离子液体诱导溶菌酶结晶及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物技术的发展,蛋白质等生物大分子药物不断涌现,其独特的功能特性越来越受到人们的重视。蛋白质结晶过程复杂,影响因素多,且蛋白质晶体体积较小,脱水易碎裂,对X-射线的衍射能力相对较弱,并且对温度特别敏感,长时间暴露在辐射下晶体会损坏。制备适合X-射线衍射的蛋白质晶体是蛋白质结晶的主要技术瓶颈之一,严重制约着蛋白质工程等新型生物技术的发展。
     离子液体是指在室温下呈液态的盐类化合物。离子液体在催化领域取得了广泛的应用,在许多的分离过程中被称作“绿色溶剂”。本文就是以溶菌酶为实验对象,研究[C_4mim]BF_4,[C_4mim]Cl,[C_4mim]Br,[bmim]I四种离子液体对溶菌酶结晶过程及晶体性质的影响,并对结晶机理进行初步探讨。
     实验采用紫外分光光度法测量了溶菌酶的溶解度,及不同离子液体添加剂对溶解度的影响,并与溶解度经验方程相关联;使用激光动态法测量了离子液体对溶菌酶结晶诱导期的影响,并计算出表面张力和初级成核速率。利用差示扫描量热仪(DSC)及各种热动力学分析方法对溶菌酶晶体热变性及热降解过程进行了热动力学研究,用模型函数法(model-fitting method)和无模型函数法(model-free method)求解动力学方程。
     采用冷却结晶获得溶菌酶晶体,通过光学显微镜,偏光显微镜及XRD谱图、傅立叶转换红外谱图、拉曼谱图对离子液体诱导溶菌酶结晶的机理进行了分析和探讨,添加离子液体诱导溶菌酶结晶使溶菌酶晶体形态改变,并且XRD分辨率改善;利用实时在线拉曼光谱仪分析不同离子液体添加剂下过饱和度对溶液中溶菌酶分子结构及分子间作用力的影响;对获得的溶菌酶晶体进行生物活性的测定,研究离子液体作为添加剂诱导溶菌酶结晶对其晶体活性的影响,实验结果表示离子液体作用下,溶菌酶晶体的活性提高。
     在实验的基础上使用Material Studio软件Morphology模块中BFDH、Growth Morphology模型对溶菌酶的理论晶习进行预测,预测结果与实验获得两种晶型溶菌酶晶体形状基本一致。
With the development of biotechnology, biological macromolecular drugs such as protein quikely increase, whose unique functional properties have received more and more attention. The process of protein crystallization is a complicate process, and there are many factors to affect the crystallization process. Besides, protein crystals are small and easy to fragment when dehydrated, and its X-ray distraction ability is poor. Protein crystals are particular sensitive to temperature and are easy to damage when exposed to radiation in long time. So the main technical bottleneck of protein crystallization, which seriously restricts the development of new biotechnology such as protein engineering, is to prepare crystals proper for X-ray distraction.
     Ionic liquids, called as liquid salts at room temperature, have been extensively studied, as catalysts and catalytic support, which are also considered as“green solvents”for various separation processes. In this thesis, the crystallization process,crystal properties and crystallizing mechanism of lysozyme with ionic liquids were systematic studied as the following:
     The solubility of lysozyme in the buffer solution with different ionic liquids was measured by US spectrophotometry method, and the solubility curves were consistent with the experiential equations of solubility. The induce time of lysozyme crystallization with different ionic liquids was measured by dynamic-temperature- changing-laser-method, and the interfacial tension and primary nucleation rate were calculated.
     The thermodynamics of denaturation and decomposition of lysozyme were investigated using DSC. The model-fitting and model-free methods were used to analyze the thermodynamics.
     The crystals were obtained by cooling crystallization from saturated solution with different ionic liquids. The crystallization mechanism of lysozyme with ionic liquids was analyzed and discussed through optical microscope, polarizing microscope, X-ray diffraction, FT-IR spectra and Raman spectra. The ionic liquids produced changes in crystal morphology. Crystals grown using ionic liquids as precipitating agents or as additives provided X-ray diffraction resolution better than that obtained without ionic liquids. The effecting of super-saturation of lysozyme solution with ionic liquids on molecular structure and molecular intermolecular forces was analyzed by real-time online Raman spectra. Beside, the biological activity of lysozyme crystal induced by different ionic liquids was determined, which indicated that the ionic liquids have better effect on the lysozyme activity.
     The Material Studio software was used to predict the morphologies of lysozyme. The morphologies, which were predicted by two models, BFDH and Growth Morphology, were ultimately consistent with the morphologies of lysozyme obtained in the laboratory.
引文
[1]Alexander McPherson, Introduction to protein crystallization, Methods, 34, 2004: 254~265
    [2]E.T. Reichert, A.P. Brown, The differentiation and specificity of corresponding proteins and other vital substances in relation to biological classification and organic evolution: The crystallography of hemoglobins, Carnegie Institute, Washington, DC, 1909
    [3]Summer J.B., The isolation and crystallization of the enzyme ureas, Preliminary paper, Journal of Biological Chemistry, 1926, 69: 435~441
    [4]Summer J.B., Dounce A.L., Journal of Biological Chemistry, 1937, 121: 417~424
    [5]Summer J.B., Somers G.F., The Enzymes, Academic Press, New York, 1943
    [6]J.D. Bernal, D. Crowfoot, Nature 133(1934): 794
    [7]McPherson A., Two approaches to the rapid screening of crystallization conditions, Journal of Crystal Growth, 1992, 122: 161~167
    [8]McPherson A., The role of X-ray crystallography in structure based rational drug design, in: Chemical and Structural Approaches to Rational Drug Design, CRC Press, Boca Raton, FL, 1994
    [9]李欣欣,徐晓东,丹媛媛,等,蛋白质结晶的研究进展,生物技术通报,2007,6:44~47
    [10]McPherson A., The Preparation and Analysis of Protein Crystals, Wiley, New York, 1982.
    [11]McPherson A., Crystallization of Biological Macromolecules, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999
    [12]姚知源,周浩鹏,周静舫,蛋白质分离纯化和蛋白质结晶的研究方法,企业技术开发,2009,10:46~48
    [13]Mcpherson A. Crystallization of macromolecules: General principles, Meth Enzymol, 1985, 14: 112~120
    [14]Lu J, Wang X J,Ching C B. Batch crystallization of soluble proteins: Effect of precipitant, temperature and additive, Progress in Crystal Growth and Characterization of Materials, 2002: 201~217
    [15]Lu J, Wang X J,Ching C B. Effect of additives on the crystallization of lysozyme and chymotrypsinogen A [J]. Cryst. Growth & Des. 2003, 3(1): 83~87
    [16]Leheninger A.L., Nelson D.L., Cox M.M., Principles of Biochemistry, 2nd Edition, New York: Worth Publishers. 1993:180~312
    [17]刘仲敏,何伯安,溶菌酶及其在食品工业中的应用,食品与发酵工业,1995,No.5
    [18]林向阳,何承云,阮榕生等,溶菌酶以及应用研究,中国食品添加剂,2005,6:103~106
    [19]Laurents D. V., Baldwin R. L. Characterization of the unfolding pathway of hen egg white lysozyme, Biochemisty, 1997, 36:1496~l500
    [20]陈燕,江明锋,叶煜辉等,溶菌酶的研究进展,生物学杂志,2009,26(2):64~66
    [21]赖晓芳,蔡发国,王炜军等,萝卜块根中两个具溶茵酶活性的几丁质结合蛋白的纯化及其特性,植物生理与分子生物学学报,2006,32(4):445~450
    [22]Pusey L.M. A method for rapid liquid-solid phase solubility measurements using the protein lysozyme, Journal of Crystal Growth, 1988, 88: 419~424
    [23]Rosenberger F., Control of nucleation and growth in protein crystal growth, Journal of Crystal Growth, 1988, 90: 74~78
    [24]Howard B., The solubility of hen egg white lysozyme, Journal of Crystal Growth, 1988, 90: 94~104
    [25]Ries-Kautt M.M., Ducruix A., Crystallization of basic proteins by ion pairing, Journal of Crystal Growth, 1991, 110(1-2): 220~25
    [26]Lu J., Wang X. J., Ching C. B., Batch crystallization of soluble protein: effect of precipitant, temperature and additive, Progress in Crystal Growth and Characterization of Materails, 2002, 145: 2201~217
    [27]Sauter C., Ng J. D., Lorber B., et al. Additives for the crystallization of proteins and nucleic acid, Journal of Crystal Growth, 1999, 196: 365~376
    [28]Russell A. J., Randolph S. J., Tyralynn Frazier, et al. The effect of temperature and solution pH on the Nucleation of Tetragonal Lysozyme Crystals, Biophysical Journal, 1999, 77(3): 1585~1593
    [29]Blake C. C., Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Angstrom resolution, Nature, 1965, 206(986): 757~761
    [30]Berthou J., Lifchitz A., Artymiuk P., et al. An X-ray study of the Physiological-temperature form of hen egg-white lysozyme at 2 Angstrom resolution, Proc. R. Soc. London, B, 1983, 217: 471~489
    [31]Hideyuki Oki, Yoshiki Matsuura, Hiroshi Komatsu, et al. Refined structure of orthorhombic lysozyme crystallized at high temperature: correlation between morphology and intermolecular contact, Acta Crystallographica Section D, 1999, 55: 114~121
    [32]Artymiuk P. J., Blake C. F., Rice D. W., et al. The structure of the Monoclinic and orthorhombic forms of hen egg-white lysozyme at 6 Angstrom resolution, Acta Crystallographica Section B, 1982, 38: 778
    [33]Harata K., X-ray structure of a monoclinic form of hen egg-white lysozyme crystallized at 313 K comparison of two independent molecular, Acta Crystallographica Section D, 1995 50(3): 250~257
    [34]Vaney M. C., Broutin L., Douangamath A., et al. Structure effects of monovalent anions on polymorphic lysozyme crystal, Acta Crystallographica Section D, 2001, 57(7): 929~940
    [35]Majeed S., Ofek G., Belachew A., et al. Enhancing protein crystallization through precipitant synergy, Structure, 2003, v11:1061~1070
    [36]Ramanadham M., Sieker I. C., Jensen L. H., et al. Refinement of triclinic lysozyme:ΙΙ. The method of stereochemically restrained least squares, Acta Crystallographica Section B, 1990, 46(1): 63~69
    [37]Hodsdon J. M., Brown G. M., Sieker L. C., et al. Refinement of triclinic lysozyme:Ι. Fourier and least-squares methods, Acta Crystallographica Section B, 1990, 46(1): 54~62
    [38]Walsh M. A., Schneider T. R., Sieker L. C., et al. Refinement of triclinic hen egg-white lysozyme at atomic resolution, Acta Crystallographica Section D, 1998, 54(4):522~546
    [39]Brinkmann C., Weiss M. S., Weckert E., The structure of the hexagonal crystal form of hen egg-white lysozyme, Acta Crystallographica Section D, 2006, 62(4): 349~355
    [40]Vaney M. C., Maignan S., ReisKautt M., et al. High-resolution structure (1.33 angstrom) of a hen egg-white lysozyme tetragonal crystal grown in the APCF apparatus. Data and structure comparison with a crystal grown under microgravity from SpaceHab-01 mission, Acta Crystallographica Section D, 1996, 52:505~517
    [41]Jolles J., Jauregui-Adell juan, Ida B, et al. The chemical structure of white-egg lysozyme: the detailed study, Biochemical et Biophysical Acta, 1963, 78(4):668~689
    [42]Welton J. Room-temperature ionic liquids: solvents for synthesis and catalysis, Chemical Reviews, 1999, 99: 2071-2083
    [43]Welton T. Room-temperature ionic liquids solvents for synthesis and catalysis, Chemical Review, 1999, 99(8): 2071~2083
    [44]Hurley F. H., Wier T. P., Computer-assisted synthetic analysis generation of synthetic sequences involving sequential functional group interchanges, Journal of the Electrochemical Society, 1951, 98(5): 203~206
    [45]Appleby D., Hussey C. L., Sedden K. R., et al. Room-temperature ionic liquids as solvents for electronic absorption spectroscopy of halide complexes, Nature, 1986, 323(16): 614~616
    [46]Wikes J. S., Zaworotko M. J., Air and water stablel 2-ethy-3-methylimidazolium based ionic liquids, Journal of the Chemical Society, Chemical Communications, 1992(13): 965~967
    [47]Bonhote P., Dias A. P., Papageorgiou, hydrophobic, highly conductive ambient-temperature molten salts, Inorganic Chemistry, 1996, 35(5): 1168~l l78
    [48]Bao W. L., Wang Z. M., Li Y. X., Synthesis of chiral Ionic liquids from natural smino scids, Organic Chemistry, 2003, 68(2): 591~593
    [49]Niyazi B., A new ionic liquid: 2-hydroxy ethylammonium formate, Journal of Molecular Liquids, 2005, 1l6(1): 15~18
    [50]Rogers R. D., Seddon K. R., Ionic Liquids: Industrial Applications to Green Chemistry, ACS Symposium Series 818; American Chemical Society: Washington, DC, 2002
    [51]Rogers R. D., Seddon K. R., Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities- Properties and Structure, ACS Symposium Series 901; American Chemical Society: Washington, DC, 2005
    [52]Marsh K.N., Boxall J.A., Lichtenthaler1 R., Room temperature ionic liquids and their mixtures-a review, Fluid Phase Equilibria, 2004, 219: 93~98
    [53]Blanchard L A, Hancu D, Beckman E J, et a1. Green processing using ionic liquid and CO2, Nature, 1999, 399: 28~29
    [54]WiIkes J. S., A short history of ionic liquid from molten salts to neoteric solvents, Green Chemistry, 2002, 4: 73~80
    [55]Yaodong Liu, Guozhong Wu, Mingying Qi, Polymorphous crystals from chlorozincate choline chloride ionic liquids in different molar ratios, Cryst. Growth, 2005, 281: 616~622
    [56]Garlitz L A, Summers C A, Flowers R A. Ethylammonium nitrate: a protein crystallization reagent, Acta Cryst D.1999, 55:2037~2038
    [57]Dariusch H., DirkH., Sebastian J., et al. Advanced protein crystallization using water-soluble ionic liquids as crystallization additives, Biotechnol Lett, 2007, 29: 1703~1711
    [58]Pusey M. L., Paley M. S., Turner M B, et al. Protein Crystallization Using Room Temperature Ionic Liquids, Cryst. Growth Des. 2007, 7: 787~793
    [59]Russell A. J., Sumiko T., Kenton L. L., et al. The Effect of Ionic Liquids on Protein Crystallization and X-ray Diffraction Resolution, Cryst. Growth Des. Publication Date (Web): 04 May, 2009.
    [60]Gracin S., Brinck T., Rasmuson, A. C. Prediction of solubility of solid organic compounds in solvents by UNIFAC, Ind. Eng. Chem. Res, 2002, 41: 5114-5124
    [61]Carmen E. H., Karen S. C., Lindsay E. R., et al., Solubility of pyrene in binary (alkane + 2-butanol) solvent mixtures, J. Chem. Thermodyna., 1998, 30: 37-42
    [62]Buchowski H., Ksiazczak A., Pietrzyk S, Solvent activity along a saturation line and solubility of hydrogen-bonding solids. J Phys Chem, 1980, 84(9): 975-979
    [63]Loffelmann M., Mersmann A., How to measure supersaturation? Chemical Engineering Science, 2002, 57(20):4301-4310
    [64] Knezic D., Zaccaro J., Myerson A. S. Nucleation induction time in levitated droplets. J. Phys. Chem., B 2004, 108: 672-10677
    [65] Hussain K., Thorsen G., Malthe-Sorenssen, D. Nucleation and metastability in crystallization of vanillin and ethyl vanillin. Chem. Eng. Sci., 2001, 26:295-2304
    [66]哈姆斯基著,古涛,叶特林译,化学工业中的结晶,北京:化学工业出版社, 1985,79
    [67]Viedma C. Experimental evidence of chiral symmetry breaking in crystallization from primary nucleation. J. Cryst. Growth, 2006, 261:118-121
    [68]Titiz-Sargut S., Ulrich, J. Influence of additives on the width of the metastable zone. Cryst.Growth Des., 2004, 2:371-374
    [69]Lancia A., Musmarra D., Prisciandaro M., Measuring induction period for calcium sulfate dehydrate precipitation, AIChE Journal, 1999, 45(2): 390~397
    [70]Barata P. A., Serrano M. L.“Salting-out precipitation of Potassium dihydrogen phosphate(KDP)-Ⅰ.Precipitation mechanism”, J. Cryst. Growth, 1996, 160:361-369
    [71]Omar W., Ulrich J. Solid liquid equilibrium, metastable zone, and nucleation parameters of the oxalic-water system, Cryst. Growth Des., 2006, 6(8): 1927-1930
    [72]Koga N, Tanaka H, The Kinetics of The Isothermal Dehydration of Lithium-Sulfate Monohydrate Under A Self-Generated Temperature Condition. Thermochimica Acta, 1993, 224:141~149
    [73]Sestak J, Malek J, Diagnostic Limits of Phenomenological Models of Heterogeneous Reactions and Thermal-Analysis Kinetics. Solid State Ionics, 1993, 63-5:245~254
    [74]胡荣祖,高胜利,赵凤起等,热分析动力学(第二版),科学出版社,2008
    [75]刘振海,热分析导论,化学工业出版社,1991
    [76]Vyazovkin, WeightCA. Int. Reviews in Physical Chemistry, 1998, 17(3):407~433.
    [77]Coats AW., Redfern JP., Kinetic parameters from thermogravimetric data. Nature, 1964, 201(4914):68~69
    [78]Flynn, H. J, The Temperature Integral- Its use and abuse. Thermochimica Acta, 1997, 300(1-2):83~92
    [79]Koga N, A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: The kinetic compensation effect. Thermochimica Acta, 1994, 244(3):1~20
    [80]Ozawa. T, A new method of analyzing thermogravimetric data. Bulletin of Chemical Society of Japan, 1965, 38(11):1881-1886
    [81]Flynn, J. H., Wall,LA., J. Polym. Sci.Part B Polymer letters, 1966, 4(3):323~328
    [82]Ortega A, Some successes and failures of the methods based on several experiments. Thermochimica Acta, 1996, 284(2):379~387
    [83]Brandts J. F.,Hunt L., The thermodynamics of protein denaturation III, The denaturation of ribonuclease in water and in aqueous urea and aqueous ethanol mixture, Journal of the American Chemical Society, 1967, 89: 4826~4838
    [84]萨楚尔夫,罗辽复,蛋白质热变性现象的研究,内蒙古示范大学学报(自然科学汉文版),2002,12:337~342
    [85]吴瑾光,傅里叶变换光谱分析,北京:科学技术出版社,1993
    [86]许以明,拉曼光谱及其在结构生物学中的应用,化学工业出版社,2005
    [87]Tu A T., Raman spectroscopy in biology: principles and application, New York: John Wiley & sons, 1982: 65~96
    [88]Carey P R., Biochemical application of Raman and Resonance Raman Spectroscopies, A subsidiary of Harcourt Brace Jovanovich, New York: Academic Press, 1982: 711~996
    [89]Thomas G J Jr, Kyogoku Y., Biological science in infrared and Raman spectroscopy (PartC), Bram E G, Grasselli G J. editors, Marcel Dekker, Inc. Maryland, 1977,717~872
    [90]Lord R C, Yu N T, Laser-excited Raman sprctroscopy of biomoleculesΙ, Native Lysozyme and constituent amine acids, Journal of Molecular Biology, 1970, 50: 5509~524
    [91]LommerseP M ,MotherwellW D,A test of Crystal Structure Prediction of smallor ganicm olecules,ActaCryst,20 00,B 56:697-714
    [92]KadukJ A ,GolabJ T ,Leusem FJ J ,The crystal structures of Trimellitic anhydride And Two Of its solvent,Crystal Engineering,1998,277-290
    [93]LeusenF J J, A binitio Prediction Of polymorphs, Journal of Crystal growth, 1996, 166: 900~903
    [94]Hartman P., Bennema P., The attachment energy as a habit controlling factor, I. Theoretical Considerations, J. Cryst. Growth, 1980, 49: 145-152
    [95]Harker Donnay J. D. H, Harker D., A new law of crystal morphology extending the law of bravais, Am. Mineral., 1937, 22: 463
    [96]http://www.rcsb.org/pdb/home/home.do

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700