a new (-lactam compound. II. separation and purification of L-and D-amino acid acylase from Pseudomonas sp.1158. J. Antibiot., 1980, 33: 550-555
    60. Sugie M, Suzuki H. Purification and properties of D-aminoacylase of Stretomyces olivaceus. Agric. Biol. Chem., 1978, 42: 107-113
    61. Sugie M, Suzuki H. Optical resolution of D,L-amino acids with D-aminoacylase of Stretomyces. Agric. Biol. Chem., 1980, 44: 1089-1095
    Cho H-Y, Tanizawa K, Tanaka H, et al. Thermostable aminoacylase from Bacillus thermoglucosidius: purification and characterization. Agric. Biol. Chem., 1987, 51:
    
    62. 2793-2800
    63. Cheetham P S J. The application of enzymes in industry, In Handbook of Enzyme Biotechnology (Wiseman A, ed.), Chichester: Ellis Horwood Ltd., 1985. 274-379
    64. 张树政. 酶制剂工业, 下册. 北京: 科学出版社, 1984. 696-702
    65. 韩际宏, 江坪. 氨基酰化酶的固定化及其对DL-蛋氨酸的光学拆分. 离子交换与吸附, 1993, 9(2): 107-113
    66. Chibata I. L-amino acid production by aminoacylase from Aspergil1us. Bull. Agric. Chem. Soc. Jpn., 1957, 21: 300-306
    67. 徐东. 氨基酰化酶的固定化及其拆分乙酰-DL-蛋氨酸的动力学研究, [硕士学位论文].北京:清华大学,1989
    68. Teit Agger, Anders B, Spohr, et al. Growth and product formation of Aspergillus oryzae during submerged cultivations: verification of a morphologically structured model using fluorescent probes. Biotechnol. Bioeng., 1998, 57(3): 321- 329
    69. Hellendoorn L, Van der lans R G J M, Ottengraf S P P, et al. Intrinsic kinetic parameters of the pellet forming fungus Aspergillus awamori. Biotechnol. Bioeng., 1998, 58(5): 478-485
    70. Lejeune R, Baron G V. Modeling the exponential growth of filamentous fungi during batch cultivation. Biotechnol. Bioeng., 1998, 60(2): 169-179
    71. Cui Y Q, Okkerse W J, Van der lans J M, et al. Modeling and measurements of fungus growth and morphology in submerged fermentation. Biotechnol. Bioeng., 1998, 60(2): 216-229
    72. Christiansen T, Spohr A B, Nielsen J. On-line study of growth kinetics of single hyphae of Aspergillus oryzae in a flow-through cell. Biotechnol. Bioeng., 1999, 63(2): 147-153
    73. Cui Y Q, Van der lans J M. Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnol. Bioeng., 1998, 57 (4): 409-419
    74. 王淑豪. 米曲霉菌体的固定化及其光学拆分DL-蛋氨酸的研究,[博士学位论文]. 天津:天津大学,2001
    75. 俞俊棠,顾其丰,叶勤. 生物化学工程. 北京: 化学工业出版社, 1991. 24
    76. Antonio Bodalo, Santoyo. Production of L-aminoacylase by fermentation of Pseudomonas sp. BA2. J. Chem. Technol. Biotechnol., 1995, 64: 175-180
    77. Kenichi Hirano. Aminoacylase pellets. Biotechnol. Bioeng., 1977, 19: 311-321
    78. 蒋幼和, 张芝兰, 李杏村. 氨基酰化酶的菌体固定化研究. 天津微生物,1981, (2): 28-33
    79. 今村伸三, 田中则子, 宫田令子. L-氨基酸的制造方法. 日本公开特许公报, 昭60-62991, 1985
    80. 邓晓泉. 吸附法固定微生物细胞的研究进展. 生物工程进展, 1993, 13(4):7-18
    81. 王洪祚, 刘世勇. 酶与细胞的固定化. 化学通报, 1997, (2): 22-27
    82. 陈陶声, 居乃琥, 陈石根. 固定化酶理论与应用. 北京: 轻工出版社, 1987. 173-177
    83. Katchalski-Katzir. Eupergit C, a carrier for immobilization of enzymes of industrial potential Ephraim. J. Mol. Catal. B: Enzymatic, 2000, 10 (1): 157-176
    84. 赵裕蓉. 固定化酶和固定化细胞. 化工科技动态, 1996, (10): 9-11
    
    
    85. 袁勤生, 赵健, 王维育. 应用酶学. 上海:华东理工大学出版社, 1994. 230-232
    86. 于家波, 宋富兵. 底物扩散对分子筛固定化葡萄糖淀粉酶性能的影响. 复旦大学学报, 1999, 38(6):652-656
    87. Okahata Y, Fujimoto Y, Ijiro K. Lipase-lipid complex as a resolution catalyst of racemic alcohol in organic solvents. Tetradron Lett., 1988, 29(40):5133-5134
    88. Min Gon Kim, Sun Bok Lee. Penicillin acylase-catalyzed synthesis of pivampicillin: effect of reaction variables and organic cosolvents. J. Mol. Catal. B: Enzymatic, 1996, 3(1): 71-80
    89. N W Fahnavis. Resolution of racemic 2-amino-1-butanol with immobilized penicillin G acylase. Tetrahedron: Asymmetry, 1999, 10 (23): 4495-4500
    90. 王寿亭, 由英才. 酶法合成氨基酸进展1——由固定化酶或细胞合成天门冬氨酸. 氨基酸杂志, 1990, (2): 16-22
    91. 姚鹏, 马润宇. 固定化细胞发酵——膜蒸馏耦合生产乙醇的研究. 北京化工大学学报, 1998, 25(4): 6-10
    92. 陈盛.壳聚糖固定化脲酶研究Ⅱ.生物工程进展, 1992, 12(5): 40-43
    93. 曲红波. 流动注射复合酶电极法测定麦芽糖的研究. 生物化学与生物物理进展,1995,22(1): 68-72
    94. Qu Hongbo. Simultaneous determination of maltose and glucose using a dual-electrode flow injection system. Food Chem., 1995, 52: 187-192
    95. 熊振平. 酶工程. 北京: 化学工业出版社, 1989. 116
    96. 山根恒夫. 生化反应工程(周斌译). 西安:西北工业大学出版社,1992.39-46
    97. Alan Rosevear. Immobilized biocatalysts-a critical review. J. Chem. Technol. Biotechnol., 1984, 34B: 127-150
    98. Kazhukharova A. Properties of glucose oxidase immobilized in gel of polyvinyalcohol. Biochem. Bioeng., 1988, 32(2): 245-248
    99. 周纪宁, 金浩, 江体乾. 固定化L-天冬酰胺酶间歇催化反应的动力学模型. 华东理工大学学报, 1999, 25(3):269-272
    100. 李丽霞, 鲁格, 陈长治等. 葡萄糖氧化酶的固定化方法与改进. 高等学校化学学报, 1987, 8(6): 562-567
    101. Lozinsky V I, Plieva F M. Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization-overview of recent research and developments. Enzyme Microbi. Technol., 1998, 23:227-242
    102. Yaichi Fukushima. A new immobilization technique of whole cells and enzymes with colloidal silica and alginate. Biotechnol. Bioeng., 1988, 32(2): 584-594
    103. Shimio Sato, Tadahiro Murakaata. Development of immobilization enzyme entrapped within inorganic matrix and its catalytic activity in organic medium. J. Chem. Eng. Jpn., 1994, 27(6): 1850-1865
    104. Kong H Lee, Pat M Lee. Studies of L-phenylalanine production by immobilized aminoacylase in stabilized calcium alginate beads. J. Chem. Technol. Biotechnol., 1992, 54: 375-382
    
    
    105. David A, Rickert. Improved organic acid production by calcium alginate-immobilized propioni bacteria. Enzyme Microbi. Technol., 1998, 22: 409-414
    106. Binlin He, Ping Jiang. Characteristics of immobilized aminoacylase from Aspergillus oryzae on macroporous copolymers. Biomat. Art. Cells. Art. Org., 1990, 18(3): 375-382
    107. V Jirku. A novel entrapping matrix for yeast-catalyzed ethanol fermentation. Process Biochem., 1999, (34): 193-196
    108. Pat M Lee. Covalent immobilization of aminoacylase to alginate for L-phenylalanine production. J. Chem. Technol. Biotechnol., 1993, 58: 65-70
    109. Bodalo A. Stabilization studies of L-aminoacylase-producing Pseudomonas sp. BA2 immobilized in calcium alginate gel. Enzyme Microbi. Technol., 1997, 21: 64-69
    110. Axelsson A, Pwesson B. Determination of the effective diffusion coefficients of glucose and ethanol in calcium alginate gel by the moment analysis method. Chem. Eng. Sci., 1995, 50(18): 3001-3004
    111. Douglas B, Seifert. Production of small, monodispersed alginate beads for cell immobilization. Biotechnol. Progress, 1997, 13: 562-568
    112. Vorlop K D, Klein J. Entrapment of microbial cells in chitosan. Methods Enzymol., 1980, 135: 258-269
    113. Baldro E. Pen. G acylase catalyzed resolution of phenylacetate esters of secondary alcohols. Tetrahedron: Asymmetry, 1993, 4(5): 1031-1034
    114. Boeriu. Utilizarea aminoacilazei imobilizate pentru separarea D-fenilglicinei din racemic carmen. Revista De Chimic, 1995, 46(5): 427-429
    115. 卓仁禧, 罗毅, 陶国良. 固定化酶技术及其进展. 离子交换与吸附, 1994, 10(5): 447-452
    116. 周晓云. 酶技术. 北京: 石油工业出版社, 1994. 47-48
    117. 王建龙, 钱易. 固定化细胞技术在氨基酸生产中的应用研究及进展. 食品与发酵工业, 1995, 2: 57-62
    118. Steven F Karel. The immobilization of whole cells: engineering principles. Chem. Eng. Sci., 1985, 40(8): 1321-1354
    119. 夏晓明, 侯文华, 岳奇贤等. 固定化技术研究的新进展. 微生物学通报, 1990, 17(6): 232-234
    120. Pat M Lee, Kong H Lee, Yew S Siaw. Covalent immobilization of aminoacylase to alginate for L-phenylalanine production. J Chem. Technol. Biotechnol., 1993, 58: 65-70
    121. 张长德. 甲壳胺复合物固定化酶的催化反应机理研究. 功能高分子材料, 1995, 26(4): 364-367
    122. J F Kennedy, E H Melo. Immobilized enzymes and cells. Chem. Eng. Process, 1990, (7): 1230-1235
    123. 李民勤, 王道宾, 何炳林. 大孔载体对米曲霉氨基酰化酶的固定化研究. 中国科学, B辑, 1992, (11): 1121-1126
    124. 李民勤, 何炳林. 功能基化聚丙烯酸甲脂固定化氨基酰化酶的研究. 生物工程学报, 1993, 9(3): 282-286
    
    
    125. Gloria, Villora, Cano. A generalized analysis of internal diffusion of immobilized enzyme in multi-enzyme reaction. J. Chem. Eng., 1994, 56: B61-B67
    126. 徐俊, 楼一心, 朱正华. 异硫氰酸酯法固定化醇脱氢酶、乳酸脱氢酶和辅酶I. 华东化工学院学报, 1989, 15(4): 436-440
    127. 戚以政, 汪叔雄. 生化反应动力学与反应器. 北京: 化学工业出版社, 1996. 59-110
    128. Michael C. Hu. Diffusion and adsorption phenomena in an immobilized enzyme reactor using adsorbed polymer for attachment of the enzyme in porous alumina particles. Chem. Eng. Sci., 1995, 40(12): 2241-2248
    129. Betty, J M Hannoun. Diffusion coefficients of glucose and ethanol in cell-free and cell-occupied calcium alginate membranes. Biochem. Bioeng., 1986, 28: 829-835
    130. Hideo Tanaka. Diffusion characteristics of substrates in Ca-alginate gel beads. Biochem. Bioeng., 1984, 26: 53-58
    131. Tosa T. Continuous enzyme reactors (V): kinetics and industrial application of aminoacylase columns for continuous optical resolution of acetyl-DL-amino acids. Agric. Biol. Chem., 1969, 33(7): 1047-1052
    132. Bodalo A, Gomez J L, Gomez E, et al. Production of optically pure L-valine in fluidized and packed bed reactors with immobilized L-aminoacylase. J. Chem. Technol. Biotechnol., 1999, 74: 403-408
    133. Fukushima Y, Motai H. Continuous conversion of glutamine to glutamate by immobilized glutaminase-producing yeast. J. Ferm. Bioeng., 1990,69(3): 189-191
    134. 王道宾, 何炳林. 用固定化氨基酰化酶拆分DL-对氯苯丙氨酸. 化学通报, 1994, (1): 50-52
    135. 韩际宏, 姜坪, 何炳林. 氨基酰化酶的固定化和苯丙氨酸消旋体的拆分. 中国科学, B辑, 1990, 11: 1132-1138
    136. 李民勤, 何炳林. 功能基化聚丙烯酸甲脂固定化氨基酰化酶的研究. 生物工程学报, 1993, 9(3): 282-286
    137. 李民勤, 王道宾, 周菊岩. 高分子载体对米曲霉氨基酰化酶的固定化研究. 离子交换与吸附, 1993, 9(3): 199-203
    138. 徐东, 曹竹安. 国产大孔树脂固定氨基酰化酶. 清华大学学报(自然科学版), 1990, 30(6): 33-38
    139. 刘立建,杨平,卓仁禧. 固定化胰乳蛋白酶拆分L-苯丙氨酸. 中国医药工业, 1997, 28(3): 342-344
    140. 宋正孝, 王诤, 李晓敏等. 固定化米曲霉催化拆分丙氨酸消旋体的反应特性. 催化学报, 1997, 18(6): 508-512
    141. 张龙翔,张庭芳,李令媛.生化实验方法与技术.北京:高等教育出版社,1982. 160-162
    142. 周纪宁, 江体乾, 方波等. 甲醛活化壳聚糖制备固定化L-天冬酰胺酶. 功能高分子材料, 1998, 11(4):534-538
    143. Han J Y, Xiao J, Wang H, et al. Measurement and correlation of taxol solubility in methanol, ethanol and methanol-water systems. Chin. J. Chem. Eng., 2001, 52(1): 64-67
    
    
    144. 胡守仁, 余少波, 戴葵. 神经网络导论. 长沙: 国防科技大学出版社, 1993. 76-145
    145. Wu H B, Tsou C L. A comparison of Zn2+ and Co2+ in the kinetic of inactivation of aminoacylase by 1,10 Phenanthreline and reconstitution of Apoenzyme. Biol. Chem. J., 1993, 296: 435-441
    146. 张彤, 周海梦. Zn离子对氨基酰化酶构像及稳定性影响. 生物物理学报, 1994, 10(2): 198-202
    147. David F O. Diffusion influence in denaturable insolubilized enzyme catalysts. Biotechnol. Bioeng., 1972, 14: 871-884
    148. 许根俊. 酶的作用原理. 北京:科学出版社, 1983. 32-77
    149. Alan Fersht. 酶的结构和作用机制(杜锦珠,茹炳根译). 北京:北京大学出版社, 1991. 104-162
    150. 鲁子贤. 蛋白质和酶学研究方法. 北京: 高等教育出版社, 1989. 5-30
    151. Warburton D, Dunnill P, Lilly M. D. Conversion of benzyl penicillin to 6-Aminopenicillinic acid in a batch reactor and continuous feed stirred tank reactor using immobilized penicillin amidase. Biotechnol. Bioeng., 1973, 15 (1): 13-25
    152. Lee S B,Dewey, Ryu D Y. Reaction kinetics and mechanisms of penicillin amidase: a comparative study by computer simulation. Enzyme Microbi. Technol., 1982, 4: 35-38
    153. Carleysmith, Dunnill, Lilly. Kinetic behavior of immobilized penicillin acylase. Biotechnol. Bioeng., 1980, 22 : 735-756
    154. Ospina S, Sonia. Characterization and use of a penicillin acylase. J. Chem. Technol. Biotechnol., 1992, 53: 205-214
    155. 欧阳平凯. 生物分离原理及技术. 北京: 化学工业出版社, 1999. 168-178
    156. 孔维, 周慧, 刘辉. 固定化葡萄糖异构酶最适pH值的调节. 生物化学杂志, 1992, 8(2): 212-215
    157. He Z M, Wu J C, Yao C Y. Lipase-catalyzed hydrolysis of olive oil in chemically-modified AOT/isooctane reverse micelles in a hollow fiber membrane reactor. Biotechnol. Lett., 2001, 23: 1257-1262
    158. Wandrey C, Flaschel E. Reaction engineering aspects of continuous operation with biocatalysts. Enzyme Eng., 1978, 4: 77-81
    159. Chibata I, Tosa T, Sato T. Application of immobilized biocatalysts on pharmaceutical and chemical industries in biotechnology. Enzyme Technology, Vol 7a, Germany: Verlag Chemie Weinheim, 1987. 653-697
    160. 李绍芬. 反应工程. 北京:化学工业出版社, 1990. 260
    161. 戚以政, 汪叔雄. 生化反应动力学与反应器. 北京: 化学工业出版社, 1996. 275-280
    162. 周爱月. 化工数学. 北京: 化学工业出版社, 2001. 89-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700