蜡质玉米、稻米抗性淀粉的酶法制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过普鲁兰酶对蜡质玉米和蜡质稻米淀粉脱支后凝沉得到系列抗性淀粉样品。采用淀粉-碘复合物吸光度值法、扫描电镜(SEM)、X-射线衍射、差示量热扫描仪(DSC)、凝胶渗透色谱(GPC)和In-Vitro体外消化模型对抗性淀粉的直链淀粉含量、颗粒形貌、结晶性质、热性质、分子量分布和体外消化性能等进行了深入研究。
     (1)通过对蜡质玉米和蜡质稻米淀粉糊化,在普鲁兰酶作用下对淀粉糊进行脱支,然后在低温环境下凝沉,来提高淀粉中的抗性淀粉含量。对蜡质玉米淀粉,在普鲁兰酶浓度20ASPU/g(淀粉干基重),脱支24h,25℃条件下放置24h后,RS含量达到最大值27.69%。对蜡质稻米淀粉,在普鲁兰酶浓度55ASPU/g(淀粉干基重),脱支12h,25℃条件下放置24h后,RS含量达到最大值28.61%。与原淀粉(蜡质玉米淀粉和蜡质稻米淀粉的RS含量分别为1.30%和0.33%)相比,淀粉通过糊化、酶脱支、凝沉处理后,RS含量增加。
     (2)研究了蜡质玉米和蜡质稻米抗性淀粉的各种性质。采用淀粉-碘复合物吸光度值法测定直链淀粉含量,发现经过普鲁兰酶处理,样品的直链淀粉含量都高于原淀粉的直链淀粉含量。一般来说,随着直链淀粉含量的增大,相应的抗性淀粉含量也大。扫描电镜照片显示当淀粉糊经过脱支、凝沉、干燥后,形成了大小不等,颗粒不规则的碎片。X-射线衍射表明所有的样品显示相似的强衍射峰,在经过脱支、凝沉处理之后显示B和V型混合结晶结构,抗性淀粉样品的结晶度有了较大的提高。一般结晶度高的样品,其抗性淀粉含量也高。与原淀粉相比,淀粉经过处理后内部的结构变得紧密坚固,而且还形成了一定数量的新晶体。抗性淀粉的热力学性质参数To、Tp、Tc、Tc- To以及焓值△H都有不同程度的提高。从分子量分布图谱可以看出,抗性淀粉的分子量大大降低。
     (3)采用In-Vitro消化模型,分别在不同消化时间内对经过普鲁兰酶脱支的蜡质玉米和蜡质稻米抗性淀粉样品的消化产物和平均消化速度进行测定,研究抗性淀粉样品在经酶解脱支、凝沉处理之后消化性能的变化规律。由于猪胰α-淀粉酶的作用方式、A型和B型结晶结构和双螺旋结构的紧密程度等因素的不同导致了原淀粉和抗性淀粉在消化性能方面的不同。在前3个小时中,因为在反应前期α-淀粉酶的浓度大,效率高,所有样品的消化产物的量升高,消化速率都急速下降。在反应3小时后,淀粉分子被水解成过短的分子链,淀粉分子和的结合位点减少,消化产物的量增加不明显,消化速率缓慢降低。
Waxy corn starch and waxy rice starch were used as material to prepare a series of resistant starch samples by pullulanase in this dissertation. The amylose content, particle morphology, crystalline properties, thermal properties, molecular weight distribution and in vitro digestibility of resistant starch samples were investigated penetratingly by the method of starch - iodine complex absorbance value, scanning electron microscopy, X-ray diffraction, DSC, GPC, and in-vitro digestion model.
     Firstly, the waxy corn and waxy rice starch pastes were treated by pullulanase, and then retrograded at low temperature to improve the resistant starch formation. When concentration of pullulanase was 20ASPU/g(dry starch weight), debranched time was 24h and stored 24h at 25℃, the content of waxy maize resistant starch was 27.69%. When concentration of pullulanase was 55ASPU/g(dry starch weight), debranched time was 12h and stored 24h at 25℃, the content of waxy rice resistant starch was 28.61%. Compared with waxy maize and waxy rice native starches (RS content was 1.30% and 0.33%, respectively), RS content of samples increased observably.
     Secondly, various properties of waxy corn and waxy rice resistant starches were determined. The amylose content of samples was studied by the method of starch - iodine complex absorbance value. After treatment with pullulanase, the amylose content of samples was higher than that of native starches. In general, with increasing amylose content, resistant starch content increased correspondly. SEM photos showed that starch granule appearance changed to different size particles of irregular fragments and structure disappeared. Compared with native starches, crystal structure of samples changed from A type to a mixture of B and V–type, besides, the crystallinity of resistant starch also improved. The higher crystallinity of starch, the higher RS content. DSC determination showed that To、Tp、Tc and△H all increased, and these change had good relation with RS content. The molecular weight distribution of resistant starches significantly reduced.
     Thirdly, the total carbohydrates digestion products and the average rate of digestion of resistant starches were discussed. With increasing incubation time, the total carbohydrates digestion products were increased and the average rates of digestion were decreased. In the first 3 hours, the digestion products of all samples and the average rate of digestion were sharply increasing. This was mainly attributed to the high concentration and efficiency of pancreaticα-amylase solution in the former reaction. After 3h, starch molecules were hydrolyzed into small molecular chain and the binding sites between starch molecules andα-amylase were decreased, so the digestion of resistant starch slowed down. The longer the substrate–enzyme contact time, the more starch was digested within the duration of the experiment.
引文
[1] Zhao, K., Non-chemical modified technology on starch[M]. Beijing: Chemical Industry Press,2008.
    [2]张燕萍等.变性淀粉制造与应用[M].北京:化学工业出版社,2007.
    [3] Eliasson, A. C. Starch in food -structure, function and applications[M]. Woodhead Publishing Limited, 2004.
    [4] Moorthy, S. N. Physicochemical and functional properties of tropical tuber starches: A review[J]. Starch - St?rke, 2002. 54(12):559-592.
    [5]赵凯,张守文,方桂珍.抗性淀粉的生理功能及在食品工业中的应用[J].哈尔滨商业大学学报:自然科学版, 2002(006):661-663.
    [6] Englyst, H. N., S. M. Kingman, J. H. Cummings. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Clinical Nutrition, 1992. 46:S33-S50.
    [7] Haralampu, S. G. Resistant starch--a review of the physical properties and biological impact of rs3[J]. Carbohydrate Polymers, 2000. 41(3):285-292.
    [8] Englyst, H. N.,G. J. Hudson. The classification and measurement of dietary carbohydrates[J]. Food Chemistry, 1996. 57(1):15-21.
    [9] Zhao, X. H.,Y. Lin. The impact of coupled acid or pullulanase debranching on the formation of resistant starch from maize starch with autoclaving-cooling cycles[J]. European Food Research and Technology, 2009. 230(1):179-184.
    [10] Thompson, D. B. Strategies for the manufacture of resistant starch[J]. Trends in Food Science & Technology, 2000. 11(7):245-253.
    [11] Eerlingen, R. C.,J. A. Delcour. Formation, analysis, structure and properties of type iii enzyme resistant starch[J]. Journal of Cereal Science, 1995. 22(2):129-138.
    [12] Fuentes-Zaragoza, E., M. Riquelme-Navarrete, E. Scnchez-Zapata, et al. Resistant starch as functional ingredient: A review[J]. Food Research International, 2010. 43(4):931-942.
    [13] Baghurst, P. A., K. Baghurst, S. Record. Dietary fibre, non-starch polysaccharides and resistant starch: A review[J]. Food Australia, 1996. 48(3):S3-S35.
    [14] Raben, A., A. Tagliabue, N. J. Christensen, et al. Resistant starch: The effect on postprandial glycemia, hormonal response, and satiety[J]. The American Journal of Clinical Nutrition, 1994. 60(4):544.
    [15] Reader, D., M. Johnson, P. Hollander, et al. Response of resistant starch in a food bar vs.Two commercially available bars in persons with type ii diabetes mellitus[J]. Diabetes, 1997. 46(1):254A.
    [16] Sharma, A.,B. S. Yadav. Resistant starch: Physiological roles and food applications[J]. Food Reviews International, 2008. 24(2):193-234.
    [17] Sajilata, M., R. S. Singhal, P. R. Kulkarni. Resistant starch review[J]. Comprehensive reviews in food science and food safety, 2006. 5(1):1-17.
    [18]于子君,纪淑娟.抗性淀粉的研究进展[J].农业科技与装备, 2010(05): 14-17.
    [19] Keenan, M. J., J. Zhou, K. L. McCutcheon, et al. Effects of resistant starch, a non-digestible fermentable fiber, on reducing body fat [J]. Obesity, 2006. 14(9):1523-1534.
    [20] Lopez, H. W., M. A. Levrat-Verny, C. Coudray, et al. Class 2 resistant starches lower plasma and liver lipids and improve mineral retention in rats[J]. The Journal of nutrition, 2001. 131(4):1283.
    [21] Younes, H., M. A. Levrat, C. Demign, et al. Resistant starch is more effective than cholestyramine as a lipid-lowering agent in the rat[J]. Lipids, 1995. 30(9):847-853.
    [22] Lu, S., C. Y. Chen, C. Lii. Gel-chromatography fractionation and thermal characterization of rice starch affected by hydrothermal treatment[J]. Cereal Chemistry, 1996. 73(1):5-11.
    [23]李新华,孙欢龙,王雪等.压热法制备燕麦抗性淀粉的工艺研究[J].食品工业科技, 2009(05) : 229-231.
    [24]赵凯,杨春华,张娜等.韧化处理条件下缓慢消化玉米淀粉的形成机理[J].食品科学, 2010(11): 109-112.
    [25]罗志刚,高群玉,涂雅俊等.颗粒态抗性淀粉结晶性质的研究[J].中国粮油学报, 2008(04): 102-106.
    [26]李素玲,高群玉.颗粒态绿豆抗性淀粉的制备及性质研究[J].食品与发酵工业, 2010(09 ):5-10.
    [27]周念波,孙杰,王晶等.普鲁兰酶在食品工业中的应用[J].食品工程, 2008(02): 18-20.
    [28]康明丽.淀粉酶及其作用方式[J].食品工程, 2008(03): 11-14.
    [29]周瑞芳,彭风鼐.脱支酶的性质及在食品中的应用[J].郑州粮食学院学报, 1993(04): 26-32.
    [30] Ozturk, S., H. Koksel, K. Kahraman, et al. Effect of debranching and heat treatments on formation and functional properties of resistant starch from high-amylose corn starches[J]. European Food Research and Technology, 2009. 229(1):115-125.
    [31]蹇华丽,高群玉,梁世中.抗性淀粉的酶法研制[J].食品与发酵工业, 2002(05): 6-9.
    [32] Guraya, H. S., C. James, E. T. Champagne. Effect of enzyme concentration and storage temperature on the formation of slowly digestible starch from cooked debranched rice starch[J]. Starch-Starke, 2001. 53(3-4):131-139.
    [33] Cai, L. M.,Y. C. Shi. Structure and digestibility of crystalline short-chain amylose from debranched waxy wheat, waxy maize, and waxy potato starches[J]. Carbohydrate Polymers, 2010. 79(4):1117-1123.
    [34]张华东,张淼,沈晓萍等.微波-酶法制备rs_3型玉米抗性淀粉工艺参数优化研究[J].食品科学, 2007(04): 237-240.
    [35]潘元风,唐书泽,戴远威等.微波辐射制备蚕豆抗性淀粉研究[J].食品研究与开发, 2008(05): 15-18.
    [36] Go?i, I., L. García-Diz, E. Ma?as, et al. Analysis of resistant starch: A method for foods and food products[J]. Food Chemistry, 1996. 56(4):445-449.
    [37] McCleary, B. V., M. McNally, P. Rossiter, et al. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: Collaborative study[J]. Journal of AOAC International, 2002. 85(5):1103-1111.
    [38] Lin, J.-H.,Y.-H. Chang. Effects of type and concentration of polyols on the molecular structure of corn starch kneaded with pullulanase in a farinograph[J]. Food Hydrocolloids, 2006. 20(2-3):340-347.
    [39]樊镇棣.高含量抗性淀粉的制备及其生理功能的研究[D].南昌大学硕士论文,2007.
    [40] Miao, M., B. Jiang, T. Zhang. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch[J]. Carbohydrate Polymers, 2009. 76(2):214-221.
    [41] Eerlingen, R., H. Jacobs, J. Delcour. Enzyme-resistant starch .5. Effect of retrogradation of waxy maize starch on enzyme susceptibility[J]. Cereal Chemistry, 1994. 7(4):351-355.
    [42] Gidley, M. J., D. Cooke, A. H. Darke, et al. Molecular order and structure in enzyme-resistant retrograded starch[J]. Carbohydrate Polymers, 1995. 28(1):23-31.
    [43] Zhang, G. Y., M. Sofyan, B. R. Hamaker. Slowly digestible state of starch: Mechanism of slow digestion property of gelatinized maize starch[J]. Journal of Agricultural and Food Chemistry, 2008. 56(12):4695-4702.
    [44] Robin, F., S. Merinat, A. Simon, et al. Influence of chain length on alpha-1,4-d-glucan recrystallization and slowly digestible starch formation[J]. Starch-Starke, 2008. 60(10):551-558.
    [45] Gonzalez-Soto, R. A., R. Mora-Escobedo, H. Hernandez-Sanchez, et al. The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch[J]. Food Research International, 2007. 40(2):304-310.
    [46] Ozturk, S., H. Koksel, P. K. W. Ng. Characterization of resistant starch samples prepared from two high-amylose maize starches through debranching and heat treatments[J]. Cereal Chemistry, 2009. 86(5):503-510.
    [47] Shu, X., G. Jiao, M. A. Fitzgerald, et al. Starch structure and digestibility of rice high in resistant starch[J]. Starch - St?rke, 2006. 58(8):411-417.
    [48]陈福泉,张本山,黄强等. X射线衍射测定淀粉颗粒结晶度的研究进展[J].食品工业科技, 2010(01): 432-435.
    [49]陈福泉,张本山,卢海凤等. X射线衍射在淀粉颗粒结晶度研究中的应用[J].食品科学, 2010(03): 284-287.
    [50] Shamai, K., H. Bianco-Peled, E. Shimoni. Polymorphism of resistant starch type iii[J]. Carbohydrate Polymers, 2003. 54(3):363-369.
    [51] Cooke, D.,M. J. Gidley. Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition[J]. Carbohydrate Research, 1992. 227:103-112.
    [52] Zhang, G., Z. Ao, B. R. Hamaker. Nutritional property of endosperm starches from maize mutants: A parabolic relationship between slowly digestible starch and amylopectin fine structure[J]. Journal of Agricultural and Food Chemistry, 2008. 56(12):4686-4694.
    [53] Kumari, M., A. Urooj, N. N. Prasad. Effect of storage on resistant starch and amylose content of cereal-pulse based ready-to-eat commercial products[J]. Food Chemistry, 2007. 102(4):1425-1430.
    [54] Witt, T., M. J. Gidley, R. G. Gilbert. Starch digestion mechanistic information from the time evolution of molecular size distributions[J]. Journal of Agricultural and Food Chemistry, 2010. 58(14):8444-8452.
    [55] Jian, H., Q. Gao, S. Liang. Effect of amylose content on resistant starch[J]. Cereals & Oils, 2002(10):5-7.
    [56] Cai, L., Y.-C. Shi, L. Rong, et al. Debranching and crystallization of waxy maize starch in relation to enzyme digestibility[J]. Carbohydrate Polymers, 2010. 81(2):385-393.
    [57] Eerlingen, R. C., M. Deceuninck, J. A. Delcour. Enzyme-resistant starch.Ⅱ. Influence of amylose chain length on resistant starch formation[J]. Cereal Chemistry, 1993. 70:345-350.
    [58] Lopez-Rubio, A., B. M. Flanagan, A. K. Shrestha, et al. Molecular rearrangement ofstarch during in vitro digestion: Toward a better understanding of enzyme resistant starch formation in processed starches[J]. Biomacromolecules, 2008. 9(7):1951-1958.
    [59] Song, Y.,J. Jane. Characterization of barley starches of waxy, normal, and high amylose varieties[J]. Carbohydrate Polymers, 2000. 41(4):365-377.
    [60] Leong, Y. H., A. A. Karim, M. H. Norziah. Effect of pullulanase debranching of sago (metroxylon sagu) starch at subgelatinization temperature on the yield of resistant starch[J]. Starch-Starke, 2007. 59(1):21-32.
    [61] Mutungi, C., F. Rost, C. Onyango, et al. Crystallinity, thermal and morphological characteristics of resistant starch type iii produced by hydrothermal treatment of debranched cassava starch[J]. Starch - St?rke, 2009. 61(11):634-645.
    [62] Jenkins, D., T. Wolever, R. Taylor, et al. Glycemic index of foods: A physiological basis for carbohydrate exchange[J]. The American Journal of Clinical Nutrition, 1981. 34(3):362-366.
    [63] Brand-Miller, J., K. Foster-Powell, S. Colagiuri, et al. The glucose revolution: The authoritative guide to the glycemic index: The groundbreaking medical discovery. 1999: NewYork: Marlowe and Company.
    [64] Salmeron, J., A. Ascherio, E. B. Rimm, et al. Dietary fiber, glycemic load, and risk of niddm in men[J]. Diabetes Care, 1997. 20(4):545-550.
    [65] Slabber, M., H. C. Barnard, J. M. Kuyl, et al. Effects of a low-insulin-response, energy-restricted diet on weight-loss and plasma-insulin concentrations in hyperinsulinemic obese females[J]. American Journal of Clinical Nutrition, 1994. 60(1):48-53.
    [66] Jenkins, D. J. A., M. J. Thorne, T. Wolever, et al. Reduced rate of digestion and improved carbohydrate metabolism[J]. American Journal of Clinical Nutrition, 1987. 45:946 -952.
    [67]冯健飞.Α-淀粉酶的应用及研究进展[J].现代农业科技, 2010(17): 354-355.
    [68] Robyt, J. F.,D. French. The action pattern of porcine pancreaticα-amylase in relationship to the substrate binding site of the enzyme[J]. Journal of Biological Chemistry, 1970. 245(15):3917.
    [69] Matsushita, H., M. Takenaka, H. Ogawa. Porcine pancreaticα-amylase shows binding activity towardn-linked oligosaccharides of glycoproteins[J]. Journal of Biological Chemistry, 2002. 277(7):4680.
    [70] Kong, B. W., J. I. Kim, M. J. Kim, et al. Porcine pancreaticα-amylase hydrolysis of native starch granules as a function of granule surface area[J]. Biotechnology progress, 2003. 19(4):1162-1166.
    [71] Slaughter, S. L., P. R. Ellis, P. J. Butterworth. An investigation of the action of porcine pancreatic [alpha]-amylase on native and gelatinised starches[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2001. 1525(1-2):29-36.
    [72]杨东来,高学军.猪胰淀粉酶的制备工艺研究[J].药物生物技术, 2006(03): 211-213.
    [73] Zhang, G., Z. Ao, B. R. Hamaker. Slow digestion property of native cereal starches[J]. Biomacromolecules, 2006. 7(11):3252-3258.
    [74] Dhital, S., A. K. Shrestha, M. J. Gidley. Relationship between granule size and in vitro digestibility of maize and potato starches[J]. Carbohydrate Polymers, 2010. 82(2):480-488.
    [75] Pongjanta, J., A. Utaipattanaceep, O. Naivikul, et al. Debranching enzyme concentration effected on physicochemical properties and alpha-amylase hydrolysis rate of resistant starch type iii from amylose rice starch[J]. Carbohydrate Polymers, 2009. 78(1):5-9.
    [76] Cui, R.,C. G. Oates. The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch[J]. Food Chemistry, 1999. 65(4):417-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700