海洋微生物中变形菌视紫红质(Proteorhodopsin)结构和功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视紫红质(Rhodopsins)是一类吸光色素膜蛋白,分子质量约为26kDa,是由7个跨膜α-螺旋(A-G)组成的视蛋白(opsins)与色素视黄醛(retinal)通过质子化的希夫碱共价结合而形成。2000年,研究者利用基因测序技术首次从海洋有光区微生物群落的DNA片断中发现了编码与嗜盐古细菌视紫红质(Bacteiorrhodosin, bR)有同源性蛋白的基因,其编码的蛋白被命名为变形菌视紫红质(Proteorhodopsin, PR)。变型菌视紫红质(PR)具有光驱动的质子泵功能,每个分子都含有一个被称为视黄醛的发色团,它的重要功能与视黄醛密不可分。PR在可见光照射下,PR中的视黄醛的构型发生改变,视蛋白利用视黄醛捕获的光能作为动力,将质子从细胞内侧泵向胞质间隙,从而形成跨膜的质子梯度,该质子梯度势能进而被ATP合酶利用产生ATP。初步研究显示,视黄醛在吸收光能后发生结构异构化作用,导致活性位点的希夫碱和Asp97、Glu108、Arg94、His75等氨基酸残基的构象发生变化,促使Asp97和Glu108等定向去质子化和质子化作用,从而将质子从细胞膜内转运到细胞膜外。PR蛋白的重要性不仅由于它存在的广泛性,而且体现在研究PR蛋白具有帮助人们开启利用光能又一新途径的潜力。但与bR相比,PR质子泵功能的神秘面纱还未为世人所揭开,需要从三维结构上进行解析和阐释。
     我们主要对太平洋HOT站75米深海水的一种Proteobacteria型细菌中的PR(蓝光型)蛋白(BPR-Hot75)采用了基因克隆和E.coli表达系统对其进行了表达,然后用于PR蛋白结构与功能的研究。
     PR蛋白的质子泵功能相关研究主要采用生物信息学的方法寻找出可能与质子泵作用相关的位点。前期的研究表明:PR的同源蛋白bR的质子释放基团主要由Arg85,E194和E204组成,PR与bR的序列比较后显示:在PR中只有与bR中的Arg85相对应的Arg94是保守的,而另外两个酸性氨基酸则不存在于PR中。因此,我们首先把PR中保守的Arg94氨基酸分别突变为赖氨酸(Lys)、亮氨酸(Leu)、谷氨酸(Glu)和丙氨酸(Ala),然后对其突变体的功能和特性进行了研究。结果显示:Arg94的突变都导致了PR质子转运功能的完全丧失,野生型PR能够在光照的情况下将质子从细胞内泵到细胞外,而PR的Arg突变体则不能将质子泵到细胞外。另外Arg94的突变也导致PR的光周期发生改变,导致绿光吸收型PR的光循环明显减慢,其中基态(ground state)在光照后的恢复期要比野生型慢十倍。另外蛋白构象变化中的M中间体发生了积累,O中间体则减少到很小的量,这是由于O中间体快速的衰减所导致。这种现象在蓝光吸收型PR中的也是这样。另外,我们还对从海水中分离到一个天然的Arg突变体的表达产物N5R8_5进行了研究,也显示了相类似的结果,而对其突变体(G94R)的表达产物N5R8_5_GR的研究结果显示,甘氨酸突变成精氨酸能使得其质子泵功能得以恢复,同时也改变了其光循环周期。而突变了PR的其它位于胞质间隙的其它酸性氨基酸残基,包括BPR的D85、D88、 E142、E213,结果显示这些氨基酸残基突变对PR的质子泵功能都没有明显的影响。
     为了对PR的结构进行解析,采用PCR方法获得了Hot D97N nO20(nO20表示该蛋白N末端缺少了20个氨基酸残基的信号肽)突变体,采用Ni-NTA亲和层析纯化目的蛋白,并获得高纯度的Hot D97N nO20膜蛋白。对PR突变体Hot D97N nO20使用坐滴气相扩散法进行结晶,在295K的条件下生长获得了五个结晶条件。优化得到Index51结晶条件,并在瑞士同步辐射光源和上海光源中心采集到晶体的X-射线衍射数据,运用XDS晶体衍射数据处理软件包对衍射数据进行处理,并运用CCP4和Phenix等结构解析软件包分析数据。主要是采用分子置换(Molecular Replacement)的方法,以氨基酸序列与PR有约30%同源性的bR (PDB:1C3W,1CWQ)、XR (PDB:3DDL)、 SR (PDB:2F93,1GU8)等为模板,对其进行了衍射数据分析。其结果分别阐述如下:
     Hot D97N no20蛋白最优的结晶条件为:0.2mol/L醋酸铵,0.1mol/L Bis-Tris pH6.5,45%v/v2-甲基-2,4-戊二醇;蛋白浓度均为20mg/ml,去垢剂为anapoe-80, Additive Screen为EDTA。晶体衍射度达到3.3A,空间群为P21212,晶胞参数为a=162, b=169,c=68;α=90°,β=90°,γ=90°,每个不对称空间中均只有五或六个单体。
     由于MR无法解析Hot D97N nO20蛋白的三维结构,存在相位问题,所以尝试采用同晶置换的方法来解决相位问题。首先,采用重金属进行浸泡蛋白晶体,可以检测到重金属Pt、Hg的信号,但不能获得高衍射度的数据;使用卤素Ⅰ进行浸泡,发现其反常散射信号不是很强,无法使用其数据解决相位问题;使用重金属Ta对蛋白晶体进行浸泡,发现在衍射过程中蛋白晶体辐射损伤严重,导致其衍射度下降严重。其次,我们采用与重金属共结晶的方法来获得重金属衍射物晶体,信号扫描无重金属信号。另外,通过硒代甲硫氨酸方法表达获得的蛋白晶体进行X-射线衍射,所得衍射数据中Se的信号太弱。
     为了制备Hot D97N no20硒代甲硫氨酸蛋白衍生物晶体,利用反常散射信息解决相位问题。因Hot D97N no20蛋白含有的11个甲硫氨酸,在X-衍射的过程中甲硫氨酸替换的位点太多,影响重原子的定位,故选择其中六个同源性低的甲硫氨酸进行了突变。通过重叠PCR、获得重组质粒和转化到表达宿主菌C43(DE3)中进行诱导表达,同样获得了Hot D97N six M突变体蛋白,并纯化得到高纯度的蛋白,可用于硒代甲硫氨酸蛋白衍生物晶体生长。
     为了更进一步对PR质子释放氨基酸基团进行深入的研究,对Hot75中与质子释放相关的氨基酸94位Arg(R)进行了突变,将其突变Ala(A),进而获得了Hot R94A突变体。另外,PR蛋白吸收峰的差异的主要由于其105位的氨基酸不同造成的,其中BPR的第105位氨基酸残基为Gln(Q),而GPR的则为Leu (L)。为进一步深入研究105位氨基酸残基作用机理,又将BPR-Hot75蛋白的Gln突变为Leu。通过亲和层析纯化获得高纯度的Hot R94A、 H ot Q105L no20膜蛋白。Hot R94A蛋白质结晶条件:0.2mol/L氯化镁六水合物,0.1mol/L Hepes pH7.0,25%v/v聚乙二醇400;蛋白浓度为20mg/mL;使用坐滴气相扩散法,在295K下培养下约三天长出。使用Additive Screen和Detergent Screen对蛋白晶体进行优化,发现在Additive Screen作用下蛋白的晶体有着明显的改变,在上海光源中心17u光束线进行衍射,发现Hot R94A蛋白晶体衍射度只能达到20A。Ho Q105L no20蛋白我们只发现有一个结晶条件:0.2mol/L氯化镁六水合物,0.1mol/L HEPES sodium pH7.5,30%v/v聚乙二醇400,蛋白晶体衍射度也只能达到20A。
Rhodopsins are a kind of photoactive membrane chromoproteins, with a molecular weight of26kD containing248amino acid residues. Rhodopsins are the opsins comprised seven TM a-helix, and the chromophore in the protein is an all-trans retinal covalently bound via lysine-Schiff base to opsins. They were first discovered by analysis of the genome fragment of a marine gamma-proteobacterium from the SAR86clade, which has high sequence similarity to bR. The sequence codogenic protein was proteorhodopsin (PR). PR shares30%sequence identity to bR. Since then, PR belonging to different bacterial groups, have been found in many different marine environments, such as fresh water and marine environment. Subsequent screening of DNA from different oceans revealed a very large diversity of PR in bacteria belonging to divergent clades of the Alpha-proteobacteria, Gamma-proteobacteria classes and Bacteroides in the sea and so on. Proteorhodopsins (PRs) were distinguished for a-proteobacteria,(3-proteobacterial, flavobacteria and bacteroides according to PR host. The PRs protein can change the light absorption maximum from490nm (blue) to525nm (green), so PRs were also classified to a blue light-absorbing proteorhodopsin (BPR) and a green light-absorbing proteorhodopsin (GPR).
     Proteorhodopsins are bacterial light-dependent proton pumps and ubiquitous retinal-binding membrane proteins, which functions as photo-isomerization using retinal. Light excitation of PR initiates a photocycle, the retinal was caused isomerization when absorption of light energy, that triggers the translocation of a proton from the cytoplasmic to the extracellular side. The proton motive force is used to synthesize ATP, and then to drive chemiosmotic reactions, and power the rotary flagellar motor. The retinal was caused isomerization when absorption of light energy, induce a protonated Schiff base and Asp97, Glu108, Arg94, His75constitution changed. To urge de-protonated Asp97and protonated Glu108, the proton was translocated from the cytoplasmic to the extracellular side. Not only proteorhodopsin have been found in a variety of environments, but also have an important role in supplying light energy for microbial metabolism in the world. To compare with bR, the structure of PR and the light-dependent proton pumps have not be clearly known now, so the people should be extremely to study PR structure, especially three-dimensional structure.
     These bacteria which have proteorhodopsin were isolated from surface water and were unsuccessfully cultured. A memberane gene of blue-absorbing proteorhodopsin isolated from75-meter deep plankton from the Hawaiian Ocean Time (Hot75) Station was expressed in E. coli, and then uased for proton pumps and PR structure study and research.
     We use bioinformatics to find the amino acids of light-dependent proton pumps. Archaeal bacteriorhodopsin is a homologue of Proteorhodopsin, bR proton transfer amino acid were Arg85, E194and E204. The sequence comparison between PR and bR is demonstrated that most of the amino acid residues involved in the vectorial proton transfer from the cytoplasm to the extracellular medium are not conserved. There is only Arg85in bR corresponding to Arg94conservative in PR. The mutant proteins Arg94Lys, Arg94Leu, Arg94Glu and Arg94Ala did not show light-dependent proton pumps at all. Light excitation of PR triggers the translocation of a proton from the cytoplasmic to the extracellular side, but the PR Arg94mutants show no proton pumps. Otherwise, the Photochemical Reactions are diversity and a greatly retarded in proteorhodopsin Arg94mutant. The ground state of Photochemical Reactions in mutants recovers more than10-fold slower than in wild-type PR. The proton donor to the Schiff base for the proton transfer occurring during the transition of the M inter-mediate to later red-shifted states as evidenced by a greatly retarded M decay in PR mutant, and most accumulation is in the red-shifted M state without marked accumulation of M by the rise and decay of an O. In contrast to the natural mutant of PR Arg94has the same phenomenon. We also chose kytoplasm interspaceal acidity amino acid residue to catastrophe, such as D85,D89, E144, D213. These mutants have the functions as light-dependent proton pumps.
     We constructed expression vectors HotD97N no20for cutting20aas from the DHD of HotD97N with pET expression system respectively, and expressed them in E. coli C43(DE3) pLysS, the expression product (HotD97N no20) were induced by IPTG and appending retinal. The protein of PR was purified by Ni-NTA and gel-filtration, and was used to crystallize. Crystals were screened out at295K using sitting-drop vapor diffusion technique and Hampton research crystallization conditions kit. The mutant Hot D97N no20 crystals in six different crystallization conditions were screened out by using sitting-drop vapor diffusion technique. The condition:0.2mol/L Ammonium Acetate,0.1mol/L Bis-Tris pH6.5,45%v/v2-Methyl-2,4-pentanediol; anapoe-80; EDTA. The proteins were both at the concentration of20mg/mL. Data collection about Hot D97N no20crystals was collected on beamline Swiss Light Sourcesynchrotron radiation beamlines (SLS) at100K, which resulted in a complete3.3A resolution data set. The unit-cell parameters was a=163.47, b=169.39, c=69.58, with5-6PR molecules in the asymmetric unit. To solve the structure did not success due to the low sequence similarity with its homologs by using molecular replacement. The diffraction data were indexed, integrated and scaled with XDS, further conducted with the CCP4suite. We use COOT to build the structure and find part of the main chain, but we cannot find the hydro-amino acids. We collected diffraction data of Hot D97N no20crystal soaked with substrate Pt, Ta, Hg and KI, and anomalous signal was detected from the KI, Ta soaked crystal diffraction dataset. We collected diffraction data of Hot D97N no20selenomethionyl protein crystals, and anomalous signal was detected. But the results were not enough stronger to solve the phase of Hot D97N no20.
     To prepare selenomethionyl (Se-Met) protein crystals, anomalous signal was detected from the Se-Met crystal diffraction dataset to solve the phase of PR. The PR gene encoded a polypeptide of249amino acids, with11methionine amino acids. As to there is more anomalous signal in crystal diffraction, we can not find the phase, so we chose the six methionine mutated. Mutant HotD97N six M was constructed using two-step PCR, expressed in E. coli C43(DE3) pLysS. The expression product HotD97N six M was purified by Ni-NTA and gel-filtration and used to prepare Selenomethionyl protein crystals.
     Most of the amino acid residues involved in the vectorial proton transfer and those carboxylic acid residues involved in the proton release, the striking differences of Arg94were observed, which provides insight into proteorhodopsin diversity in mechanism and possibly physiological function. The mutantHotR94A was constructed using two-step PCR, expressed in E. coli C43(DE3) pLysS, and HotR94A was purified by Ni-NTA and gel-filtration. Otherwise, the difference of PR protein absorption spectra and photochemical reactions were due to amino acids at position105. Mutant BPR-HotQ105L no20was constructed using two-step PCR, expressed in E. coli C43(DE3) pLysS, and BPR-H otQ105L no20was purified by Ni-NTA and gel-filtration in the same way.
     The Hot R94A protein used are20mg/mL:0.2mol/L Magnesium chloride hexahydrate,0.1mol/L Hepes pH7.0,25%v/v Polyethylene glycol400, the crystals were grow quickly for three day. We try to sublimate crystals quality by using Additive Screen, Detergent Screen but the crystal was not changed. It diffracted to20A. The HotQ105L no20protein crystal condition is0.2mol/L Magnesium chloride hexahydrate,0.1mol/L HEPES sodium pH7.5,30%v/v Polyethylene glycol400, and crystal diffraction is also20A.
引文
1.焦念志,冯福应,魏博.变形菌视紫红质-海洋光能生物利用的新途径.科学通报,2006,51:887-893.
    2.韩毅,仓怀兴,毕汝昌.NaCl溶液体系溶菌酶结晶相图的测定.[J].生物物理学报,1998,14:573-576.
    3.柯衡明,陈玉祥,蔡继文.生物大分子的X射线晶体学.[M].2010,北京:化学工业出版社.
    4.卢光莹,华子千.生物大分子晶体学基础1994.
    5.卢光莹,华子千,生物大分子晶体学基础.[M],2006,北京大学出版社.
    6.祁胜文.细菌视紫红质的特性及研究进展.[J].Journal of Dezhou Uiversity(德州学院学报).2002,.
    7.萨姆布鲁克J,弗EF,曼尼阿蒂斯T.分子克隆实验指南(第三版).[M].2002,北京:科学出版社
    8.汪家政,范明.蛋白质技术手册.2002,
    9.王弘,于淑娟,高大维.蛋白质达分子的结晶.[J].生命的化学,2001,(05).
    10. Althoff S, Zambrowicz B, Liang P, et al. Crystallization and preliminary X-ray analysis of Escherichia coli adenylate kinase. [J]. JMolBiol,1988,199:665-666.
    11. Amsden JJ, Kralj JM, Bergo VB, Spudich EN, Spudich JL, Rothschild KJ. Different structural changes occur in blue-and green-proteorhodopsins during the primary photoreaction. [J]. Biochemistry.2008,4,47:11490-11498.
    12. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF. Bacterial rhodopsin:evidence for a new type of phototrophy in the sea. [J]. Science,2000,289:1902-1906.
    13. Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. Proteorhodopsin phototrophy in the ocean. [J]. Nature,2001,411:786-789.
    14. Bergo VB, Sineshchekov OA, Kralj JM, Partha R, Spudich EN, Rothschild KJ, Spudich JL. His-75 in proteorhodopsin a novel component in light-driven proton translocation by primary pumps. [J].J Biol Chem,2009,284:2836-2843.
    15. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. [J].Anal Biochem,1976.72:248-254.
    16. Bielawski JP, Dunn KA, Sabehi G, Beja O. Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. [J]. Proc Natl Acad Sci,2004,12,101:14824-14829.
    17. Boistelle R, Astier J P. Crystallization mechanism in solution. [J]. J Cryst Growth,1988,90:14-30.
    18. Bloustine J, BV, Fraden. S. Measurements of protein-protein interactions by size exclusion chromatography. [J]. Biophysical Journal,2003.85:2619-2623.
    19. Bhairi SM, Mohan C. Detergents:a guide to the properties and uses of detergents in biology and biochemistry. [Z]. Calbiochem, EMD Bio-sciences, San Diego, CA, USA,2007.
    20. Cherezov V, Clogston J, Papiz MZ, Caffrey M. Room to move:crystallizing membrane proteins in swollen lipidie mesophases. [J]. J Mol Biol,2006,357:1605-1618.
    21. Cohen SX, et al., ARP/WARP and molecular replacement:the next generation. [J]. Acta Crystallogr D Biol Crystallogr,2008,64:49-60.
    22. Dioumaev AK, Brown LS, Shih J, Spudich EN, Spudich JL, Lanyi JK. Proton transfers in the photochemical reaction cycle of proteorhodopsin. [J]. Biochemistry,2002,41:5348-5358.
    23. Drenth Ja H,et a., Protein crystals and their stability. [J]. J Cryst Growth,1992,122:107-109.
    24. DeMattei RC, Feigelson RS, Weber PC, Factors affecting the morphology of isocitrate lyase crystals. [J].J. Cryst. Growth,1992,122:152-160.
    25. Doublie S. Preparation of selenomethionyl proteins for phase de-termination. [M]. Method in Enzymology,1997,276:523-530.
    26. DeLong EF, Beja O.The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. [J]. PLoS Biol.2010,27,8:e1000359.
    27. Dioumaev AK, Wang JM, Balint Z, Varo G, Lanyi JK. [J]. Biochemistry,2003,42:6582-6587.
    28. Eva PebayPeyroula, et al. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. [J]. Science,1997,277:1676-1681.
    29. Evans P. Scaling and assessment of data quality. [J] Acta Crystallogr D Biol Crystallogr,2006,62: 72-82.
    30. Emsley P, Cowtan, K. COOT:model-building tools for molecular graphics. [J] Acta Crystallogr D Biol Crystallogr,2004,60:2126-2132.
    31. Frigaard NU, Martinez A, Mincer TJ, DeLong EF. Proteorhodopsin lateral gene transfer between marine planktonic bacteria and archaea [J]. Nature,2006,439:847-850.
    32. Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E.Proteorhodopsin is a light-driven proton pump with variable vectoriality.J Mol Biol,2002,30, 321:821-838.
    33. Faham S, Bowie JU. Bicelle crystallization:a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. [J]. J Mol Biol,2002,316:1-6.
    34. Feher G.a K, et a., Nucleation and growth of protein crystals:general principles and assays. [M]. MethEnz,1985,114:77-111.
    35. Freeman M. Structural biology:enzyme theory holds water. [J] Nature,2006,444:153-155.
    36. Friedich TS, Geibel R, Kalmbach I, Chizhov K, Ataka J, Heberle M. Engelhard, and E Bamberg. Proteorhodopsin is a light-driven proton pump with variable vectoriality. [J]. J Mol Biol,2002,321: 821-838.
    37. Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. [J]. J Mol Biol,1996,259:393-421.
    38. Giovannoni SJ, Bibbs L, Cho JC, Stapels MD, Desiderio R, Vergin KL, Rappe MS, Laney S, Wilhelm LJ, Tripp HJ, Mathur EJ, Barofsky DF. Proteorhodopsin in the ubiquitous marine bacterium SARI 1. [J]. Nature,2005,438:82-85.
    39. G1ockner FO, Fuchs BM, Amann R. Bacterioplankton composition of lakes and oceans:a first comparison based on fluorescence in situ hybridization. [J]. Appl Environ Microbiol,1999,65: 3721-3726.
    40. Gomez-Consarnau L, Gonzalez JM, Coll-Llado M, Gourdon P, Pascher T, Neutze R, Pedr6s-Alio C, Pinhassi J. Light stimulates growth of proteorhodopsin-containing merine Flavobacteria. [J]. Nature, 2007,445:210-213.
    41. Gomez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, Gonzalez JM, Pinhassi J. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. [J]. PLoS Biol,2010,8:e1000358.
    42. Gabriela S, Sarika S, Mirka-K V. Characterizing the structure and photocycle of PR 2D crystals with CD and FTIR spectroscopy. [J]. Photochem Photobiol,2009,85:529-534.
    43. Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Buldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M. Molecular basis of transmembrane signalling by sensory rhodopsin Ⅱ-transducer complex. [J]. Nature,2002,419:484-487.
    44. Galloway J, Structural biology:Putting a twist in the tale. [J]. Nature,1990,343:513-514.
    45. Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. [J]. J Mol Biol.1996,259:393-421.
    46. Geerlof A, et al, The impact of protein characterization in structural proteomics. [J] Acta Crystallogr D Biol Crystallogr,2006,62:1125-1136.
    47. Hoff WD, Jung KH, Spudich JL. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. [J]. Annu Rev Biophys Biomol Struct,1997,26:223-258.
    48. Hagstrom A, Pommier T, Rohwer F, Simu K, Stolte W, Svensson D, Zweifel UL. Use of 16S ribosomal DNA for delineation of marine bacterioplankton species. [J]. Appl Environ Microbiol, 2002,68:3628-3633.
    49. Henderson R, Unwin PN. Three dimensional model of purple membrane obtained by electronmicroscopy. [J]. Nature,1975,257:28-32.
    50. Henderson R.et al.Ultramicroscopy,1986,10:147.
    51. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH. Model for the structureof bacteriorhodopsin based on high resolution electron cryomicroscopy. [J].J Mol Biol, 1990,213:899-929.
    52. Hartmut L, et al. Proton transfers pathways in bacteriorhodopsin at 2.3 angstrom resolution. [J], Science,1998,280:1934-1937.
    53. Hartmut L, et al. Structural changes in bacteriorhodopsin duringion tansport at 2 angstrom resolution. [J]. Science,1999,286:255-260.
    54. Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. [J]. Nucl Acids Symp Ser,1999,41:95-98.
    55. Hempelmann F, Holper S, Verhoefen MK, Woerner AC, Kohler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C.His75-Asp97 Cluster in Green Proteorhodopsin. [J]. J Am Chem Soc,2011, Mar,133: 4645-4654.
    56. Hendrickson WA, OgataPhase CM. Determination from multi-wavelength nomalous diffraction measurements. [J]. Method Enzymol,1997,276:494-523.
    57. Hendrickson WA. Etermination of macromolecular structuresfrom anomalous diffraction of synchrotron radiation. [J]. Science,1991,254:51-58.
    58. Jung JY, Choi AR, Lee YK, Lee HK, Jung KH. Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic Ocean. [J]. FEBS Lett,2008,582: 1679-1684.
    59. James K Baird, Susan C Hill, Kinetics of protein crystal nucleation and growth in the batch method. [J], Journal ofCrystal Growth,1999,220-225.
    60. Jap BK et al. Biopphys J,1983,48:81.
    61. Jaroszewski, L., et al., FFAS03:a server for profile-profile sequence alignments. [J]. Nucleic Acids Res,2005,33:W284-288.
    62. Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments. [J]. FEMS Microbiol Ecol,2002,39:91-100.
    63. Koh EY, Atamna-Ismaeel N, Martin A, Cowie RO, Beja O, Davy SK, Maas EW, Ryan KG. Proteorhodopsin-bearing bacteria in antarctic sea ice. [J]. Appl Environ Microbiol,2010,76: 5918-5925.
    64. Kolbe M, Besir H, Essen LO, Oesterhelt D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. [J]. Science,2000,288:1390-1396.
    65. Kuznetsov YG, Malkin AJ, Mcpherson A. The influence of precipitant concentration on macromolecularcrystal growth mechanisms. [M].2001.
    66. Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM. The RCSB PDB information portal for structural genomics. [J]. Nucleic Acids Res,2006.34:D302-305.
    67. Krebs RA, Alexiev U, Partha R, DeVita A, Braiman MS Detection of fast light-activated^release and M intermediate formation from proteorhodopsin. BMC Physiol,2002,2:5.
    68. Kolbe M, Besir H, Essen LO, Oesterhelt D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. [J]. Science,2000,288:1390-1396.
    69. Kabsch, W, XDS.[J]Acta Crystallogr D Biol Crystallogr,66:125-132.
    70. Kralj JM, Spudich EN, Spudich JL, Rothschild KJ. Raman spectroscopy reveals direct chromophore interactions in the Leu/Gln105 spectral tuning switch of proteorhodopsins. [J].J Phys Chem B, 2008,18,112:11770-11776.
    71. Kimura H, Young CR, Martinez A, Delong EF. Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacteriu. [J]. ISMEJ,2011,7.
    72. Keller, P.A., et al., Deposition of macromolecular structures. [J]. Acta Crystallogr D Biol Crystallogr,1998.54 (6):1105-1108
    73. Lanyi JK. Understanding structure and function in the light-driven proton pump bacteriorhodopsin. [J]. J Struct Biol,1998,124:164.
    74. Ludmann KC, Gergely AD, G Va'ro'. Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range. [J]. Biophys J,1998,75:3120-3126.
    75. Lakatos M, Lanyi JK, Szakacs J, Varo G. The photochemical reaction cycle of proteorhodopsin at low pH. [J]. Biophys J,2003,84:3252-3256.
    76. Lami R, Cottrell MT, Campbell BJ, Kirchman DL. Light-dependent growth and proteorhodopsin expression by Flavobacteria and SAR11 in experiments with Delaware coastal waters. [J]. Environ Microbiol,2009,11:3201-3209.
    77. Landau EM, Rosenbusch JO. Lipidic cubic phase:a novel concept for the crystallization of membrane proteins. [J]. Proc Natl Acad Sci USA,1996,93:14532-14535.
    78. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL. Crystal structure of sensory rhodopsin Ⅱ at 2.4 angstroms:insights into color tuning and transducer interaction. [J]. Science,2001,293: 1499-1503.
    79. Lu J, Wang XJ, Ching CB. Batch crystallization of soluble proteins:Effect of precipitant, temperature and additive. [J]. Progress in Crystal Growth and Characterization of Materials,2002: 201-217.
    80. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. Structure of bacteriorhodopsin at 1.55 A resolution. [J]. J Mol Biol, 1999,291:899-911.
    81. Laemmli, UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. [J]. Nature,1970,227:680-685.
    82. Lenz MO, Huber R, Schmidt B, Gilch P, Kalmbach R, Engelhard M, Wachtveitl J. First steps of retinal photoisomerization in proteorhodopsin[J]. Biophys J.2006 Jul 1;91(1):255-62.
    83. Lenz MO, Woerner AC, Glaubitz C, Wachtveitl J. Photoisomerization in proteorhodopsin mutant D97N. [J]. Photochem Photoblol.2007 Mar-Apr;83(2):226-31.
    84. Luecke H, Schobert B, Lanyi JK, Spudich EN, Spudich JL. Crystal structure of sensory rhodopsin II at 2.4 angstroms:insights into color tuning and transducer interaction. [J]. Science,2001,293: 1499-1503.
    85. LaemmLi, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970.227(5259):p.680-685.
    86. Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R, Spudich EN, Spudich JL, Beja O. Diversification and spectral tuning in marine Proteorhodopsins. [J]. EMBO J,2003,22:1725-1731.
    87. McPherson A, Introduction to Macromolecular Crystallography. [M].lsted.2003, NJ:Wiley-Liss, Hoboken.
    88. McPherson A. Current approaches to macromolecular crystallization. [J]. Eur J Biochem.,1990, 189:1-23.
    89. Mcpherson A. Crystallization of macromolecules:General principles. [J]. Meth Enzymol,1985,14: 112-120.
    90. Mazzariol A, Comaglia G, Nikaido H. Contributions of the AmpC beta-lactamase and the AcrAB multidrug effluxsystem in intrinsic resistance of Escherichia coli K-12 to beta-lactams. [J]. Antimicrob Agents Chemother,2000,44:1387-1390.
    91. McCoy, A.J., et al., Phaser crystallographic software. [J]. JAppl Crystallogr,2007,40:658-674.
    92. Martinez A, Bradley AS, Waldbauer JR, Summons RE, DeLong EF. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. [J]. Proc Natl Acad Sci,2007, 27,104:5590-5595.
    93. Nof At, Gazalah S, Itai S. Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. [J]. ISME J,2008,2:656-662.
    94. Oesterhelt D, Stoeckenius W. Functions of a New Photoreceptor Membrane. [J]. Nature New Bio, 1971,233:149.
    95. Otwinowski, Z.M., DENZO and SCALEPACK. [M]. Methods Enzymol,1997,276:307-326.
    96. Pfleger N, Worner AC, Yang J, Shastri S, Hellmich UA, Aslimovska L, Maier MS, Glaubitz C. Pfleger N, Worner AC. Solid-state NMR and functional studies on proteorhodopsin. [J]. Biochim BiophysActa,2009,1787:697-705.
    97. Pellumb Jakupi HH, et al, A Thermodynamic Interpretation of the "Excluded-Volume Effect" in Coupled Diffusion. [J]. JPhys Chem B,2004.108:7978-7985.
    98. Prive GG. Detergents for the stabilization and crystallization of membrane proteins. Methods, [M]. 2007,41:3882397.
    99. Powell, H.R., The Rossmann Fourier autoindexing algorithm in MOSFLM. [J]. Acta Crystallogr D Biol Crystallogr,1999,55:1690-1695.
    100. Partha R, Krebs R, Caterino TL, Braiman MS. Weakened coupling of conserved arginine to the proteorhodopsin chromophore and its counterion implies structural differences from bacteriorhodopsin. [J]. Biochim BiophysActa.2005,1708:6-12.
    101.Rupenyan A, van Stokkum IH, Arents JC, van Grondelle R, Hellingwerf K, Groot ML. Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy. [J]. Biophys J,2008,94:4020-4030.
    102. Rhodes G, Crystallography made Crystal Clear, [M] 1993:Academic Press.
    103. Ranaghan MJ, Shima S, Ramos L, Poulin DS, Whited G, Rajasekaran S, Stuart JA, Albert AD, Birge RR.Photochemical and thermal stability of green and blue proteorhodopsins:implications for protein-based bioelectronic devices. [J]. J Phys Chem B,2010,11,114:14064-14070.
    104. Spudich JL, Yang CS, Jung KH, Spudich EN. Retinylidene proteins:structures and functions from archaea to humans. [J]. Annu Rev Cell Dev Biol,2000,16:365-392.
    105. Sabehi G, Massana R, Bielawski JP, Rosenberg M, Delong EF, Beja O. Novel Proteorhodopsin variants from the Mediterranean and Red Seas. [J]. Environ Microbiol,2003,5:842-849.
    106. Sabehi G, Loy A, Jung KH, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Beja O. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. [J]. PloS BIOL,2005,3:e273.
    107. Sriram Subramanism. Richard Henderson. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. [J]. Natrue,2000,406:653-657.
    108. Sabehi G, Beja O, Suzuki MT, Preston CM, DeLong EF. Different SAR86 subgroups harbour divergent proteorhodopsins. [J]. Environ Microbiol,2004,6:903-910.
    109. Sharma AK, Spudich JL, Doolittle WF. Microbial rhodopsins:functional versatility and genetic mobilit. [J]. Trends Microbiol,2006,14:463-469.
    110. Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V. Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump-structural insights. [J]. J Mol Biol, 2009,386:1078-1093.
    111. Slamovits CH, Okamoto N, Burri L, James ER, Keeling PJ. A bacterial proteorhodopsin proton pump in marine eukaryote. s[J]. Nat Commun,2011,2:183.
    112. Stahlberga H, Fotiadisa D, Scheuringa S,et al.Twodimensinal crystal:a powerful approach to assess structure.function and dynamics of membrane proteins. [J]. FEBS Lett,2001,504:166-172.
    113. Sanders CR, Sonnichsen F. Solution NMR of membrane proteins:practice and challenges. [J]. Magnetic Resonance Chemistry,2006,44:24240.
    114. Screpanti E, Padan E, R imon A, et al. Crucial step s in the structure determ ination of the Na+/H + antiporter NhaA in its native conformation. [J]. Journal of Molecular Biology,2006,362 (2): 1922202.
    115. Shimizu H, Nihei C, Inaoka DK, et al. Screening of detergents for solubilization, purification and crystallization of membrane proteins: a case study on succinate: ubiquinone oxidoreductase from Esche2 richia coli. [J]. Acta Crystallographica Section F2Structural B iology and Crystallization Communications,2008,64:8582862.
    116. Sharaabi Y, Brumfeld V, Sheves M. Binding of anions to proteorhodopsin affects the Asp97 pK (a). [J]. Biochemistry,2010,49:4457-4465.
    117. S. Doublie (?) Humana Press Inc., Totowa, NJ. Methods in Molecular Biology, vol.363: Macromolecular Crystallography Protocols:Volume 1:Preparation and Crystallization of Macromolecules.
    118. Strub, M. P., Hoh, F., Sanchez, J. F., et al. Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure,2003,11:1359-1367.
    119. Torre JR, Christianson LM, Beja O, Suzuki MT, Karl DM, Heidelberg J, DeLong EF. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. [J]. Proc Natl Acad Sci USA,2003,28:12830-12835.
    120. Tamogami J, Kikukawa T, Miyauchi S, Muneyuki E, Kamo N. A tin oxide transparent electrode provides the means for rapid time-resolved pH measurements:application to photoinduced proton transfer of bacteriorhodopsin and proteorhodopsin. [J]. Photochem Photobiol,2009,85:578-589.
    121. Thompson JD, Higgins DG., Gibson TJ. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. [J]. Nucleic Acids Res,1994,22:4673-4680.
    122. The CCP4 suite:programs for protein crystallography. [J]. Acta Crystallogr D Biol Crystallogr, 1994,50:760-763.
    123. Takeda, S., Preparation of Protein Crystals for X-Ray Structural Study [M] Methods in Molecular Medicine, Q. K.Wang. Vol.129.2007:Humana Press.
    124. The CCP4 suite:programs for protein crystallography. [J]. Acta Crystallogr D Biol Crystallogr, 1994,50:760-763.
    125. Torre JR, Christianson LM, Beja O, Suzuki MT, Karl DM, Heidelberg J, DeLong EF. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci, 2003,28,100:12830-12835.
    126. Verhoefen MK, Neumann K, Weber I, Glaubitz C, Wachtveitl J. Primary reaction dynamics of proteorhodopsin mutant D97N observed by femtosecond infrared and visible spectroscopy. [J]. Photochem Photo bio 1,2009,85:540-546.
    127. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoflman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO. Environmental genome shotgun sequencing of the Sargasso Sea. [J]. Science,2004,304:66-74.
    128. Varo G, Brown LS, Lakatos M, Lanyi JK. Characterization of the photochemical reaction cycle of proteorhodopsin. [J]. Biophys J,2003,84:1202-1207.
    129. Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H. Anabaena sensory rhodopsin:a photochromic color sensor at 2.0 A. [J]. Science,2004,306:1390-1393.
    130. Verhoefen MK, Neumann K, Weber I, Glaubitz C, Wachtveitl J. Primary reaction dynamics of proteorhodopsin mutant D97N observed by femtosecond infrared and visible spectroscopy. [J].Photochem Photobiol.2009,85:540-546.
    131.Wallin E, Heijine G. Genome-wide ananlysis of integral membrane proteins from eubacterial, archaean, and eukaryotc organisms. [J]. Protein Sci,1998,7:1029-1038.
    132. Wang WW, Sineshchekov OA, Spudich EN, Spudich JL. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. [J].J Biol Chem,2003,278:33985-33991.
    133. Walter JM, Greenfield D, Bustamante C, Liphardt J. Light-powering Escherichia coli with proteorhodopsin. [J]. Proc Natl Acad,2007,104:2408-2412.
    134. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF. Protein identification and analysis tools in the ExPASy server. [J]. Methods Mol Biol,1999,112: 531-552.
    135. Yang J, Aslimovska L, Glaubitz C. Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR. [J]. JAm Chem Soc,2011,14.
    136. Yoshiaki K, et al. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. [J].Nature,1997,389:206-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700