多壁碳纳米管在线提取蛋清溶菌酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溶菌酶是一种专门作用于微生物细胞壁的水解酶,广泛应用于食品工业、包装工业、医学临床及生物工程中。随着各种新的生物分离技术的出现,用于溶菌酶分离纯化的方法也愈来愈多,从传统的结晶法、沉淀法、色谱法、离子交换法,到现在采用的新技术如亲和膜色谱、反胶团萃取、双水相萃取等。其中固相萃取法具有回收率高、有机溶剂消耗少、富集倍率高、操作简单、省时、省力、易于自动化等优点,是最常使用的提取蛋清溶菌酶的方法。
     溶菌酶是蛋清主要蛋白质中唯一一种碱性蛋白质,在水溶液中带正电荷;碳纳米管经氧化处理后,在水溶液中其表面带负电荷;基于物质之间电荷的相互作用,本文建立了多壁碳纳米管在线提取蛋清中溶菌酶的新方法。将经适当纯化处理后的碳纳米管装入自制的固相萃取柱,对蛋清中溶菌酶进行选择性吸附后,用碳酸盐缓冲溶液进行定量洗脱。本文在顺序注射系统中,对洗脱剂、洗脱剂的pH以及富集流速、洗脱流速、洗脱剂体积等实验参数进行了优化选择,并考察了洗脱剂的离子强度对洗脱结果的影响。实验结果表明,多壁碳纳米管微柱可以有效的定量萃取溶菌酶,富集倍率为12,试样处理量为10个h-1。
     对实际样品鸡蛋清进行提取,得到电泳纯度为100%的溶菌酶,100 mL鸡蛋清可提取溶菌酶0.40 g。若蛋清中所含蛋白质按13%计算,该方法所提取的溶菌酶占蛋清中蛋白质总量的3.6%,与标准值相符。与其它提取蛋清溶菌酶的方法相比较,本法具有试剂用量少、提取速度快等优点。此外,由于引用了顺序注射这种在非平衡状态下快速进样的分析技术,使得该法还具有在线、微量、密闭、自动等优点。
Lysozyme is a hydrolytic enzyme widely applied in food industry, packaging industry, medicine and bioengineering. Quite a few isolation and purification approaches are currently available for lysozyme, including crystallization, precipitation, chromatography, ion-exchange, reverse micellar extraction, aqueous two-phase systems. Solid phase extraction (SPE) is a highly efficient simple sample pretreatment technique with advantages of high enrichment factor, low running cost and ease of automation. It is also widely used in the isolation of lysozyme from egg white.
     Lysozyme is the only alkali protein in egg white and is positively charged in aqueous solution. Carbon nanotubes's isoelectric point is 5.0 and after oxidation it is negatively charged. A novel method for the extraction of lysozyme from egg white using carbon nanotubes was developed based on the electrostatic interactions. Carbon nanotubes were packed into a SPE microcolumn after appropriate pretreatment, and the microcolumn was incorporated into a sequential injection system which facilitates online selective sorption of lysozyme in egg white. The retained protein was afterwards quantitatively eluted by using carbonate buffer. Various parameters affecting the adsorption and elution process were investigated to achieve optimized purification conditions. The results showed that lysozyme could be efficiently extracted by the microcolume packed with multi-walled carbon nanotubes. An enrichment factor of 12 and a sampling throughput of 10 h-1 were obtained.
     The purity of the lysozyme isolated from egg white was 100% and ca.0.4 g lysozyme could be extracted from 100 mL egg white. When considering that 13% of the egg-white is protein species, the isolated lysozyme counts to 3.6% of the total protein mass, which matched well the standard value.
引文
1.刘仲敏,何伯安.溶菌酶及其在食品工业中的应用[J],食品与发酵工业,1995,5:80-82.
    2.陶凤云,张新妙,马润宇.溶菌酶结晶的研究进展[J],北京联合大学学报,2006,20(3):37-40.
    3. 叶丹,连宾.溶菌酶及其应用[J],贵州科学,2003,21(3):67-70.
    4. 朱奇,陈彦.溶菌酶及其应用[J],生物学通报,1998,33(10):9-10.
    5. 刘素英.日本食品业开发的新型防腐剂[J],食品科技动态,1994,15:5-10.
    6. 贾向志,李元,马文煜.溶菌酶的研究进展[J],生物技术通讯,2002,13(5):374-377.
    7. Blake C C F, Koening D F, Mair C A, North A C T, Philips D C, Sarma V R. Structure of hen egg white lysozyme[J], Nature,1965,206:757.
    8. 刘莹,金贤子,杨翔华,曹月坤,王丽.微生物溶菌酶在饲料工业中的应用及其展望[J],兽药与饲料添加剂,2006,11(1):15-17.
    9. 殷文政,付宁,钱建伟.生物防腐剂在食品工业中的应用[J],畜牧与饲料科学,2006,5:65-68.
    10.王燕,车振明.溶菌酶的提取和应用[J],牙膏工业,2005(3):17-20.
    11.谷绒,车振明,万国福.溶菌酶在食品工业中的应用[J],乳业科学与技术,2006,6:264-266.
    12.俞其林,励建荣.溶菌酶及其应用[J],农产品加工·学刊,2007,8:78-80.
    13. Acqua D. Lysozyme for improved wine quality control, PCT International Patent Application WO 95/20644.
    14.肖怀秋,林亲录,李玉珍,赵谋明.溶菌酶及其在食品工业中的应用[J],中国食品与营养,2005,2:32-34.
    15.赵龙飞,徐亚军.鸡蛋清中溶菌酶的应用性研究[J],食品工业,2006,3:19-20.
    16.卢冬梅,王霆.溶菌酶的抗病毒作用及其抗艾滋病病毒应用[J],广东药学,2005,15(5):62-64.
    17.王欣平.含溶菌酶牙膏[J],牙膏工业,1994,1:31-34.
    18.姜馗.蛋清溶菌酶提取技术的研究[D],北京,中国农业大学,2005.
    19.张文会.从鸡蛋清中提取溶菌酶的研究[D],北京,北京化工大学,2003.
    20.王弘,于淑娟,高大维.蛋白质大分子的结晶[J],生命的化学,2001,21(5):429-432.
    21.陈小明,蔡继文.单晶结构分析原理与实践[M],北京:科学出版社,2004,42-44.
    22.舒占永,毕汝昌.蛋白质晶体的优化生长[J],生物化学与生物物理进展,1997,24(5):396-401.
    23.马润宇,王艳辉,涂感良.膜结晶技术研究进展及应用前景[J],膜科学与技术,2003,23(4):145-150.
    24.王敏.蛋清提取溶菌酶技术[J],企业技术开发,2001,8:37-38.
    25. Gulewicz K, Adamiak D, Sprinzl M. A new approach to the crystallization of protein[J], Febs Lett.,1985,189(2):179-182.
    26. Cheng Y C, Lobo R F, Sandler S I, Lenhoff A M. Kinetics and equilibria of lysozyme precipitation and crystallization in concentrated ammonium sulfate solutions[J], Biotechnol. bioeng.,2000,94(1):177-188.
    27. Ewing F L, Forsythe E L, VanderWoerd M, Pusey M L. Effects of purification on the crystallization of lysozyme[J], J. Cryst. Growth,1996,160:389-397.
    28. Rosenberger F. Protein crystallization[J], J. Cryst. Growth,1996,166:40-54.
    29. Kimble W L, Paxton T E, Rousseau R W, Sambanis A. The effect of mineral substrates on the crystallization of lysozyme[J], J. Cryst. Growth,1998,187:268-276.
    30. Borneman S Z, Wessling M. Enzyme capturing and concentration with mixed matrix membrane adsorbers [J], J. Membr. Sci.,2006,280:406-417.
    31. Bonnerjera J, Oh S, Hoare M, Dunhill P. The right step at the right time[J], J. Biotechnol., 1986,4:954-958.
    32. DePhillips P, Lenhoff A M. Determinants of protein retention characteristics on cation-exchange adsorbents[J], J. Chromatogr. A,2001,933 (1-2):57-72.
    33. Hallgren E, Kalman F, Farnan D, Horvath C, Stahlberg J. Protein retention in ion-exchange chromatography:effect of net charge and charge distribution[J], J. Chromatogr. A,2000,877:13-24.
    34. Zhou X, Xue B, Bai S, Sun Y. Macroporous polymeric ion exchanger of high capacity for protein adsorption[J], Biochem. Eng. J.,2002,11:13-17.
    35. Levison P R, Mumford C, Streater M, Brandt-Nielsen A, Pathirana N D, Badger S E. Performace comparison of low-pressure ion-exchange chromatography media for protein separation[J], J. Chromatogr. A,1997,760:151-158.
    36. Staby A, Jensen I H, Mollerup I. Comparison of chromatographic ion-exchange resins Ⅰ. Strong anion-exchange resins[J], J. Chromatogr. A,2000,897:99-111.
    37. Staby A, Jensen I H. Comparison of chromatographic ion-exchange resins Ⅱ. More strong anion-exchange resins [J], J. Chromatogr. A,2001,908:149-161.
    38.高威,孙纯义.鸡蛋清中提取溶菌酶方法的研究[J],大连民族学院学报,2005,7(3):95-95.
    39. Lu A X, Liao X P, Zhou R Q, Shi B. Preparation of Fe(Ⅲ)-immobilized collagen fiber for lysozyme adsorption[J], Colloid. Surface. A,2007,301:85-93.
    40.张文会,王艳辉,马润宇.离子交换法提取鸡蛋清溶菌酶[J],食品工业科技,2003,24(6):57-59.
    41.陈刚,龚波林,白泉,耿信笃.聚合物基质的中强阳离子交换色谱固定相制备及其性能[J],中国化学,2007,25(1),77-82.
    42. Chiu H C, Lin C W, Suen S Y. Isolation of lysozyme from hen albumen using glass fiber-based cation-exchange membranes[J], J. Membr. Sci.,2007,290:259-266.
    43.李秀锦,仲峰.不同方法处理724树脂对蛋清溶菌酶吸附作用的影响[J],中国食品学报.2003,3(1):17-21.
    44. Briefs K G, Kula M R. Fast protein chromatography on analytical and preparative scale using modified microporous membranes[J], Chem. Eng. Sci.,1992,47(1):141-149.
    45. Prpic V, Uhing R J, Gettys T W. Separation and assay of phosphodiesterase isoforms in murine peritoneal macrophages using membrane matrix DEAE chromatography and [32P]cAMP[J], Anal. Biochem.,1993,208:155-160.
    46. Sasagawa N, Saito K, Sugita K, Kunori S. Ionic cross-linking of SO3H-group-containing graft chains helps to capture lysozyme in a permeation mode[J], J. Chromatogr. A,1999, 848(1):161-168.
    47. Ruckenstein E, Zeng X F. Macroporous chitin affinity membranes for lysozyme separation[J], Biotechnol. Bioeng.,1997,56(6):610-617.
    48. Shinano H, Tsuneda S, Saito K, Furusaki S. Ion exchange of lysozyme during permeation across a microporous sulfopropyl-group-containing hollow fiber[J], Biotechnol. Progr., 1993,9:193-198.
    49. Ghosh R. Purification of lysozyme by microporous PVDF membrane-based chromatographic process[J], Biochem. Eng. J.,2003,14:109-116.
    50. Charcosset C. Purification of protein by membrane chromatography[J], J. Chem. Technol. Biot.,1998,71:95-110.
    51. Shibusawa Y, Ito Y. Protein separation with aqueous-aqueous polymer systems by two types of counter-current chromatographs[J], J. Chromatogr. A,1991,550:695-704.
    52.郅文波,邓秋云,宋江楠,顾铭,欧阳潘.高速逆流色谱双水相体系分离蛋白质[J],色谱,2005,23(1):12-17.
    53. Anca M Y, Bayramoglu G. Purification of lysozyme from egg white by Reactive Blue 4 and Reactive Red 120 dye-ligand immobilized composite membranes[J], Process Biochem.,2005,40:1433-1442.
    54. Anca M Y, Yilmaz M, Yalcin E, Bayramoglu G. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification[J], J. Chromatogr. B,2004,805:315-323.
    55. Basar N, Uzun L, Guner A, Denizli A. Lysozyme purification with dye-affinity beads under magnetic field[J], Int. Bio. Macromol.,2007,41:234-242.
    56.李静,陈欢林,柴红.金属螯合亲和膜吸附分离纯化溶菌酶的研究(Ⅲ)混合酶和蛋清(壳)中的溶菌酶提取及纯化新工艺[J],膜科学与技术,2001,21(4):5-8.
    57. Ghosh R, Cui Z F. Protein purification by ultrafiltration with pre-treated membrane[J], J. Membr. sci.,2000,167:47-53.
    58. Labrou N, Clonis Y D. The affinity technology in downstream processing[J], J. Biotechnol.,1994,36:95-119.
    59. Vaidya A A, Lele B S, Kulkarni M G, Mashelkar R A. Thermmoprecipition of lysozyme from egg white using copolymers of N-isopropylaacrylaamide and acidic monomers[J], J. Biotechnol.,2001,87:95-107.
    60. Vaidya A A, Lele B S, Deshmukh M V, Kulkarni M G. Design and evaluation of new ligands for lysozyme recovery by affinity thermoprecipitation[J], Chem. Eng. Sci.2001, 56:5681-5692.
    61. Powers J D, Kilpatrick P K, Carbonell R G. Trypsin purification by affinity binding to small unilamellar liposomes[J], Biotechnol. Bioeng.,1991,36:506-519.
    62. Weiner C, Sara M, Dasgupta G, Sleytr U B. Affinity cross-flow filtration:Purification of IgG with a novel protein a affinity matrix prepared from two-dimensional protein crystals[J], Biotechnol. Bioeng.,1994,44:55-65.
    63.卢顺舵,徐凤彩,李明启.应用亲和层析制备萝卜叶溶菌酶[J],华南农业大学学报,1995,16(4):78-81.
    64.罗立新,姚汝华,黄自然.柞蚕蛹溶菌酶的分离和纯化[J],工业微生物,1997,27(1):21-24.
    65. Chern C S, Lee C K, Chen C Y, Yeh M J. Characterization of pH-sensitive polymeric supports for selective precipitation of proteins [J], Colloid. Surface. B,1996,6:37-49.
    66. Sun Y, Xue J L, Dong X Y. Modeling and analysis of the continuous affinity-recycle extraction process:a case of specific elution with low molecular weight inhibitors[J], Bioproc. Eng.,1995,13:205-210.
    67. Garg N, Galaev I Y, Mattiasson B. Dye-affinity techniques for bioprocessing:recent developments[J], J. Mol. Recognit.1996,9:259-274.
    68. He L Z, Sun Y. Purification of lysozyme by multistage affinity filtration[J], Bioproc. Biosyst. Eng.,2002,25:155-164.
    69. Gunduz U. Partitioning of bovine serum albumin in an aqueous two-phase system: optimization of partition coefficient[J], J. Chromatogr. B,2000,743:259-262.
    70. Franco T T, Andrews A T, Asenjo J A. Conservation chemical modification of protein to study the effects of a single protein property on partitioning in aqueous two-phase systems[J], Biotechnol. Bioeng.,1996,49:290-299.
    71. Han J H, Lee C H. Effects of salts and poly(ethylene glycol)-palmitate on the partitioning of proteins and Bacillus subtilis neutral protease in aqueous two-phase systems[J], Colloid. Surface. B,1997,9:109-116.
    72. Albertsson P A. Chromatography and partition of cells and cell fragments[J], Nature, 1956,177(4513):771-774.
    73. Bains W, Hustedt H. Applications of space industry technologies to the life sciences[J], Trends Biotechnol.,1995,13:1-6.
    74. Su C K, Chiang B H. Partitioning and purification of lysozyme from chicken egg white using aqueous two-phase system[J], Process Biochem.,2006,41:257-263.
    75. Oliveira M C, Abreu Filho M A N, Alcantara P F P. Phase equilibrium and protein partitioning in aqueous two-phase systems containing ammonium carbamate and block copolymers PEO-PPO-PEO[J], Biochem. Eng. J.,2007,37:311-318.
    76.张伟,刘会洲,陈家镛.滚筒式填料筛板萃取器反胶团法萃取蛋白质[J],化工学报,2000,51(增刊):287-290.
    77.刘杨,史清洪,赵黎明等.新型混合反胶团萃取溶菌酶的平衡行为[J],过程工程学报,2005,5(3):269-272.
    78. Juang R S, Kao H C, Shiau C L, Kinetic analysis on membrane-based reverse micellar extraction of lysozyme from aqueous solutions[J], J. Membr. Sci.,2006,281:636-645.
    79. Noureddine C, Lekhmici A, Mubarak M S. Sorption properties of the iminodiacetate ion exchange resin, amberlite IRC-718, toward divalent metal ions[J], J. Appl. Polym. Sci., 2008,107:1316-1319.
    80. Wang C C, Chang C Y, Chen C Y. Study on metal ion adsorption of bifunctional chelating/ion-exchange resins[J], Macromol. Chem. Phys.2001,202(6):882-890.
    81. Sung Y H, Huang S D. On-line preconcentration system coupled to electrothermal atomic absorption spectrometry for the simultaneous determination of bismuth, cadmium, and lead in urine[J], Anal. Chim. Acta,2003,495:165-176.
    82. Wuilloud G M, Wuilloud R G, Wuilloud J C A, Olsina R A, Martinez L D. On-line preconcentration and determination of chromium in parenteral solutions by flow injection-flame atomic adsorption spectrometry[J], J. Pharmaceut. Biomed.,2003,31: 117-124.
    83. Guo Y, Din B J, Liu Y W, Chang X J, Meng S M, Tian M Z. Preconcentration of trace metals with 2-(methylthio)aniline-functionalized XAD-2 and their determination by flame atomic absorption spectrometry [J], Anal. Chim. Acta,2004,504:319-324.
    84. Lemos V A, Santos J S, Nunes L S, Carvalho M B, Baliza P X, Yamaki R T. Amberlite XAD-2 functionalized with Nitroso R salt:synthesis and application in an online system for preconcentration of cobalt[J], Anal. Chim. Acta,2003,494:87-95.
    85.李萍.大孔吸附树脂在中草药有效成分研究中的应用[J],天津药学,2002,14(3):9-11.
    86.王凌,贺英菊,罗巍伟.大孔吸附树脂吸附纯化丹参提取液的影响因素[J],四川大学学报,2004,35(5):736-737.
    87. Saliba R, Gauthier H, Gauthier R, Michelle P R. The use of amidoximated cellulose for the removal of metal ions and dyes from waste waters[J], Cellulose,2002,9:183-191.
    88. Wu X Z, liu P, Pu Q S, Sun Q Y, Su Z X. Preparation of dendrimer-like polyamidomine immobilized silica gel and its application to online peconcentration and separation palladium prior to FAAS determination[J], Talanta,2004,62:918-923.
    89. Zougagh M, de Torres A G, Alonso E V, Pavon J M C. Automatic on line preconcentration and determination of lead in water by ICP-AES using a TS-microcolumn[J], Talanta,2004,62:503-510.
    90. Zougagh M, Pavon J M C, de Torres A G. Chelating sorbents based on silica gel and their application in atomic spectrometry[J], Anal. Bioanal. Chem.,2005,381:1103-1113.
    91. Nguyen-Thanh D, Bandosz T J. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide[J], Carbon,2005,43:359-367.
    92. Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garcia M A, Moreno-Castilla C. Bioadsorption of Pb(Ⅱ), Cd(Ⅱ), and Cr(Ⅵ) on activated carbon from aqueous solutions[J], Carbon, 2003,41:323-330.
    93. Ko Y G, Choi U S, Kim J S, Park Y S. Novel synthesis and characterization of actived carbon fiber and dye adsorption modeling[J], Carbon,2002,40(14):2661-2672.
    94. Mangun C L, Debarr J A, Economy J. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers[J], Carbon,2001,39:1689-1696.
    95.陆安慧,郑经堂,王茂章.碳分子筛的研究进展[J],化工进展,2001,4:12-14.
    96.李明春,姜恒,侯文强,邢来君.酵母菌对重金属离子吸附的研究[J],菌物系统,17,4:367-373.
    97.赵玲,尹平河,YuQM,齐雨藻.海洋赤潮生物原甲藻对重金属的富集机理[J],环境科学,2001,22(4):42-45.
    98. Peigney A, laurent C, Flahaut E, Bacsa R R, Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J], Carbon,2001,39:507-514.
    99. Bacsa R R, Laurent C, Peigney A, Bacsa W S, Vaugien T, Rousset A. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process[J], Chem. Phys. Lett.,2000,323:566-571.
    100.Mordkovich V Z, Baxendale M, Chang R P H, Yoshimura S. Intercalation into carbon nanotubes without breaking the tubular structure[J], Synthtic. Met.,1997,86:2049-2050.
    101.Smart S K, Cassady A I, Lu G Q, Martin D J. The biocompatibility of carbon nanotubes[J], Carbon,2006,44:1034-1047.
    102.Chlopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Beguin F. In vitro studies of carbon nanotubes biocompatibility[J], Carbon,2006,44:1106-1111.
    103.Li Q I, Yuan D X, Lin Q M. Evaluation of multi-walled carbon nanotubes as an adsorpbent for trapping volatile organic compounds from environmental samples[J], J. Chromatogr. A,2004,1026:283-288.
    104.Zhou Q X, Xiao J P, Wang W D. Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection[J], J. Chromatogr. A,2006,1125:152-158.
    105.Diaz E, Ordonez S, Vega A. Adsorption of volatile organic compounds onto carbon nanofibers, and high-surface-area graphites[J], J. Colloid Interf. Sci.,2007,305:7-16.
    106.Li Y H, Ding J, Luan Z K, Di Z, Zhu Y F, Xu C L, Wu D H, Wei B Q. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes[J], Carbon,2003,41:2787-2792.
    107.Wang Z M, Liu Q C, Zhu H, Liu H F, Chen Y M, Yang M S. Dispersing multi-walled carbon nanotubes with water-soluble block copolymers and their use as suppoets for metal nanoparticles[J], Carbon,2007,45:285-292.
    108.Tuzen M, Saygi K O, Usta C, Soylak M. Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions[J], Bioresource Technol.,2008,99:1563-1570.
    109.Rao G P, Lu C S, Su F S. Sorption of divalent metal ions from aqueous solution by carbon nanotubes:A review[J], Sep. Purif. Technol.,2007,58:224-231.
    110.Li Y H, Wang S G, Luan Z K, Ding J, Xu C L, Wu D H. Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized carbon nanotubes[J], Carbon,2003,41: 1057-1062.
    111. Shim J W, Park S J, Ryu S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J], Carbon,2001,39:1635-1642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700