慢消化淀粉的制备、性质及其形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是人体主要的能源物质,不同植物来源和加工方式会导致其消化特性不同。Englyst等根据在体外模拟消化特性和淀粉的生物可利用性,将其分为易消化淀粉(rapidly digestible starch, RDS)、慢消化淀粉(slowly digestible starch, SDS)和抗性淀粉(resistant starch, RS)。SDS是指在小肠中能被完全消化但消化速度比较慢的一种淀粉(20~120 min),它可持续缓慢释放出能量,维持餐后血糖稳定,还可以降低餐后胰岛素分泌,提高机体对胰岛素的敏感性。因此可有效改善餐后血糖负荷,控制糖尿病患者特别是II型糖尿病病人的病情。
     高支(蜡质和普通)和高链(HylonⅤ和HylonⅦ)玉米淀粉分别属于A型和B型结晶结构,其消化机理对应为“由内向外”和“由外向内”消化类型。未蒸煮的蜡质和普通玉米的SDS含量较高,分别为58.7%和66.2%,而高链玉米淀粉的RS含量大大高于高支淀粉(≈70%)。A型天然淀粉是制备SDS的理想材料(I型慢消化淀粉),而高链淀粉属于RS2(抗性淀粉颗粒)。淀粉经蒸煮后测定其消化性,糊化温度低且具有较高膨胀度的蜡质和普通玉米淀粉具有较高的SDS含量,而糊化温度高,膨胀度较低的高链玉米淀粉具有较高的RS含量。
     利用亚甲基蓝(MB~+)对辛烯基琥珀酸淀粉酯(OS淀粉)的OS基团中的羧基进行特异性荧光染色,并用激光共聚焦显微镜测得淀粉颗粒扫描层的荧光强度证实:OS基团在整个颗粒均有分布,大部分在颗粒的外围。辛烯基琥珀酸酯化能够通过OS基团对淀粉酶形成了空间位阻效应影响淀粉的消化特性。随着取代度的增大,未蒸煮OS淀粉的RS含量显著提高,而RDS和SDS含量却逐渐降低。蒸煮后的OS淀粉体外消化速率显著提高。SDS含量随着取代度的增大逐渐增大,但是较低取代度的OS淀粉(DS≤0.031)的SDS含量仍然小于原淀粉。
     以高链玉米淀粉为原料,利用普鲁兰酶脱支-月桂酸复合的方法制备含SDS的淀粉-脂质复合物,并考察其性质及SDS形成机理:(a) SDS含量随着脱支时间的延长而增大,当普鲁兰酶浓度在10~40 ASPU/g脱支处理2 h时,SDS含量达到最大(11.2%)。随后,SDS含量逐渐减小,而RS含量逐渐增大。复合温度对淀粉样品的SDS和RS含量无显著性影响。SDS含量在月桂酸添加量由5%增至15%时升至最高,为14.2%。(b)淀粉-脂质复合物样品颗粒结构消失,呈现出高密度且表面光滑、不规则的多角形碎片。X射线衍射图谱显示随着脱支时间的增加(0 h~24 h),淀粉样品的结晶类型又V型逐渐转变为B+V型,相对结晶度也从29.4%逐渐增大到41.8%。脱支淀粉-脂质复合物的DSC热流曲线出现了三个吸热峰。第一个吸热峰(PeakⅠ)是游离的月桂酸熔融吸热所形成的。第二个吸热峰(PeakⅡ)和第三个吸热峰(PeakⅢ)分别是淀粉-脂质复合物和非复合的老化淀粉熔融吸热所形成的。随着脱支时间的增加(2 h~24 h),淀粉-脂质复合物熔融所形成的PeakⅡ吸热峰的T_o、T_p、T_c和ΔH逐渐增大,而老化淀粉熔融所形成的PeakⅢ吸热峰的相变温度和焓值没有显著差异。
Starch is the major component of our food energy, and its botanical origin and process would influence digestible properties. According to starch digestion in vitro and its bioavailability (Englyst method), starch is generally classified into rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS). SDS is digested slowly but completely, and sustains plasma glucose levels over time (20~120 min). Therefore, it could be effective in improving postprandial glucose load in patients with diabetes, especially Type II diabetes patient's condition.
     Native high-amylopectin (waxy and normal) and high-amylose (HylonⅤand HylonⅦ) cornstarches displayed A-and B-type structures, respectively. Native A-type starches are“inside-out”digestion mechanism, while the B-type starches produce a different hydrolysis pattern observed as“exo-pitting”. The native waxy and normal maize starches are ideal slowly digestible starches (58.7% and 66.7%, respectively) that belong to type I SDS, while native HylonⅦhas more than 70% RS content. After cooking, waxy and normal maize starches with lower gelatinization temperature and higher swelling power have higher SDS contents, while high-amylose maize starches have higher RS contents.
     In this study, the distribution of OS groups in the starch granules was investigated using CLSM after being stained MB+ dye. The OS groups appeared to be distributed throughout the OS-starch granules, especially on the surface. The presence of a small amount of OS groups pose a great hindrance to the enzymes for degradation and this resistance is directly proportional to the DS of the sample. The RDS and SDS contents of the uncooked OS-starches showed a decreasing tendency with the increase of DS, while RS content increased significantly. However, cooked OS-starches dramatically increased their in vitro hydrolysis byα-amylase and amyloglucosidase. The SDS content of the OS-starches showed an increasing tendency with the increase of DS, while the SDS content of the low DS starch (DS≤0.031) was lower than that of native starch.
     Structural characterizations and formation mechanism of debranched high-amylose maize starch complexed with lauric acid (LA) were studied: (a) SDS content of treated starch samples reached to a maximum (11.2%) at about 2 h debranching time and pullulanase concentration 10~40 ASPU/g, and decreasing thereafter. Complex temperature on the SDS and RS content of starch-lipid complexes had no significant impact. SDS content of starch-lipid complexes reached to a maximum (14.2%), when LA concentration increased from 5% to 15%. (b) The treated starch samples showed disrupted and rearranged structures and bigger, irregularly-shaped particles compared with native starch. When the debranching time increased from 0 to 24h, the relative crystallinity of treated starch samples increased from 29.4% to 41.8%, and the XRD pattern changed fromV-type to a mixture of B- and V-type polymorphs. In DSC thermograms, treated starches from debranched starch displayed three separated endotherms. The first (PeakⅠ) endotherm was due to the melting of the free LA. The second (PeakⅡ) and the third (PeakⅢ) endotherms could be melting of starch-lipid complexes and non-complex retrograded amylose, respectively. The melting temperature and enthalpy changes of starch-lipid complex were gradually enhanced with the increasing of debranching time. However, no significant temperature shifting and enthalpy changes were observed from retrograded amylose during the starch-lipid complex formation.
引文
[1] Shi Y. C., Capitani T., Trzasko P., et al. Molecular structure of a low-amylopectin starch and other high-amlyose maize starches [J], Journal of Cereal Science, 1998, 27: 289-299.
    [2] Nikuni Z. Studies on starch granules [J]. Starch/St?rke, 1978, 30: 105-111.
    [3] Takeda Y., Maruta N., Hizukuri S. Structures of amylose subfractions with different molecular sizes [J]. Carbohydrate Research, 1992, 226: 279-285.
    [4] Jane J. L., Chen J. F. Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch [J]. Cereal Chemistry, 1992, 69: 60-65.
    [5] Cheetham N. W., Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study [J]. Carbohydrate Polymers, 1998, 36: 277-284.
    [6] Thygesen L. G., Blennow A., Engelsen S. B. The effects of amylose and starch phosphate on starch gel retrogradation studied by low-field 1H NMR relaxometry [J]. Starch/St?rke, 2003, 55: 241-249.
    [7] Yoo S. H., Jane J. L. Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors [J]. Carbohydrate Polymers, 2002, 49: 307-314.
    [8] Jane J. L. Current understanding on starch granule structures [J]. Journal of Applied Glycoscience, 2006, 53: 205-213.
    [9] Peat S., Whelan W. J., Thomas G. J. Evidence of multiple branching in waxy maize starch [J]. Journal of the Chemical Society, 1952: 4546-4548.
    [10] Hizukuri S. Polymodal distribution of the chain lengths of amylopectin and its significance [J]. Carbohydrate Research, 1986, 147: 342-347.
    [11] Lineback D. R. The starch granule: organization and properties [J]. Bakers Digest, 1984, 58: 16-21.
    [12] Finch P., Sebesta D. W. The amylase of Pseudomonas stutzeri as a probe of the structure of amylopectin [J]. Carbohydrate Research, 1992, 227: C1-C4.
    [13] Bertoft E., Zhu Q., Andtfolk H., et al. Structural heterogeneity in waxy-rice starch [J]. Carbohydrate Polymers, 1999, 38: 349-359.
    [14] Jane J. L., Craig S. A. S., Seib P. A., et al. Characterization of granular cold water-soluble starch [J]. Starch/St?rke, 1986, 38: 258-263.
    [15] Jane J. L., Xu A., Radosavljevic M., et al. Location of amylose in normal starch granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents [J]. Cereal Chemistry, 1992, 69: 405-409.
    [16] Yoshida H., Nozaki K., Hanashiro I., et al. Structure and physicochemical properties of starches from kidney bean seeds at immature, premature and mature stages of development [J]. Carbohydrate Research, 2003, 338: 463-469.
    [17] Jane J. L., Ao Z., Duvick S. A., et al. Structures of amylopectin and starch granules: How are they synthesized? [J]. Journal of Applied Glycoscience, 2003, 50: 167-171.
    [18] Huang Q., Luo F. X., Yang L. S. Progress of research on the starch granules [J]. Polymer Materials Science and Engineering, 2004, 20: 19-23.
    [19] Wong K. S., Jane J. L. Quantitative analysis of debranched amylopectin by HPAEC-PAD with a postcolumn enzyme reactor [J]. Journal of Liquid Chromatography & Related Technologies, 1997, 20: 279-310.
    [20] Jane J. L., Wong K. S., Mcpherson A. E. Branch-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins [J]. Carbohydrate Research, 1997, 300:219-227.
    [21] Jane J. L., Chen Y. Y, Lee L. F., et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and paste properties of starch [J]. Cereal Chemistry, 1999, 76: 629-637.
    [22] Ao Z., Jane J. L. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley [J]. Carbohydrate Polymers, 2007, 67: 46-55.
    [23] Tang H., Watanabe K., Mitsunaga T. Structure and functionality of large, medium and small granule starches in normal and waxy barley endosperms [J]. Carbohydrate Polymers, 2002, 49: 217-224.
    [24] Wolever T. M. S. Small intetinal effects of starchy foods [J]. Canadian Journal of Physiology and Pharmacology, 1991, 69: 93-99.
    [25] Quezada-Calvillo R., Robayo-Torres C. C., Ao Z., et al. Lumenal substrate“brake”on mucosal maltase-glucoamylase activity regulates total rate of starch digestion to glucose [J]. Journal of Pediatric Gastroenterology and Nutrition, 2007, 45: 32-43.
    [26] Quezada-Calvillo R., Robayo-Torres C., Opekun A. R., et al.Contributions of mucosal maltase glucoamylase activities to mouse small intestinal starch glucogenesis [J]. Journal of Nutrition, 2007, 137: 1725-1733.
    [27] Englyst H. N., Kingman S. M., Cummings, J. H. Classification and measurement of nutritionally important starch fractions [J]. European Journal of Clinical Nutrition, 1992, 46: S33-S50.
    [28] Englyst K. N., Englyst H. N., Hudson G. J., et al. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response [J]. American Journal of Clinical Nutrition, 1999, 69: 448-454.
    [29] Pi-Sunyer F. X. Glycemic index and disease [J]. American Journal of Clinical Nutrition, 2002, 76: 290S-298S.
    [30] Brand-Miller J. C., Holt S. H. A., Pawlak D. B., et al. Glycemic index and obesity [J]. American Journal of Clinical Nutrition, 2002, 76: 281S-285S.
    [31] Lehmann U., Robin F. Slowly digestible starch - its structure and health implications: a review [J]. Trends in Food Science & Technology, 2007, 18: 346-55.
    [32] Guraya H. S., James C., Champagne E. T. Effect of enzyme concentration and storag temperature on the formation of sowly digestible starch from cooked debranehed rice starch [J]. Starch/St?rke, 2001, 53: 131-139.
    [33] Goni I., Garcia-Alonso A., Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index [J]. Nutrition Research, 1997, 17: 427-437.
    [34] Englyst H. N., Veenstra J., Hudson G. J. Measurement of rapidly available glucose (RAG) in plant foods: a protential in vitro predictor of the glycemic response [J]. British Journal of Clinical Nutrition, 1996, 75, 327-337.
    [35] Champ M. Physiological aspects of resistant starch and in vivo measurement [J]. Journal of AOAC International, 2004, 87:749-755.
    [36] McCleary B. V., McNally M., Rossiter P. Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: A collaborative study [J]. Journal of AOAC International, 2002, 85: 1103-1111.
    [37] Venkatachalam M., Zhang G. Hamaker B. R. Use of polymer encapsulated starches as a novel method to make low glycemic foods [C]. World Grain Summit: Foods and Beverages (AACC International), 2006, Abstract P-285, Sept.17-20, San Francisco, CA.
    [38] Zhang G. Y., Hamaker B. R. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index [J]. Critical Reviews in Food Science and Nutrition, 2009, 49: 852-867.
    [39] Zhang G. Y., Venkatachalam M., Hamaker B. R. Structural basis for the slow digestion property of native cereal starches [J]. Biomacromolecules, 2006, 7, 3259-3266.
    [40] Chung H. J., Liu Q., Hoover R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches [J]. Carbohydrate Polymers, 2009, 75: 436-447.
    [41] Shin S. I., Kim H. J., Ha H. J., et al. Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch [J]. Starch/St?rke, 2005, 57: 421-430.
    [42] Miao M., Zhang T., Mu W. M., et al. Effect of controlled gelatinization in excess water on digestibility of waxy maize starch [J]. Food Chemistry, 119: 41-48.
    [43] Anderson A. K., Guraya H. S., James C., et al. Digestibility and pasting properties of rice starch heat-moisture treated at the meltin temperature (Tm) [J]. Starch/St?rke, 2002, 54: 401-409.
    [44] Wolf B. W., Bauer L. L. Effects of chemical modification on in vitro rate and extent of food starch digestion:an attempt to discover a slowly digested starch [J]. Journal of Agricultural and Food Chemistry, 1999, 47: 4178-4183.
    [45] Han J. A., BeMiller J. N. Preparation and physical characteristics of slowly digesting modified food starches [J]. Carbohydrate Polymers, 2007, 67: 366-374.
    [46] He J. H., Liu J., Zhang G. Y. Slowly digestible waxy maize starch prepared by octenyl succinic anhydride esterification and heat-moisture treatment: Glycemic response and mechanism [J]. Biomacromolecules, 2008, 9: 175-184.
    [47] Carlos-Amaya F., Osorio-Diaz P., Agama-Acevedo E., et al. Physicochemical and digestibility properties of double-modified banana (Musa paradisiaca L.) starches [J]. Journal of Agricultural and Food Chemistry, 2011, 59: 1376-1382.
    [48] Shi Y. C., Cui X., Birkett A. M., et al. Slowly digestible starch product [P]. US Patent 6929817, 2005-08-16.
    [49] Zhang L. L., Hu X. T., Xu X. M., et al. Slowly digestible starch prepared from rice starches by temperature-cycled retrogradation [J]. Carbohydrate Polymers, 2011, 84: 970-974.
    [50] Hamaker B. R., Han X. Z. Slowly digestible starch [P]. US Patent, 2004066955, 2004-08-12.
    [51] Ao Z. H., Simsek S., Zhang G. Y., et al. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure [J]. Journal of Agricultural and Food Chemistry, 2007, 55: 4540-4547.
    [1] Al-Rabadi G. J. S., Gilbert R. G., Gidley, M. J. Effect of particle size on kinetics of starch digestion in milled barley and sorghum grains by porcine alpha-amylase [J]. Journal of Cereal Science, 2009, 50: 198-204.
    [2] Ao Z. H., Jane J. L. Characterization and modeling of the A- and B-granule starches of wheat, triticale, and barley [J]. Carbohydrate Polymers, 2007, 67: 46-55.
    [3] Ao Z. H., Simsek S., Zhang G. Y., et al. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure [J]. Journal of Agricultural and Food Chemistry, 2007, 55: 4540-4547.
    [4] Li L., Jiang H. X., Campbell M., et al. Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures [J]. Carbohydrate Polymers, 2008, 74: 396-404.
    [5] Zhang G. Y., Venkatachalam M., Hamaker B. R. Structural basis for the slow digestion property of native cereal starches [J]. Biomacromolecules, 2006, 7: 3259-3266.
    [6] Song Y., Jane J. Characterization of barley starches of waxy, normal, and high amylose varieties [J]. Carbohydrate Polymers, 2000, 41, 365-377.
    [7] Singh N., Singh S., Isono N., et al. Diversity in amylopectin structure, thermal and pasting properties of starches from wheat varieties/lines [J]. International Journal of Biological Macromolecules, 2009, 45: 298-304.
    [8] Nara S., Komiya T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch [J]. Starch/St?rke, 1983, 35: 407-410.
    [9] Englyst K. N., Englyst H. N., Hudson G. J., et al. Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response [J]. American Journal of Clinical Nutrition, 1999, 69: 448-454.
    [10] Jane J. L. Current understanding on starch granule structures [J]. Journal of Applied Glycoscience, 2006, 53: 205-213.
    [11] Liu H. S., Yu L., Simon G., et al. Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios [J]. Carbohydrate Polymers, 2009, 77: 662-669.
    [12] Wong K. S., Jane, J. L. Quantitative analysis of debranched amylopectin by HPAEC-PAD with a postcolumn enzyme reactor [J]. Journal of Liquid Chromatography & Related Technologies, 1997, 20: 279-310.
    [13] Hizukuri S. Polymodal distribution of the chain lengths of amylopectin and its significance [J]. Carbohydrate Research, 1986, 147: 342-347.
    [14] Lineback D. R. The starch granule: organization and properties [J]. Bakers Digest, 1984, 58: 16-21.
    [1] Han J. A., BeMiller J. N. Preparation and physical characteristics of slowly digesting modified food starches [J]. Carbohydrate Polymers, 2007, 67: 366-374.
    [2] He J. H., Liu J., Zhang G. Y. Slowly digestible waxy maize starch prepared by octenyl succinic anhydride esterification and heat-moisture treatment: Glycemic response and mechanism [J]. Biomacromolecules, 2008, 9: 175-184.
    [3] Viswanathan A. Effect of degree of substitution of octenyl succinate starch on enzymatic degradation [J]. Journal of Environmental Polymer Degradation, 1999, 7: 185-190.
    [4] Shogren R. L., Viswanathan A., Felker F., et al. Distribution of octenyl succinate groups in octenyl succinic anhydride modified waxy maize starch [J]. Starch/St?rke, 2000, 52: 196-204.
    [5] Huang Q., Fu X., He X. W., et al. The effect of enzymatic pretreatments on subsequent octenyl succinic anhydride modifications of cornstarch [J]. Food Hydrocolloids, 2010, 24: 60-65.
    [6] Ruan H., Chen Q. H., Fu M. L., et al. Preparation and properties of octenyl succinic anhydride modified potato starch [J]. Food Chemistry, 2009, 114: 81-86.
    [7] Jayaraj S. E., Umadevi M., Ramakrishnan V. Environmental effect on the laser-excited fluorescence spectra of Methylene Blue and Methylene Green dyes [J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 40: 203-206.
    [8] Alummoottil N. J., Kallikat N. R., Subramoney N. M., et al. Synthesis and characterization of low DS succinate derivatives of cassava (manihot esculenta crantz) starch [J]. Starch/St?rke, 2005, 57: 319 -324.
    [9] Song X. Y., He G. Q., Ruan H., et al. Preparation and properties of octenyl succinic anhydride modified early indica rice starch [J]. Starch/St?rke, 2006, 58: 109-117.
    [10] Luo F. X., Huang Q., Fu X., et al. Preparation and characterization of crosslinked waxy potato starch [J]. Food Chemistry, 2009, 115: 563-568.
    [11] Shogren R. L. Rapid preparation of starch esters by high temperature/pressure reaction[J]. Carbohydrate Polymers, 2003, 52: 319-326.
    [12] Liu Z. Q., Li Y., Cui F. J., et al. Production of octenyl succinic anhydride-modified waxy corn starch and its characterization [J]. Journal of Agricultural and Food Chemistry, 2008, 56: 11499-11506.
    [13] van de Velde F., van Riel J., Tromp R. H. Visualisation of starch granule morphologies using confocal scanning laser microscopy (CSLM) [J]. Journal of the Science of Food and Agriculture, 2002, 82: 1528-1536.
    [14] Chen P., Yu L., Simon G., et al. Morphologies and microstructures of cornstarches with different amylose-amylopectin ratios studied by confocal laser scanning microscope [J]. Journal of Cereal Science, 2009, 50, 241-247.
    [15] Glaring M. A., Koch C. B., Blennow A. Genotype-specific spatial distribution of starch molecules in the starch granule: A combined CLSM and SEM approach [J]. Biomacromolecules, 2006, 7: 2310-2320.
    [16] Jiang H. X., Horner H. T., Pepper T. M., et al. Formation of elongated starch granules in high-amylose maize [J]. Carbohydrate Polymers, 2010, 80: 533-538.
    [17] Huber K. C., BeMiller J. N. Channels of maize and sorghum starch granules [J]. Carbohydrate Polymers, 2000, 41: 269-276.
    [18] Segura-Campos M., Chel-Guerrero L., Betancur-Ancona D. Synthesis and partial characterization of octenylsuccinic starch from Phaseolus lunatus [J]. Food Hydrocolloids, 2008, 22: 1467-1474.
    [19] Chung H. J., Hoover R., Liu Q. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch [J]. International Journal of Biological Macromolecules, 2009, 44: 203-210.
    [20] Jane J.-L., Chen Y. Y., Lee L. F., et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch [J]. Cereal Chemistry, 1999, 76: 629-637.
    [21] Bhosale R., Singhal R. Effect of octenylsuccinylation on physicochemical and functional properties of waxy maize and amaranth starches [J]. Carbohydrate Polymers, 2007, 68: 447-456.
    [22] Thirathumthavorn D., Charoenrein S. Thermal and pasting properties of native and acid-treated starches derivatized by 1-octenyl succinic anhydride [J]. Carbohydrate Polymers, 2006, 66: 258-265.
    [23] Bhandari P. N., Singhal R. S. Effect of succinylation on the corn and amaranth starch pastes [J]. Carbohydrate Polymers, 2002, 48: 233-240.
    [24] Chung H. J., Liu Q., Hoover, R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches [J]. Carbohydrate Polymers, 2009, 75: 436-447.
    [25] Gallant D. J., Bouchet B., Buleon A., et al. Physical characteristics of starch granules and susceptibility to enzymatic degradation [J]. European Journal of Clinical Nutrition, 1992, 46: 3-16.
    [26] Gallant D. J., Bouchet B., Baldwin P. M. Microscopy of starch: Evidence of a new level of granule organization [J]. Carbohydrate Polymers, 1997, 32: 177-191.
    [27] Pan D. D., Jane J. L. Internal structure of normal maize starch granules revealed by chemical surface gelatinization [J]. Biomacromolecules, 2000, 1: 126-132.
    [28] Zhang G. Y., Ao Z. H., Hamaker B. R. Slow digestion property of native cereal starches [J]. Biomacromolecules, 2006, 7: 3252-3258.
    [29] Wolf B. W., Wolever T. M. S., Bolognesi C., et al. Glycemic response to a food starch esterified by 1-octenyl succinic anhydride in humans [J]. Journal of Agricultural and Food Chemistry, 2001, 49: 2674-2678.
    [1] Eliasson A. C. Starch-lipid interactions and their relevance in food products. In Starch in food: Structure, function and applications [M]. Boca Ration: NY., USA: CRC Press, Inc. 2004; pp. 432-434.
    [2] Tufvesson F., Eliasson A. C., Formation and crystallization of amylose-monoglyceride complex in a starch matrix [J]. Carbohydrate Polymers, 2000, 43: 359-365.
    [3] Liu H., Arntfield S. D., Holley R. A., et al. Amylose-lipid complex formation in acetylated pea starch-lipid systems [J]. Cereal Chemistry, 1997, 74: 159-162.
    [4] Tufvesson F., Wahlgren M., Eliasson A. C. Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides [J]. Starch/St?rke, 2003, 55: 61-71.
    [5] Tufvesson F., Wahlgren M., Eliasson A. C. Formation of amylose-lipid complexes and effects of temperature treatment. Part 2. Fatty acids [J]. Starch/St?rke, 2003, 55: 138-149.
    [6] Cui R., Oates C. G. The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch [J]. Food Chemistry, 1999, 65: 417-425.
    [7] Crowe T. C., Seligman S. A., Copeland L. Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation [J]. Journal of Nutrition, 2000, 130: 2006-2008.
    [8] Guraya H. S., Kadan R. S., Champagne E. T. Effect of rice starch-lipid complexes on in vitro digestibility, complexing index, and viscosity [J]. Cereal Chemistry, 1997, 74: 561-565.
    [9] Putseys J. A., Derde L. J., Lamberts L., et al. Functionality of short chain amylose-lipid complexes in starch-water systems and their impact on in vitro starch degradation [J]. Journal of Agricultural and Food Chemistry, 2010, 58: 1939-1945.
    [10] Jane J. L., Robyt J. F. Structure studies of amylose-V complexes and retrograded amylose by action of alpha-amylases, and a new method for preparing amylodextrins [J]. Carbohydrate Research, 1984, 132: 105-118.
    [11] Holm J., Bj?rck I., Ostrowska S. et al. Digestibility of amylose-lipid complexes in-vitro and in-vivo [J]. Starch/St?rke, 1983, 35: 294-197.
    [12] Godet M. C., Bouchet B., Colonna P., et al. Crystalline amylose-fatty acid complex: morphology and crystal thickness [J]. Journal of Food Science, 1996, 61: 1196-1201.
    [13] Hasjim J., Lee S. O., Hendrich S., et al. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses [J]. Cereal Chemistry, 2010, 87: 257-262.
    [14] Putseys J. A., Derde L. J., Lamberts L., et al. Production of tailor made short chain amylose-lipid complexes using varying reaction conditions [J]. Carbohydrate Polymers, 2009, 78: 854-861.
    [15] Jane J. L., Chen Y. Y., Lee L. F., et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch [J]. Cereal Chemistry, 1999, 76: 629-637.
    [16]Cai L. M., Shi Y. C. Structure and digestibility of crystalline short-chain amylose from debranched waxy wheat, waxy maize, and waxy potato starches [J]. Carbohydrate Polymers, 2010, 79: 1117-1123.
    [17] Lesmes U., Cohen S. H., Shener Y., et al. Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes [J]. Food Hydrocolloids, 2009, 23: 667-675.
    [18] Song Y., Jane J. L. Characterization of barley starches of waxy, normal, and high amylose varieties [J]. Carbohydrate Polymers, 2000, 41: 365-377.
    [19] Zhang B., Huang Q., Luo F. X., et al. Effects of octenylsuccinylation on the structure and properties of high-amylose maize starch [J]. Carbohydrate Polymers, 2011, 84: 1276-1281.
    [20] Lopez-Rubio A., Flanagan B. M., Shrestha A. K. et al. Molecular rearrangement of starch during in vitro digestion: Toward a better understanding of enzyme resistant starch formation in processed starches [J]. Biomacromolecules, 2008, 9: 1951-1958.
    [21] Thompson D. B. Strategies for the manufacture of resistant starch [J]. Trends in Food Science and Technology, 2000, 11: 245-253.
    [22] Haralampu S. G. Resistant starch - a review of the physical properties and biological impact of RS3 [J]. Carbohydrate Polymers, 2000, 41: 285-292.
    [23] Eerlingen R. C., Jacobs H., Delcour J. A. Enzyme-resistant starch. V. Effect of retrogradation of waxy maize starch on enzyme susceptibility [J]. Cereal Chemistry, 1994, 71: 351-355.
    [24] Miao M., Jiang B., Zhang T. Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch [J]. Carbohydrate Polymers, 2009, 76: 214-221.
    [25] Guraya H. S., James C., Champagne E. T. Effect of enzyme concentration and storge temperature on the formation of slowly digestible starch from cooked debranched rice starch [J]. Starch/St?rke, 2001, 53: 131-139.
    [26] Cheetham N. W. H., Tao L. P. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study [J]. Carbohydrate Polymers, 1998, 36: 277-284.
    [27] Chanvrier H., Uthayakumaran S., Appelqvist I. A. M. et al. Influence of storage conditions on the structure, thermal behavior, and formation of enzyme-resistant starch in extruded starches [J]. Journal of Agricaltural and Food Chemistry, 2007, 55: 9883-9890.
    [28] Gelders G. G., Vanderstukken T. C., Goesaert H., et al. Amylose-lipid complexation: a new fractionation method [J]. Carbohydrate Polymers, 2004, 56: 447-458.
    [29] Lopez-Rubio A., Flanagan B. M., Gilbert E. P. et al. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study [J]. Biopolymers, 2008, 89: 761-768.
    [30] Tang M. C., Copeland L. Analysis of complexes between lipids and wheat starch [J]. Carbohydrate Polymers, 2007, 67: 80-85.
    [31] Cooke D., Gidley M. J. Loss of crystalline and molecular order during starch gelatinization: origin of the enthalpic transition [J]. Carbohydrate Research, 1992, 227: 103-112.
    [32] Li L., Jiang H. X., Campbell M., et al. Characterization of maize amylose-extender (ae) mutant starches. Part I: Relationship between resistant starch contents and molecular structures [J]. Carbohydrate Polymers, 2008, 74: 396-404.
    [33] Biliaderis C. G., Seneviratne H. D. On the supermolecular structure and metastability of glycerol monostearate-amylose complex [J]. Carbohydrate Polymers, 1990, 13: 185-206.
    [34] Jane J. L., Chen Y. Y., Lee L. F., et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch [J]. Cereal Chemistry, 1999, 76: 629-637.
    [35] Gidley M. J., Bulpin P. V. Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch minimum chain-length requirement for the formation of double helices [J]. Carbohydrate Research, 1987, 161: 291-300.
    [36] Shi Y. C., Seib P. A. The structure of four waxy starches related to gelatinization and retrogradation [J]. Carbohydrate Research, 1992, 227: 131-145.
    [37] Kalichevsky M. T., Orford P. D., Ring S. G. The retrogradation and gelation of amylopectins from various botanical sources [J]. Carbohydrate Research, 1990, 198: 49-55.
    [1] Zhang G. Y., Hamaker B. R. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index [J]. Critical Reviews in Food Science and Nutrition, 2009, 49: 852-867.
    [2] Dona A. C., Pages G., Gilbert R. G., et al. Digestion of starch: In vivo and in vitro kinetic models used to characterize oligosaccharide or glucose release [J]. Carbohydrate Polymers, 2010, 80: 599-617.
    [3] Huber K. C., BeMiller J. N. Visualization of channels and cavities of corn and sorghum starches [J]. Cereal Chemistry, 1997, 74: 537-541.
    [4] Zhang G., Ao Z., Hamaker B. R. Slow digestion property of native cereal starches [J]. Biomacromolecules, 2006, 7: 3252-3258.
    [5] Han J. A., BeMiller J. N. Preparation and physical characteristics of slowly digesting modified food starches [J]. Carbohydrate Polymers, 2007, 67: 366-374.
    [6] Chen P., Yu L., Simon G., et al. Morphologies and microstructures of cornstarches with different amylose-amylopectin ratios studied by confocal laser scanning microscope [J]. Journal of Cereal Science, 2009, 50: 241-247.
    [7] Viswanathan A. Effect of degree of substitution of octenyl succinate starch on enzymatic degradation [J]. Journal of Environmental Polymer Degradation, 1999, 7: 185-190.
    [8] He J. H., Liu J., Zhang G. Y. Slowly digestible waxy maize starch prepared by octenylsuccinic anhydride esterification and heat-moisture treatment: Glycemic response and mechanism [J]. Biomacromolecules, 2008, 9: 175-184.
    [9] Eliasson A. C. Starch-lipid interactions and their relevance in food products. In Starch in food: Structure, function and applications [M]. Boca Ration: NY., USA: CRC Press, Inc. 2004; pp. 432-434.
    [10] Tufvesson F., Eliasson A. C., Formation and crystallization of amylose-monoglyceride complex in a starch matrix [J]. Carbohydrate Polymers, 2000, 43: 359-365.
    [1] Englyst H. N., Kingman S. M., Cummings J. H. Classification and measurement of nutritionally important starch fractions [J]. European Journal of Clinical Nutrition, 1992, 46: S33-S50.
    [2] Manley D. Technology of biscuits, crackers and cookies [M]. Boca Ration: NY., USA: CRC Press, Inc. 2004; pp. 122-144.
    [3] Lawless H. T., Heymann H. Sensory evaluation of food: principles and practices (Food Science Text Series) [M]. Springer; 2nd Edition. 2010; pp. 321-354.
    [4] Englyst K. N., Englyst H. N., Hudson G. J., et al. Rapidly available glucose in foods: An in vitro measurement that reflects the glycemic response [J]. American Journal of Clinical Nutrition, 1999, 69: 448-454.
    [5] Gallegos-Infante J. A., Bello-Perez L. A., Rocha-Guzman N. E., et al. Effect of the addition of common bean (Phaseolus vulgaris L.) flour on the in vitro digestibility of starch and undigestible carbohydrates in spaghetti [J]. Journal of Food Science, 2010, 75: 151-156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700