不同环境海洋放线菌多样性研究及2株放线菌新菌的分类鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首先比较了不同方法的分离效果,以此为基础,通过纯培养和16S rDNA系统发育分析对黄海冷水团、北极海区及青岛盐池的沉积物样品进行放线菌多样性研究,并对分离菌株进行抗菌活性及胞外酶活性筛选,取得以下结果:
     1.海洋放线菌不同分离方法的比较研究:以青岛海区潮间带沉积物为研究对象,分析了不同样品预处理方式、稀释液种类、海水浓度、培养基种类等因素对放线菌分离效果的影响。结果表明:以55℃预处理样品6 min、纯海水配制培养基、1/4林格氏溶液稀释样品、在培养基M1、M6、M7和M8上可以分离到更多的放线菌。
     2.黄海冷水团沉积物中海洋放线菌的多样性研究:利用4种分离效果较好的培养基从黄海冷水团沉积物中共分离到172株放线菌;选取51株代表菌株进行16S rDNA测序分析,发现这些放线菌分别属于链霉菌属、拟诺卡氏菌属、小单孢菌属、异壁放线菌属和一个新属;在172株放线菌中,有58株对病原菌有抑菌活性,有94株可同时产生三种胞外酶活性。
     3.北极海洋沉积物中放线菌的分离培养与活性筛选:利用6种培养基从北极海洋沉积物中共分离出109株放线菌,选取34株代表菌株进行16S rDNA测序分析,结果表明它们分别属于链霉菌属、假诺卡氏菌属和拟诺卡氏菌属;在109株放线菌中,有39株对病原菌有抑菌活性。
     4.青岛泊子盐场放线菌分离培养:利用3种培养基从青岛即墨市田横镇泊子盐场盐池底泥样品中共分离纯化出15株放线菌。对分离菌株进行16S rDNA测序分析,发现这15株放线菌分别属于链霉菌属、拟诺卡氏菌属和一个新属。在15株放线菌中,分别有12株、3株、2株和1株放线菌产淀粉酶、产酯酶、蛋白酶和纤维素酶。
     5.耐碱刺孢放线菌新属新种的分类鉴定:菌株CXB654~T基内菌丝有分支,不断裂,气生菌丝分化成长孢子链,孢子呈椭圆形,孢子表面有刺突,生长需要NaCl,核糖和葡萄糖是细胞壁特征糖。16S rDNA序列比对结果显示,菌株CXB654~T与亲缘关系最近的标准菌株的的同源性分别为96.6%、96.5%和96.1%,并在N-J和M-L系统进化树上形成独立分支。综合该菌在生理生化特征、16S rDNA同源性和化学指标等方面的实验结果,可以确定CXB654~T菌株是拟诺卡氏菌科中的一个新属,命名为耐碱刺孢放线菌属。
     6.青岛盐生放线菌新属新种的分类鉴定:菌株CXB832~T基内菌丝由黄白色到深黄色,有分支,不断裂,丰富的白色气生菌丝分化成长孢子链,孢子呈杆状,孢子表面光滑,最适盐度范围为9~12% (w/v) NaCl,葡萄糖和木糖是细胞壁特征糖。16S rDNA序列比对结果显示,菌株CXB832~T与亲缘关系最近的标准菌株的同源性分别为95.4%和94.9%,并在N-J和M-L系统进化树上形成独立分支。综合该菌在生理生化特征、16S rDNA同源性和化学指标等方面的实验结果,可以确定菌株CXB832~T是拟诺卡氏菌科中的一个新属,命名为青岛盐生放线菌属。
The diversity of marine actinomycetes isolated from different environments was studied based on comparative study of different isolation methods by pure cultures and 16S rDNA sequence-based phylogenetic analysis, and the strains were screened for antibacterial activity and enzymatic activity. The main results are as follow:
     1. Study of different isolation methods of marine actinomycetes: The impacts of different sample preparation methods, type of diluents, seawater concentration and culture medium on the isolation of actinomycetes from the inter-tidal mud at Qingdao were investigated. The results showed that samples pretreated with 55°C for 6 minutes, grow on the culture media made of pure seawater and diluted with 1/4 Ringer's solution can improve the isolation of actinomycetes. The medium M1、M6、M7 and M8 are more effective when compared to others.
     2. Study of the diversity of marine actinomycetes from sediments of the Yellow Sea Cold Water Mass: In this study, 172 actinomycetes were isolated by using four culture media which are more effective on separation of actinomycetes. Bioinformatics analysis of the 16S rDNA sequences from the 51 representative isolates can be assigned to five actinobacteria genera (Streptomyces Nocardiopsis, Actinoalloteichus, Micromonospora and a novel genus). Out of 172 isolates, 58 isolates exhibited antimicrobial activity against human pathogens, and 94 isolates can produce three kinds of enzymes simultaneously.
     3. Isolation and screening of actinomycetes from Arctic marine sediments: In this study, 109 actinomycetes were isolated using six different culture media. Bioinformatics analysis of the 16S rDNA sequences from the 34 representative isolates can be assigned to three genera (Streptomyces, Pseudonocardia and HNocardiopsis). Out of 109 isolates, 39 isolates exhibited antimicrobial activity against human pathogens.
     4. Isolation and culture of actinomycetes from a salt pond, Qingdao: In this study, 15 actinomycete were isolated using three different media. Bioinformatics analysis of the 16S rDNA sequences from the isolates can be assigned to three genera (Streptomyces, Nocardiopsis and a novel genus). Out of 15 isolates, 12, 3, 2 and 1 isolates produces amylase, lipase, caseinase and cellulose accordingly.
     5. Taxonomic analysis of Spinactinospora alkalitolerans gen. nov. sp. nov.: The strain CXB6542~T formed branched substrate mycelium without fragmentation. Abundant aerial mycelium differentiated into long or short chains of spores, and the spores were elliptic and cylindrical with spinous surface. Strain CXB6542~T required NaCl for growth, and contained ribose and glucose as the major whole-cell components. Comparative analysis of 16S rDNA sequence showed that the novel strain was most closely related to genera within the family Nocardiopsaceae, but formed a separate lineage. The strain CXB6542~T had only 96.6%, 96.5% and 96.1% similarity to the standard strains with the closest relationship respectively. On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain CXB6542~T was considered to represent a new genus and species in the family Nocardiopsaceae, and the name Spinactinospora alkalitolerans gen. nov. sp. nov. is proposed.
     6. Taxonomic analysis of Salinactinospora qingdaonensis gen. nov. sp. nov.: The strain CXB832~T formed pale-yellow to deep yellow and branched substrate mycelium without fragmentation. Abundant white aerial mycelium differentiated into long chains of spores, and the spores were rod-shaped with smooth surfaces. Optimal growth occurred at 9~12% (w/v) NaCl. Strain CXB832~T contained glucose and xylose as the major whole-cell components. BLAST results for the 16S rDNA sequence of strain CXB832~T showed that its closest relatives were members of genera Nocardiopsis and Haloactinospora in the family Nocardiopsaceae, with the highest gene sequence similarity of 95.4% and 94.9% with the standard strains respectively. The 16S rDNA based neighbour-joining and maximum-likelihood trees showed the phylogenetic relationship between strain CXB832~T and the closely related genera, and that strain CXB832~T formed a separate lineage. On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain CXB832~T was considered to represent a new genus and species in the family Nocardiopsaceae, and the name Salinactinospora qingdaonensis gen. nov. sp. nov. is proposed.
引文
[1] Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol , 1997, 47: 479~491
    [2] Bull AT, Ward AC, Goodfellow M. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev, 2000, 64: 573~606.
    [3] Bernan VS, Greenstein M and Maiese WM. Marine microorganisms as a source of new natural products. Adv Appl Microbiol , 1997,43: 57~90.
    [4] Goodfellow M, Fiedler HP. A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek. 2010,98(2) :119~42.
    [5] Yi H, Schumann P, Chun J et al. Demequina aestuarii gen. nov., sp. nov., a novel actinomycete of the suborder Micrococcineae, and reclassification of Cellulomonas fermentaris Bagnara et al. 1985 as Actinotalea fermentaris gen. nov., comb. nov. Int J Syst Evol Microbiol, 2007, 57:151~156.
    [6] Kurahashi M, Tukanaga Y, Sakiyama Y, et al. Iamia majanohamensis gen. nov., sp. nov., an actinobacterium isolated from sea cucumber Holothuria edulis, and proposal of Iamiaceae fam nov. Int J Syst Evol Microbiol, 2009, 59: 869~873.
    [7] Tian XP, Tang SK, Dong JD, et al. Marinactinospora thermotolerans gen. nov., sp. nov., a marine actinomycete isolated from a sediment in the northern South China Sea. Int J Syst Evol Microbiol, 2009, 59: 948~952.
    [8] Li HR, Yu Y, Luo W, et al. Marisediminicola antarctica gen. nov., sp. nov., an actinobacterium isolated from the Antarctic. Int J Syst Evol Microbiol, 2010.
    [9] Ue H, Matsuo Y, Kasai H, et al. Miniimonas arenae gen. nov., sp. nov., a novel actinobacterium isolated from sea sand. Int J Syst Evol Microbiol, 2010.
    [10] Khan ST, Tamura T, Takagi M, et al. Streptomyces tatejamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., three novel species of Streptomyces isolated from marine sponge Haliclona sp. Int J Syst Evol Microbiol, 2010.
    [11] Lee SD. Phycicococcus jejuensis gen. nov., sp. nov., an actinomycete isolated fromseaweed. Int J Syst Evol Microbiol, 2008, 56: 2369~2373.
    [12] Lee DW, Lee JM, Seo JP, et al. Phycicola gilvas gen. nov., sp. nov., an actinobacterium isolated from living seaweed. Int J Syst Evol Microbiol , 2008, 58: 1318–1323.
    [13] Han SK, Nedashkviskaya OI, Mikhailov VV, et al. Salinibacterium amurskyyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol, 2003, 53: 2061~2066.
    [14] Maldonado LA, Fenical W, Jensen PR, et al. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol, 2005, 55: 1759~1766.
    [15] Tian XP, Zhi XY, Qiu YQ, et al. Sciscionella marina gen. nov., sp. nov., a marine actinomycete isolated from a sediment in the northern South China Sea. Int J Syst Evol Microbiol, 2009, 59: 222~228.
    [16] Yi H, Schumann P, Sohn K, et al. Serinicoccus marinus gen. nov., sp. nov., a novel actinomycete with Lornithine and L-serine in the peptidoglycan. Int J Syst Evol Microbiol, 2004, 54:1585~1589.
    [17] Gray JS. Species richness of marine soft sediment. Mar Ecol Prog Ser, 2002, 244: 285.
    [18] Maldonado LA, Frangoso YD, Perez~Garcia A, et al. Actinobacterial diversity from marine sediments collected in Mexico. Antonie van Leeuwenhoek , 2009, 5:111~120.
    [19] Bredholdt H, Galatenko OA, Engelhardt K, et al. Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environ Microbiol, 2007, 9: 2756~2764.
    [20] Jensen PR, Gontang E, Mafans C, et al. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol, 2005, 7:1039~1048.
    [21] Solano G, Rojas~Jimenez K, Jaspars M, et al. Study of the diversity of culturable actinomycetes in the North Pacific and Caribbean coasts of Costa Rica. Antonie Van Leeuwenhoek , 2009, 96:71~78.
    [22] Pathom~aree W, Stach JEM, Ward AC, et al. Diversity of actinomycetes isolated from Challenger Deep sediment (10, 898 m) from the Mariana Trench. Extremophiles , 2006, 10:181~189.
    [23] Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, et al. Isolation, Phylogenetic Analysisand Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes. Mar. Drugs 2010, 8: 399~412.
    [24] Sun W, Dai SK, Jiang SM, et al. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie van Leeuwenhoek, 2010, 98: 65~75.
    [25] Jiang ZD, Jensen PR, Fenical W. Actinoflavoside, a novel flavonoid-like glycoside produced by a marine bacterium of the genus Streptomyces.Tetra.Lett.,1997,38: 5065-5068.
    [26] Montalvo NF, Mohamed NM, Enticknap JJ, et al. Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek, 2005, 87: 29~36.
    [27] El-Shatoury S. Incidence of actinomycetes and faecal microbial contaminants in edible bivalve from Suez Canal Region, Egypt. Egyptian Journal of Natural Toxins, 2007, 7(4): 22~39.
    [28] Nithyanand P, Manju S, Pandian SK. Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. FEMS Microbiol Lett, 2011, 314: 112~118.
    [29] Yoshida A, Seo Y, Suzuki S, et al. Actinomycetal community structures in seawater and freshwater examined by DGGE analysis of 16SrRNA gene fragments [J]. Marine Biotechnology Volume, 2008, 10 (5): 554.
    [30]王书锦,胡江春.中国黄、渤海、辽宁近海地区海洋微生物资源的研究.锦州师范学院学报, 2001, 22(l): l~5.
    [31] Helmke E, Weyland H. Rhodococcus marinonascens sp. nov., an Actinomycete from the Sea. Int J Syst Bacteriol , 1984 , 34 (1) : 127~138.
    [32] Bruns A, Philipp H, Cypionka H, et al. Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden Sea. Int J Syst Evol Microbiol , 2003 , 53(6) : 1917~1923.
    [33]王海雁,刘健,赵淑江.南麂岛海域沉积物中海洋放线菌的分离研究.海洋科学, 2010, 34(1): 48~51.
    [34]林灵,谭亿,陈菲菲,等.大连渤海老虎滩海域沉积物可培养放线菌的多样性.微生物学报, 2011, 51(2): 262~269.
    [35] Hopkins DW, MacNaughton SJ, O’Donnell AG.A dispersion and differential centrifugationtechnique for representatively sampling microorganisms from soil.Soil Biol Biochem, 1991, 23(2): 217~225.
    [36] Maldonado LA, Stach JEM, Pathom~aree W, et al. Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek, 2005, 87: 11~18.
    [37]王宏梅,赵心清.可培养海洋放线菌生物多样性的研究进展.微生物学通报, 2007, 34(5): 996~1000.
    [38] Zhang H, Lee Y K, Zhang W, et al. Culturable Actinobacteria from the Marine Sponge Hymeniacidon perleve:Isolation and Phylogenetic Diversity by 16S rRNA gene-RFLP Analysis. Antonie Van Leeuwenhoek, 2006, 90(2): 159~169.
    [39] Magarvey NA, Keller JM, Bernan V, et al. Isolation and characterization of novel marine~derived actinomycete taxa rich in bioactive metabolites. Appl Environ.Microb, 2004,70: 7520~7529.
    [40]江红,林如,陈路劼,等.智利海洋沉积物中放线菌多样性.微生物学报,2010, 50(7): 862~869.
    [41] Kurtboke DI. Actinophages as indicators of actinomycete taxa in marine environments. Antonie Van Leeuwenhoek, 2005, 87 (1): 19.
    [42] Ferrari B C, Binnerup SJ, Gilling M. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol, 2005,71 (12): 8714~8720.
    [43] Connon S A, Giovannoni S J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Appl Environ Microbiol, 2002, 68(8): 3878~3885.
    [44] Kaeberlein T, Lewis K, Epstein SS. Isolating“uncultivable”microorganisms in pure culture in a simulated natural environment. Science, 2002, 296 (5570): 1127~1129.
    [45] Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In: Dietz X, Thayer Y. Actinomycete taxonomy. Arlington, VA. Society for Industrial Microbiology, 1980, 227~291.
    [46] Stackebrandr E, Goebel BM. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol , 1994, 44: 846~849.
    [47]徐丽华,李文均,刘志恒,等.放线菌系统学—原理、方法及实践。北京:科学出版社, 2007. 54~90.
    [48] Leehevalier MP, Leehevalier HA. The chemotaxonomy of actinomycetes. In actinomyeetes [M],In actinomyeetes Taxonomy(ed.by Dietz and Theayer),1980: 227~291.
    [49] Collins MD,Jones D. Distribution of isoprenoid quinine struetural types in bacteria and their taxonomic implication [J]. Microbiology, 1981, 45: 316~354.
    [50] Collins MD, Pirouz T, Goodfellow M et al. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol, 1997, 100: 221~230.
    [51] Minnikin DE, O’Donnell AG, Goodfellow M et al. An integrated procedure for the extraction of isoprenoid quinnes and polar lipids. J Microbiol Methods, 1984, 2: 233~241.
    [52] Woese CA, Gutell R, Gupta R, et al. Detailed analysis of the higher order of 16S likeri bonueleic acids [J]. Microbiol Rev, 1983, 47: 621~669.
    [53] Liu WT, Marsh TL, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol, 1997, 63(11): 4516~4522
    [54] Bruce KD. Analysis of mer gene subclasses within bacterial communities in soils and sediments resolved by fluorescent-PCR-restriction fragment length polymorphism profiling. Appl Environ Microbiol, 1997, 63(12): 4914~4919
    [55] Marsh TL, Saxman P, Cole J, et al. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol, 2000, 66(8): 3616~3620.
    [56] Vandamme P, Pot B, Gillis M et al. Rapid identification of bacterial of the comamonadaceae with amplified rDNA-restriction analysis (ARDRA).FEMS Microbiol Lett, 1992, 93: 227~234
    [57] Macherla VR, Liu J, Bellows C, et al. Glaciapyrroles A, B and C pyrrolosesquiterpenes from a Streptomyces sp. Isolated from an Alaskan marine sediment. J Nat Prod, 2005, 68:780~783.
    [58] Hardt IH, Jensen PR and William F. Neomarinone and new cytotoxic marinone derivatives, produced by a marine filamentous bacterium (Actinomycetales). Science, 2000, 41: 2073~2076.
    [59] William PG, Asolkar RN, Kondratyuk T, et al. Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod, 2007, 70: 83~88.
    [60] Jensen PR, Williams PG, Oh DC, et al. Species-specifi c secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol, 2007, 73:1146~1152.
    [61] Bister B, Bischoff D, Strobele M, et al. Abyssomicin C a polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Chem Int Ed, 2004, 43: 2574~2576.
    [62] Asolkar RN, Jensen PR, Kauffman CA, et al. Daryamides A-C weakly cytotoxic polyketides from a marine derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod, 2006, 69: 1756~1759.
    [63] Cho JY, Kwon HC, Williams PG, et al. Actinofuranones A and B, polyketides from a marine derived bacterium related to the genus Streptomyces (Actinomycetales). J Nat Prod, 2006, 69: 425~428.
    [64] Kanoh K, Matsuo Y, Adachi K, et al. Mechercharmycins A and B cytotoxic substances from marine derived Thermoactinomyces sp. YM 3-251. J Antibiot (Tokyo), 2005, 58: 289~292.
    [65] Romero F, Espliego F, Perez Baz J, et al. Thiocoraline a new depsipeptide with antitumor activity produced by a marine Micromonospora. Taxonomy, fermentation isolation and biological activities. J Antibiot (Tokyo), 1997, 50: 734~737.
    [66] Renner MK, Shen YC, Cheng XC, et al. Cyclomarins A-C, new anti infl ammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc, 1999, 121: 11273~11276.
    [67] Miller ED, Kauffman CA, Jensen PR et al. Piperazimycins cytotoxic hexadepsipeptides from a marine derived bacterium of the genus Streptomyces. J Org Chem , 2007, 72: 323~330.
    [68] Lee HS, Shin HJ, Jang KH, et al. Cyclic peptides of the Nocardamine class from a marine derived bacterium of the genus Streptomyces. J Nat Prod, 2005, 68: 623~625.
    [69] Matsuo Y, Kanoh K, Yamori T, et al. Urukthapelstatin A, a novel cytotoxic substance from a marine derived Mechercharimyces asporophorigenes YM11-542. J Antibiot (Tokyo),2007, 60: 251~255.
    [70] Moore BS, Trischman JA, Seng D, et al. Salinamides, anti-inflamatory depsipeptides from a marine Streptomycete. J Org Chem, 1999, 64:1145~1150.
    [71] Stritzke K, Schulz S, Laatsch H, et al. Novel caprolactones from a marine Streptomycete. J Nat Prod, 2004, 67: 395~401.
    [72] Li DH, Zhu TJ, Liu HB, et al. Four butenolides are novel cytotoxic compounds isolated from the marine derived bacterium, Streptoverticillium luteoverticillatum 11014. Arch Pharm Res, 2006, 29: 624~626.
    [73] Malet CL, Romero F, Espliego VF, et al. IB00208, a new cytotoxic polycyclic xanthone produced by a marine derived Actinomadura. Isolation of the strain, taxonomy and biological activities. J Antibiot (Tokyo), 2003, 56: 219~225.
    [74] Shiono Y, Shiono N, Seo S, Oka S et al. Effects of polyphenolic anthrone derivatives resistomycin and hypericin on apoptois in human megakaryoblastic leukemia CMK-7cell2. Natuforsch, 2002, 57: 923~929.
    [75] Adinaryan G, Venkateshan MR, Bpiraju VV, et al. Cytotoxic compounds from the marine actinobacterium. Bio Org Khim, 2006, 32: 328~334.
    [76] Kock I, Maskey RP, Biabani MAF, et al. 1-hydroxy-1-norresistomycin and resistofl avine methyl ether new antibiotics from marine derived Streptomycetes. J Antibiot (Tokyo), 2005, 58: 530~534.
    [77] Gorajana A, MV, Vinjamuri S, Kurada BV, et al. Resistofl avine cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN(1)/7. Microbiol Res, 2006, 29.
    [78] Maskey RP, Helmke E, Laatsch H. Himalomycin A and B isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J Antibiot (Tokyo), 2003, 56: 942~949.
    [79] Asolkar RN, Schroder D, Heckmann R, et al. Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel1. J Antibiot (Tokyo), 2004, 57: 17~23.
    [80] Mercado IES, Davo AP, Jensen PR, et al. Antibiotic terpenoid chlorodihydroquinones from a new marine actinomycete. J Nat Prod, 2005, 68: 904~910.
    [81] Williams PG, Miller ED, Asolkar RN, et al. Arenicolides A-C, 26 membered ring macrolides from the marine actinomycete Salinispora arenicola. J Org Chem, 2007, 72:5025~5034.
    [82] Kwon HC, Kauffman CA, Jensen PR et al. Marinomycins A-D antitumor antibiotics of a new structure class from a marine actinomycete of the recently discovered genus“Marinispora”. J Am Chem Soc, 2006, 128:1622~1632.
    [83] Liu R, Zhu T, Li D, et al. Two indolocarbazole alkaloids with apoptosis activity from a marine derived actinomycete Z2039–2. Arch Pharm Re, 2007, 30: 270~274.
    [84] Jeong SY, Shin HJ, Kim TS, et al. Streptokordin a new cytotoxic compound of the methylpyridine class from a marine derived Streptomyces sp. KORDI-3238. J Antibiot (Tokyo), 2006, 59: 234~240.
    [85] Imada C and Simidu U. Isolation and characterization of an alpha amylase inhibitor producing actinomycete from marine environment. Nippon Suisan Gakkaishi, 1988, 54: 1839~1845.
    [86] Aoyama T, Kojima F, Imada C, et al. Pyrostatins A and B, new inhibitors of N-acetyl-beta-D-glucosamidase, produced by Streptomyces sp. SA3501. J Enzyme Inhib, 1995, 8: 223~232.
    [87] Aoyagi T, Hatsu M, Imada C, et al. Pyrizinostatin: a new inhibitor of pyroglutamyl peptidase. J Antibiot (Tokyo), 1992, 45: 1795~1796.
    [88] Okami Y, Okazaki T, Kitahara T. Studies on marine microorganisms.V. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud [J]. J Antibiot, 1976, 29(10): 1019~1025.
    [89] Sujatha P, Bapi Raju KV, Ramana T. Studies on a new marine Streptomycete BT 408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res, 2005, 160: 119~126
    [90] Feling RH, Buchanan GO, Mincer TJ, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitorfrom a novel microbial source,a marine bacterium of the new genus Salinospora [J]. Angewandte Chemie International Edition,2003,42(3): 355~357.
    [91] Nicholas GM, GL, RC, et al. Novel bromotyrosine alkaloids: inhibitors of mycothiol S-conjugate Amidase [J] . Org Lett, 2001, 3 (10): 1543.
    [92] Ramesh S, Mathivanan N. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J MicrobiolBiotechnol, 2009, 25: 2103~2111.
    [93] Leon J, Liza L, Soto I, et al. Bioactives actinomycetes of marine sediment from the central coast of Peru. Revi Peru Boil, 2007, 14: 259~270.
    [94] Michael AP, Michael JS, Madelyn ML. Application of pretreatments for the isolation of bioactive actinomycetes from marine sediments. Appl Microbiol Biotechnol.1986, 25: 285~288.
    [95]母连军,胡永松,王忠彦.放线菌分离方法的进展[J].四川食品工业科技,1996,3: 4~6.
    [96] Nonomura H, Hayakawa M. New methods for the selective isolation of soil actinomycetes. In Okami Y, BeppuT, Ogawara H. (eds)Biology of Actinomycetes’88. Japan Scientific Societies Press, Tokyo.
    [97]来航线,盛敏,杨保伟,等.盐碱土中放线菌分离方法研究[J].西北农林科技大学学报:自然科学版, 2006, 34: 113~117.
    [98]杨宇容,徐丽华,李启任,等.放线菌分离方法的研究.微生物学通报, 1995, 22: 88~91.
    [99] Takahashi Y, Omura S. Isolation of new actinomycete strains for the screening of new bioactive compounds. J.Gen.Appl.Microbiol, 2003, 49:141~54.
    [100] Zakharova OS, Zenova GM, Zvyagintsev DG. Some Approaches to the selective isolation of actinomycetes of the genus Actinomadura from soil, Microbiology, 2003, 72: 110~113.
    [101]李洪波,肖天,丁涛,等.浮游细菌在黄海冷水团中的分布.生态学报,2006,26(4):1012~1019.
    [102]刁焕祥,沈志良.黄海冷水域水化学要素的垂直分布特性.海洋科学集刊,1985,25 :41~51.
    [103]张书文,夏长水,袁业立.黄海冷水团水域物理-生态耦合数值模式研究.自然科学进展, 2002, 12 (3): 315~319.
    [104] Lee YK, Kim HW, Liu CL, et al. A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods, 2003, 52: 245~50.
    [105] Chun J, Lee JH, Jung Y, et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol, 2007, 57: 2259~2261.
    [106] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596~1599.
    [107]刘妍,李志.具有多重酶活性的澳大利亚厚皮海绵共附生放线菌的研究.生物技术通报, 2006, 5:121~125.
    [108]方金瑞.海洋微生物:开发海洋药物的重要资源[J].中国海洋药物, 1998, 17 (3): 53~56.
    [109]曾胤新,陈波. 90年代日本等国家极区微生物学研究及其指导思想[J].微生物学杂志, 1999, 19 (4): 35~43.
    [110]陈吉刚,杨季芳.极地微生物的工业应用及其与天体生物学研究的联系.生命的化学,2008 , 28(1): 97~100.
    [111]滕海波.极地海洋沉积放线菌分离培养与筛选: [硕士学位论文].青岛:中国海洋大学, 2009.
    [112] YU Yong et al. Isolation and phylogenetic assignation of actinomycetes in the marine sediments from the Arctic Ocean. Acta Oceanologica Sinica.2005, 24(6): 135~142.
    [113]吴少杰,朱丽华,杨志娟.不同培养基对海洋放线菌抗微生物活性的影响.华北煤炭医学院学报, 2006, 8(5): 600~602.
    [114] Mincer TJ, Jensen PR, Kauffman CA, et al. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl.Environ.Microbiol, 2002, 68: 5005~11.
    [115]马延和.新的生命形式-极端微生物[J].微生物学通报, 1999, 26: 80.
    [116]唐蜀昆,姜怡,职晓阳,等.嗜盐放线菌分离方法.微生物学通报, 2007, 34(2): 390~392.
    [117]吕志堂,张利平,李艳华,等.沧州高盐环境嗜盐放线菌多样性研究.河北大学学报(自然科学版), 2006, 26(1): 1~6.
    [118]关统伟,吴晋元,唐蜀昆,等.新疆塔里木盆地可培养嗜盐放线菌系统发育多样性.微生物学通报, 2008, 35(11): 1698~1702.
    [119]曹兰兰,王芸,唐蜀昆,等.新疆哈密地区盐湖放线菌的多样性及其功能酶的筛选.微生物学报, 2009, 49 (3) : 287~293.
    [120] Shirling, EB, Gottlieb, D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol , 1966, 16: 313~340.
    [121] Williams, ST, Goodfellow, M. & Alderson, G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Bergey’s Manual of Systematic Bacteriology, 1989, 4: 2452~2492. Editedby S. T. Williams, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
    [122] Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr, 1989, 479: 297~306.
    [123] Meyer, J. Nocardiopsis, a new genus of the order Actinomycetales. Int J Syst Bacteriol 26, 487~493.
    [124] Zhang, Z., Wang, Y. & Ruan, J. Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol, 1998, 48, 411~422.
    [125] Cui XL., Mao PH., Zeng M, et al. Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol, 2001, 51: 357~363.
    [126] Tang SK, Tian XP, Zhi XY, et al. Haloactinospora alba gen. nov., sp. nov., a novel halophilic filamentous actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol, 2008, 58: 2075~2080.
    [127] Kaempfer P, Schafer J, Lodders N, et al. Murinocardiopsis flavida gen. nov., sp. nov., an actinomycete isolated from indoor walls. Int J Syst Evol Microbiol, 2010, 60: 1729~1734.
    [128] Yang LL, Tang SK, Zhang YQ, et al. Thermobifida halotolerans sp. nov., isolated from a salt mine sample, and emended description of the genus Thermobifida. Int J Syst Evol Microbio,2008, 58: 1821~1825
    [129] Kroppenstedt, R. M., Evtushenko, L. I. The family Nocardiopsaceae. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn, 2006, 3:754~795. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer-Verlag.
    [130] Yang RL, Zhang LP, Guo LG, et al. Nocardiopsis valliformis sp. nov., an alkaliphilic actinomycete isolated from alkali lake soil in China. Int J Syst Evol Microbiol,2008, 58: 1542~1546.
    [131] Chen YG, Wang YX, Zhang YQ, et al. Nocardiopsis litoralis sp. nov., a halophilic marine actinomycete isolated from a sea anemone. Int J Syst Evol Microbio, 2009, 59: 2708~2713.
    [132] Cai M., Zhi XY, Tang SK, et al. Streptomonospora halophila sp. nov., a halophilicactinomycete isolated from a hypersaline soil. Int J Syst Evol Microbiol, 2008, 58, 1556~1560.
    [133] Hozzein WN, Goodfellow M. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil. Int J Syst Evol Microbiol, 2008, 58, 2520~2524.
    [134] Chang, XB, Liu, WZ, Zhang, XH. Spinactinospora alkalitolerans gen. nov. sp. nov., a novel marine actinomycete isolated from sediment near the Yellow Sea Cold Water Mass, China. Int J Syst Evol Microbiol. 2011. doi: 10.1099/ijs.0.027383-0.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700