EGCG诱导人肝癌SMMC-7721细胞早期凋亡及其凋亡相关蛋白变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌(Primary hepatic carcinoma,PHC)是世界流行最广的恶性肿瘤之一,其在所有癌症中恶性程度高,治疗最困难,恶性发展速度最快,生存时间最短。2007年全世界的肝癌死亡例数为680 000,在全球肿瘤死因中位列第三。而我国由于肝炎和肝炎转肝硬化的病人众多,致使肝癌在我国的发病率和死亡率均高于世界平均水平。我国每年死于肝癌人数占全世界肝癌死亡人数的55%以上,目前尚缺乏有效的治疗药物。因此为降低其发病率和死亡率,诸多学者长期致力于防治肝癌的研究。
     细胞凋亡比例明显失调是肿瘤发生发展中的重要因素,如能诱导肿瘤细胞凋亡,使其凋亡的比例增加,则可能遏制肿瘤的发生发展。表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)是绿茶多酚提取物儿茶素(catechin)的主要成分,具有抑制肿瘤细胞增殖和诱导肿瘤细胞凋亡的作用。但是较高浓度的EGCG可直接导致细胞坏死,所以及早发现细胞的早期凋亡,控制EGCG的剂量,是减少药物对细胞损伤的最有效的方法。
     多数有关EGCG诱导肿瘤细胞凋亡的研究,是依据流式细胞术(FCM)的凋亡细胞峰(亚G1细胞峰)来做出评价的。然而,亚G1细胞群的出现并非是凋亡细胞的特异变化。因此,本研究建立了一种检测细胞早期凋亡的新方法—PSAB-VA∕EL法,来检测EGCG诱导人肝癌SMMC-7721细胞早期凋亡的发生。
     同时,运用SELDI-TOF-MS和MALDI-TOF/TOF蛋白质谱技术检测与EGCG诱导人肝癌SMMC-7721细胞凋亡相关的关键蛋白,探讨EGCG诱导人肝癌细胞早期凋亡的可能机制。
     第一章PSAB-VA∕EL法检测细胞早期凋亡方法的建立目的:建立一种经济实用且特异性高的细胞早期凋亡检测新方法,并与常用的Annexin V-FITC/PI法比较。
     方法:1、以不同质量浓度的EGCG作用Jurkat细胞,采用Annexin V-FITC/PI法检测Jurkat细胞凋亡率,并以此作为细胞凋亡模型;2、尝试用不同的标记有荧光染料的PSAB抗体和核酸荧光染料来检测此细胞凋亡模型。
     结果:1、经Annexin V-FITC/PI法检测,Jurkat细胞随着EGCG浓度的增加,正常细胞比例不断下降,而晚期凋亡细胞的百分比明显升高,同时早期凋亡细胞保持在10%左右;2、对各种标记有荧光染料的PSAB抗体和核酸荧光染料比较后,发现PSAB- VA和EL搭配使用,能较好地检测细胞凋亡。
     结论:1、PSAB-VA∕EL法和Annexin V-FITC/PI法在检测细胞凋亡各个阶段的百分比时,其结果的变化趋势一致;2、PSAB-VA∕EL法可能是一种比较灵敏的细胞早期凋亡检测方法。
     第二章EGCG诱导人肝癌SMMC-7721细胞早期凋亡
     目的:探讨表没食子儿茶素没食子酸酯(EGCG)诱导人肝癌SMMC-7721细胞早期凋亡的变化规律。
     方法:1、通过MTT法初步筛选EGCG诱导人肝癌SMMC-7721细胞凋亡的作用浓度;2、利用PSAB-VA∕EL法(第一章所述),通过流式细胞仪检测EGCG对SMMC-7721细胞增殖的抑制作用和早期凋亡的诱导效应。
     结果:EGCG诱导人肝癌SMMC-7721细胞早期凋亡的最佳作用剂量是100mg/L,早期凋亡率达48.16%。随着EGCG浓度增加(125~175mg/L),早期凋亡率明显下降,而晚期凋亡细胞的百分比明显升高。
     结论:EGCG有明显的诱导人肝癌SMMC-7721细胞早期凋亡的作用,且呈剂量依赖性,小剂量起诱导凋亡作用,而大剂量则对细胞株具有杀伤作用,直接导致细胞坏死。
     第三章EGCG诱导人肝癌SMMC-7721细胞凋亡后的相关蛋白变化及鉴定研究
     目的:利用蛋白质谱技术检测与EGCG诱导人肝癌SMMC-7721细胞凋亡相关的关键蛋白,探讨EGCG诱导人肝癌细胞早期凋亡的可能机制。
     方法:1、运用SELDI-TOF-MS技术筛选人肝癌血清和人肝癌SMMC-7721细胞裂解液中共同存在的蛋白;2、运用SELDI-TOF-MS技术检测EGCG诱导SMMC-7721细胞凋亡后的细胞裂解液中存在的蛋白;3、检测在肝癌血清、SMMC-7721细胞裂解液以及EGCG作用后的SMMC-7721细胞裂解液中,共有的关键蛋白;4、运用MALDI-TOF/TOF质谱技术平台,并结合iTRAQ蛋白质定量试剂的使用,对上述关键蛋白标志物进行鉴定。
     结果:1、人肝癌血清和人肝癌SMMC-7721细胞裂解液中共同存在的蛋白有23个;2、SMMC-7721细胞裂解液与EGCG诱导后的SMMC-7721细胞相比,有16个蛋白高表达,16个蛋白低表达;3、在肝癌血清、SMMC-7721细胞裂解液以及EGCG作用后的SMMC-7721细胞裂解液中,共有的关键蛋白为:4283.74 Da和8562.11 Da分子量蛋白,并以此作为EGCG诱导人肝癌SMMC-7721细胞凋亡后的关键蛋白标志物;4、MALDI-TOF/TOF质谱技术检测到的肝癌血清中,高表达的标志蛋白α-1-抗胰蛋白酶的酶解片段与关键蛋白4283.74 Da的分子量非常接近,而低表达的标志蛋白纤溶酶原的酶解片段与关键蛋白8562.11 Da的分子量非常接近。
     结论:1、运用SELDI-TOF-MS和MALDI-TOF/TOF蛋白质谱技术对肝癌血清和细胞裂解液的检测,有于客观反映肝癌血清和细胞中低丰度蛋白的变化;2、EGCG诱导人肝癌SMMC-7721细胞凋亡的机制可能与α-1-抗胰蛋白酶(4283.74 Da)和纤溶酶原(8562.11 Da)这两个关键蛋白标志物有关。
Primary hepatic carcinoma (PHC) is one of the most common malignant tumors in the world. It has some clinical features such as rapid development, high malignant degree, difficult therapy and less survival time. There were nearly 680 000 patients death of PHC in 2007 around the world. It was the third causes of cancer death in the world. In china, the liver cancer incidence and mortality rates were higher than the global due to the large numbers of hepatocirrhosis patients. The patients died from liver cancer in our country accounted 55% of the world population PHC deaths rate per year. And it has no specific drug therapy yet. Therefore, many researchers are dedicated to the research of prevention and cure liver cancer for a long time in order to decrease the incidence and mortality rate.
     The disproportion of apoptosis played an important role in the tumor development. The tumor development may be inhibited if apoptotic proportion increases of tumor cells being induced apoptosis. Epigallocatechin gallate (EGCG), was a major components of green tea polyphenols extractive catechin, which can inhibit tumor growth and induce cells apoptosis. But higher concentrations of EGCG can caused cell death, so the most effective way of reduce cell injury is by detecting in the early apoptosis of cell and controlling the EGCG dosage.
     Most studies on the EGCG induced tumor cell apoptosis were evaluation through apoptotic peak (sub G1 peak) measured by flow cytometry (FCM). But sub G1 peak is not specific change in apoptosis. Therefore, this study established a new early apoptosis detection method, PSAB-VA/EL method, to detect early apoptosis in human hepatocelluar carcinoma cell line SMMC-7721 by EGCG.
     At the same time, the key proteins of apoptosis in human hepatocelluar carcinoma cell line SMMC-7721 induced by EGCG were detected by SELDI-TOF-MS and MALDI-TOF/TOF. The possible mechanism of apoptosis inducing hepatocelluar carcinoma cell line SMMC-7721 by EGCG was investigated.
     Part One
     Establishment of a PSAB-VA/EL method for detected early apoptosis cells
     Objective: To establish an economical, practical and high specificity method for detecting early apoptosis cells, then evaluated this method comparing with Annexin V-FITC/PI method.
     Methods: 1. The Jurkat cells was treated with different concentrations of EGCG, early apoptosis of Jurkat cells was measured by Annexin V-FITC/PI method, and took it as an apoptosis model; 2. Attempt several different of PSAB antibody and nucleic acid fluorescent to detect early apoptosis model. Results: 1. Jurkat cells were detected by Annexin V-FITC/PI method, with increasing the concentration of EGCG, the proportion of normal cells dropped consistently. While the percentage of apoptotic cells significantly increased, the early apoptotic cells remained at 10%; 2. After comparing PSAB antibody and nucleic acid fluorescent dye, founded that the collocation of PSAB antibody with EL may be used for detecting apoptosis better.
     Conclusion: 1. The change trends of results were consistent both in SAB-VA/EL and Annexin V-FITC/PI method which detected apoptosis in the percentage of each stage; 2. The PSAB-VA/EL may be a sensitive method used for detecting early apoptotic cells.
     Part Two The early apoptosis in human hepatocelluar carcinoma cell line SMMC-7721 induced by EGCG
     Objective: To investigate the changes of apoptosis in hepatocelluar carcinoma cell line SMMC-7721 induced by EGCG.
     Methods: 1. MTT assay was used to detect the effect concentration of apoptosis of SMMC-7721 cells induced by EGCG; 2. The growth inhibition and early apoptosis of SMMC-7721 cells was measured by flow cytometry using PSAB-VA/EL method (Described in Part One).
     Results: The best dose of EGCG effecting on induction of early apoptosis in SMMC-7721 cells was 100mg/L, and the early apoptosis rate was up to 48.16%. With increasing the concentration of EGCG (125~175mg/L), early apoptosis was significantly decreased, while the percentage of apoptotic cells was significantly increase.
     Conclusion: EGCG significantly induced early apoptosis in human hepatocelluar carcinoma SMMC-7721 cells, in a dose-dependent manner.Low dose could induce apoptosis, while large dose could kill cells and cause cell death.
     Part Three Alteration of proteomic expression in SMMC-7721 cells after induced by EGCG and identify
     Objective: The key proteins of apoptosis in human hepatocelluar carcinoma cell line SMMC-7721 induced by EGCG were detected by protein mass spectrometry. To investigate the possible mechanism of apoptosis of hepatocelluar carcinoma cell line SMMC-7721 induced by EGCG.
     Methods: 1. Proteins coexisting in human hepatocellular carcinoma serum and human hepatocelluar carcinoma SMMC-7721 cells lysate were detected by SELDI-TOF-MS; 2. Proteins existing in human hepatocelluar carcinoma SMMC-7721 cells lysate treated by EGCG was detected by SELDI-TOF-MS; 3. Detection of the key proteins coexisting in human hepatocellular carcinoma serum, SMMC-7721 cells lysate and SMMC-7721 cells lysate treated by EGCG; 4. All the proteins mentioned above were detected by using iTRAQ labeling coupled with MALDI-TOF/TOF.
     Results: 1. there were 23 proteins coexisting in human hepatocellular carcinoma serum and human hepatocelluar carcinoma SMMC-7721 cells lysate; 2. Comprised with SMMC-7721 cells lysate treated by EGCG, 16 proteins were up-regulated expression and 16 proteins were down-regulated expression in SMMC-7721 cells lysate; 3. Among those proteins, the m/z value of key proteins were 4283.74 Da and 8562.11 Da; 4. The m/z value of highly expressedα-1-Antitrypsin enzymolysis fragment was very close to key proteins 4283.74 Da; The m/z value of low expressed Plasminogen enzymolysis fragment was very close to key proteins8562.11 Da.
     Conclusion: 1. By detection of human hepatocellular carcinoma serum and SMMC-7721 cells lysate with SELDI-TOF-MS and MALDI-TOF/TOF is helpful to reflect the alteration of low-abundance proteins objectively; 2. The possible mechanism of apoptosis inducing hepatocelluar carcinoma cell line SMMC-7721 by EGCG is concerned with the key proteins ofα-1-Antitrypsin and Plasminogen.
引文
[1] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26 (4): 239-257.
    [2] Carson DA, Ribeiro JM. Apoptosis and disease[J]. Lancet, 1993, 341 (8855): 1251-1254.
    [3]丛玉隆.流式细胞仪及其临床应用[J].医学检验与临床, 2006, 17 (4): 1-2.
    [4]蔡炯,李方,郑连芳,等.人膜联蛋白V的重组表达与细胞凋亡显像[J].基础医学与临床, 2006, 26 (8): 913-914.
    [5] O'Brien MC, Bolton WE. Comparison of cell viability probes compatible with fixation and permeabilization for combined surface and intracellular staining in flow cytometry[J]. Cytometry, 1995, 19 (3): 243-255.
    [6] Gill JE, Jotz MM, Young SG, Modest EJ, et al. 7-Amino-actinomycin D as a cytochemical probe. I. Spectral properties[J]. J Histochem Cytochem, 1975, 23 (11): 793-799.
    [7]司徒镇强,吴军正.细胞培养[M].北京:世界图书出版公司; 1996:73-82.
    [8]张向阳.细胞凋亡检测方法[J].济宁医学院学报, 2008, 31 (3): 258-260.
    [9] Span LF, Pennings AH, Vierwinden G, Boezeman JB, et al. The dynamic process of apoptosis analyzed by flow cytometry using Annexin-V/propidium iodide and a modified in situ end labeling technique[J]. Cytometry, 2002, 47 (1): 24-31.
    [10]王书奎,周振英.实用流式细胞术彩色图谱[M].上海:第二军医大学出版社; 2004:4.
    [11]张韫,靳耀英,李忻,等.流式细胞术在细胞凋亡检测中的应用[J].中日友好医院学报, 2008, 22 (5): 303-305.
    [12]周丽,周振英.流式细胞仪研制的技术进展[J].现代医学仪器与应用, 2003, (15): 11-17.
    [13]刘江惠,刘亮,郭建文,等.胰蛋白酶消化时间对流式细胞术PI法检测肝癌细胞凋亡的影响[J].河北医科大学学报, 2008, 29 (5): 709-711.
    [14] Gottlieb RA, Nordberg J, Skowronski E, Babior BM. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification[J]. Proc Natl Acad Sci U S A, 1996, 93 (2): 654-658.
    [15] Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, et al. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells[J]. FEBS Lett, 2000, 475 (3): 267-272.
    [16] Shimizu M, Weinstein IB. Modulation of signal transduction by tea catechins and related phytochemicals[J]. Mutat Res, 2005, 591 (1-2): 147-160.
    [17] Asano Y, Okamura S, Ogo T, Eto T, et al. Effect of (-)-epigallocatechin gallate on leukemic blast cells from patients with acute myeloblastic leukemia[J]. Life Sci, 1997, 60 (2): 135-142.
    [18] Nakagawa H, Hasumi K, Woo JT, Nagai K, et al. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate[J]. Carcinogenesis, 2004, 25 (9): 1567-1574.
    [19] Erba D, Riso P, Colombo A, Testolin G. Supplementation of Jurkat T cells with green tea extract decreases oxidative damage due to iron
    treatment[J]. J Nutr, 1999, 129 (12): 2130-2134.
    [20]马雄华,韩颖超,李世普.生物标记用发光材料研究现状[J].河南化工, 2006, 23 (5): 1-4.51
    [1] Thun MJ, DeLancey JO, Center MM, Jemal A, et al. The global burden of cancer: priorities for prevention[J]. Carcinogenesis, 2010, 31 (1): 100-110.
    [2] Kim R, Tanabe K, Uchida Y, Emi M, et al. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy[J]. Cancer Chemother Pharmacol, 2002, 50 (5): 343-352.
    [3] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26 (4): 239-257.
    [4] Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents[J]. Nature, 2000, 407 (6805): 810-816.
    [5] Los M, Burek CJ, Stroh C, Benedyk K, et al. Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design[J]. Drug Discov Today, 2003, 8 (2): 67-77.
    [6] Marx J. Nobel Prize in Physiology or Medicine. Tiny worm takes a star turn[J]. Science, 2002, 298 (5593): 526.
    [7] Nicholson DW, Thornberry NA. Apoptosis. Life and death decisions[J]. Science, 2003, 299 (5604): 214-215.
    [8] Kuo PL, Lin CC. Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways[J]. J Biomed Sci, 2003, 10 (2): 219-227.
    [9] Nishikawa T, Nakajima T, Moriguchi M, Jo M, et al. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins[J]. J Hepatol, 2006, 44 (6): 1074-1082.
    [10]卢青,孙中吉,陈小义,等.儿茶素单体EGCG诱导胃癌MGC-803细胞凋亡和不同浓度作用效果的比较[J].天津医药, 2000, 28 (7): 413-415.
    [11]方宁,陈代雄,王海燕.β-榄香烯诱导小鼠肝癌细胞早期凋亡[J].贵州医药, 2001, 25 (12): 1061-1062.
    [12]司徒镇强,吴军正.细胞培养[M].北京:世界图书出版公司; 1996:73-82.
    [13] Yang CS, Landau JM. Effects of tea consumption on nutrition and health[J]. J Nutr, 2000, 130 (10): 2409-2412.
    [14] Okuda T, Kimura Y, Yoshida T, Hatano T, et al. Studies on the activities of tannins and related compounds from medicinal plants and drugs. I. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver[J]. Chem Pharm Bull (Tokyo), 1983, 31 (5): 1625-1631.
    [15] Suganuma M, Okabe S, Sueoka N, Sueoka E, et al. Green tea and cancer chemoprevention[J]. Mutat Res, 1999, 428 (1-2): 339-344.
    [16] Yang CS, Chung JY, Yang G, Chhabra SK, et al. Tea and tea polyphenols in cancer prevention[J]. J Nutr, 2000, 130 (2S Suppl): 472S-478S.
    [17] Mukhtar H, Ahmad N. Green tea in chemoprevention of cancer[J]. Toxicol Sci, 1999, 52 (2 Suppl): 111-117.
    [18] Paul B, Hayes CS, Kim A, Athar M, et al. Elevated polyamines lead to selective induction of apoptosis and inhibition of tumorigenesis by (-)-epigallocatechin-3-gallate (EGCG) in ODC/Ras transgenic mice[J].Carcinogenesis, 2005, 26 (1): 119-124.
    [19] Muto S, Yokoi T, Gondo Y, Katsuki M, et al. Inhibition of benzo[a]pyrene-induced mutagenesis by (-)-epigallocatechin gallate in the lung of rpsL transgenic mice[J]. Carcinogenesis, 1999, 20 (3): 421-424.
    [20] Tan X, Hu D, Li S, Han Y, et al. Differences of four catechins in cell cycle arrest and induction of apoptosis in LoVo cells[J]. Cancer Lett, 2000, 158 (1): 1-6.
    [21] Ahmad N, Cheng P, Mukhtar H. Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate[J]. Biochem Biophys Res Commun, 2000, 275 (2): 328-334.
    [22] Gupta S, Hussain T, Mukhtar H. Molecular pathway for (-)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells[J]. Arch Biochem Biophys, 2003, 410 (1): 177-185.
    [23] Ahn WS, Huh SW, Bae SM, Lee IP, et al. A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G(1) arrest, and regulation of gene expression[J]. DNA Cell Biol, 2003, 22 (3): 217-224.
    [24] Balentine DA, Wiseman SA, Bouwens LC. The chemistry of tea flavonoids[J]. Crit Rev Food Sci Nutr, 1997, 37 (8): 693-704.
    [25] Shimizu M, Weinstein IB. Modulation of signal transduction by tea catechins and related phytochemicals[J]. Mutat Res, 2005, 591 (1-2): 147-160.
    [26] Asano Y, Okamura S, Ogo T, Eto T, et al. Effect of (-)-epigallocatechin gallate on leukemic blast cells from patients with acute myeloblasticleukemia[J]. Life Sci, 1997, 60 (2): 135-142.
    [27]刘超,陈若芸.儿茶素及其类似物的化学和生物活性研究进展[J].中国中药杂志, 2004, 29 (10): 1017-1021.
    [28]叶青海,汤钊猷,钦伦秀,等.基因芯片技术在肝癌转移相关基因筛选中的应用[J].中华肝胆外科杂志, 2004, 10 (10): 679-682.
    [29] Liang YC, Lin-Shiau SY, Chen CF, Lin JK. Inhibition of cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (-)-epigallocatechin-3-gallate[J]. J Cell Biochem, 1999, 75 (1): 1-12.
    [30] Kennedy DO, Nishimura S, Hasuma T, Yano Y, et al. Involvement of protein tyrosine phosphorylation in the effect of green tea polyphenols on Ehrlich ascites tumor cells in vitro[J]. Chem Biol Interact, 1998, 110 (3): 159-172.
    [31] Hayakawa S, Saeki K, Sazuka M, Suzuki Y, et al. Apoptosis induction by epigallocatechin gallate involves its binding to Fas[J]. Biochem Biophys Res Commun, 2001, 285 (5): 1102-1106.
    [32] Bigger CB, Brasky KM, Lanford RE. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection[J]. J Virol, 2001, 75 (15): 7059-7066.
    [33] Watson RW. The rising incidence of hepatocellular carcinoma[J]. N Engl J Med, 1999, 341 (6): 451-452.
    [34]杨仕明,房殿春.端粒、端粒酶与肿瘤[J].国外医学:病理生理科学与临床分册, 1997, 17 (4): 302-307.
    [35] Naka K, Yokozaki H, Yasui W, Tahara H, et al. Effect of antisense human telomerase RNA transfection on the growth of human gastric cancer celllines[J]. Biochem Biophys Res Commun, 1999, 255 (3): 753-758.
    [36]杨金亮,房殿春,杨仕明,等.表没食子儿茶素没食子酸醋对胃癌细胞端粒酶活性的抑制作用[J].第三军医大学学报, 2001, 23 (8): 931-933.
    [37] Naasani I, Seimiya H, Tsuruo T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins[J]. Biochem Biophys Res Commun, 1998, 249 (2): 391-396.
    [38] Chen C, Shen G, Hebbar V, Hu R, et al. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells[J]. Carcinogenesis, 2003, 24 (8): 1369-1378.
    [39] Qanungo S, Das M, Haldar S, Basu A. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells[J]. Carcinogenesis, 2005, 26 (5): 958-967.
    [40] Hofmann CS, Sonenshein GE. Green tea polyphenol epigallocatechin-3 gallate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53[J]. Faseb J, 2003, 17 (6): 702-704.
    [41] Gupta S, Ahmad N, Nieminen AL, Mukhtar H. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells[J]. Toxicol Appl Pharmacol, 2000, 164 (1): 82-90.
    [42] Roy AM, Baliga MS, Katiyar SK. Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation[J]. Mol Cancer Ther, 2005, 4 (1): 81-90.
    [43]谭晓华,张亚历,周殿元. EGCG诱导胃癌和肝癌细胞凋亡及Bcl-2表达下调的研究[J].癌症, 2000, 19 (17): 638-641.
    [44] Nihal M, Ahmad N, Mukhtar H, Wood GS. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma[J]. Int J Cancer, 2005, 114 (4): 513-521.
    [45] Ahmad N, Gupta S, Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially modulates nuclear factor kappaB in cancer cells versus normal cells[J]. Arch Biochem Biophys, 2000, 376 (2): 338-346.
    [46] Gupta S, Hastak K, Afaq F, Ahmad N, et al. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis[J]. Oncogene, 2004, 23 (14): 2507-2522.
    [47] Vittal R, Selvanayagam ZE, Sun Y, Hong J, et al. Gene expression changes induced by green tea polyphenol (-)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray[J]. Mol Cancer Ther, 2004, 3 (9): 1091-1099.
    [48]胡秀芳,杨坚强.茶儿茶素对癌细胞凋亡作用的研究[J].茶叶科学, 2001, 21 (1): 26-29.
    [49] Inoue M, Tajima K, Mizutani M, Iwata H, et al. Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan[J]. Cancer Lett, 2001, 167 (2): 175-182.
    [1] Thun MJ, DeLancey JO, Center MM, Jemal A, et al. The global burden of cancer: priorities for prevention[J]. Carcinogenesis, 2010, 31 (1): 100-110.
    [2] Wright LM, Kreikemeier JT, Fimmel CJ. A concise review of serum markers for hepatocellular cancer[J]. Cancer Detect Prev, 2007, 31 (1): 35-44.
    [3] Kuo PL, Lin CC. Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways[J]. J Biomed Sci, 2003, 10 (2): 219-227.
    [4] Nishikawa T, Nakajima T, Moriguchi M, Jo M, et al. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins[J]. J Hepatol, 2006, 44 (6): 1074-1082.
    [5]王彦艳,陈公琰. SELDI蛋白质芯片技术及在肺癌肿瘤标志物中的研究进展[J].实用肿瘤学杂志, 2006, 20 (5): 455-457.
    [6] Adam BL, Qu Y, Davis JW, Ward MD, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men[J]. Cancer Res, 2002, 62 (13): 3609-3614.
    [7] Banez LL, Prasanna P, Sun L, Ali A, et al. Diagnostic potential of serum proteomic patterns in prostate cancer[J]. J Urol, 2003, 170 (2 Pt 1): 442-446.
    [8] Shiwa M, Nishimura Y, Wakatabe R, Fukawa A, et al. Rapid discoveryand identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform[J]. Biochem Biophys Res Commun, 2003, 309 (1): 18-25.
    [9]蒋知俭.医学统计学[M].北京:人民卫生出版社; 2007:281-299.
    [10] Kwack MH, Choi BY, Sung YK. Cellular changes resulting from forced expression of glypican-3 in hepatocellular carcinoma cells[J]. Mol Cells, 2006, 21 (2): 224-228.
    [11]黄维华,赵健,王远东. SELDI-TOF-MS技术在非小细胞肺癌中的应用[J].世界肿瘤杂志, 2007, 6 (1): 55-57.
    [12] Xiao Z, Prieto D, Conrads TP, Veenstra TD, et al. Proteomic patterns: their potential for disease diagnosis[J]. Mol Cell Endocrinol, 2005, 230 (1-2): 95-106.
    [13] Srinivas PR, Verma M, Zhao Y, Srivastava S. Proteomics for cancer biomarker discovery[J]. Clin Chem, 2002, 48 (8): 1160-1169.
    [14] Zhang H, Kong B, Qu X, Jia L, et al. Biomarker discovery for ovarian cancer using SELDI-TOF-MS[J]. Gynecol Oncol, 2006, 102 (1): 61-66.
    [15] Kong F, Nicole White C, Xiao X, Feng Y, et al. Using proteomic approaches to identify new biomarkers for detection and monitoring of ovarian cancer[J]. Gynecol Oncol, 2006, 100 (2): 247-253.
    [16] Grizzle WE, Adam BL, Bigbee WL, Conrads TP, et al. Serum protein expression profiling for cancer detection: validation of a SELDI-based approach for prostate cancer[J]. Dis Markers, 2003, 19 (4-5): 185-195.
    [17] Malik G, Ward MD, Gupta SK, Trosset MW, et al. Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer[J]. Clin Cancer Res, 2005, 11 (3): 1073-1085.
    [18] Tolson JP, Flad T, Gnau V, Dihazi H, et al. Differential detection ofS100A8 in transitional cell carcinoma of the bladder by pair wise tissue proteomic and immunohistochemical analysis[J]. Proteomics, 2006, 6 (2): 697-708.
    [19] Liu W, Guan M, Wu D, Zhang Y, et al. Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients[J]. Eur Urol, 2005, 47 (4): 456-462.
    [20] Belluco C, Petricoin EF, Mammano E, Facchiano F, et al. Serum proteomic analysis identifies a highly sensitive and specific discriminatory pattern in stage 1 breast cancer[J]. Ann Surg Oncol, 2007, 14 (9): 2470-2476.
    [21] Mathelin C, Cromer A, Wendling C, Tomasetto C, et al. Serum biomarkers for detection of breast cancers: A prospective study[J]. Breast Cancer Res Treat, 2006, 96 (1): 83-90.
    [22] Xiao XY, Tang Y, Wei XP, He DC. A preliminary analysis of non-small cell lung cancer biomarkers in serum[J]. Biomed Environ Sci, 2003, 16 (2): 140-148.
    [23] Yang SY, Xiao XY, Zhang WG, Zhang LJ, et al. Application of serum SELDI proteomic patterns in diagnosis of lung cancer[J]. BMC Cancer, 2005, 5 (83): 83.
    [24] Wadsworth JT, Somers KD, Stack BC, Jr., Cazares L, et al. Identification of patients with head and neck cancer using serum protein profiles[J]. Arch Otolaryngol Head Neck Surg, 2004, 130 (1): 98-104.
    [25] Freed GL, Cazares LH, Fichandler CE, Fuller TW, et al. Differential capture of serum proteins for expression profiling and biomarker discovery in pre- and posttreatment head and neck cancer samples[J].Laryngoscope, 2008, 118 (1): 61-68.
    [26] Seibert V, Wiesner A, Buschmann T, Meuer J. Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip technology in proteomics research[J]. Pathol Res Pract, 2004, 200 (2): 83-94.
    [27] Popper HH, Kothmaier H. Proteomics--tissue and protein microarrays and antibody array: what information is provided?[J]. Arch Pathol Lab Med, 2008, 132 (10): 1570-1572.
    [28]耿鑫,张维铭.蛋白质组学研究方法及其新进展[J].中国医学文摘·肿瘤学, 2003, 17 (4): 339-341.
    [29] Zhong L, Hidalgo GE, Stromberg AJ, Khattar NH, et al. Using protein microarray as a diagnostic assay for non-small cell lung cancer[J]. Am J Respir Crit Care Med, 2005, 172 (10): 1308-1314.
    [30]潘俊,陈海泉.诊断蛋白质组学及其在肺癌生物标记物中的研究进展[J].实用医学杂志, 2008, 24 (9): 1472-1473.
    [31]王林纤,戴勇,涂植光. iTRAQ标记技术与蛋白质组学的生物标志物研究[J].生命的化学, 2010, 30 (1): 135-140.
    [32] Hergenroeder G, Redell JB, Moore AN, Dubinsky WP, et al. Identification of serum biomarkers in brain-injured adults: potential for predicting elevated intracranial pressure[J]. J Neurotrauma, 2008, 25 (2): 79-93.
    [33] Ogata Y, Charlesworth MC, Higgins L, Keegan BM, et al. Differential protein expression in male and female human lumbar cerebrospinal fluid using iTRAQ reagents after abundant protein depletion[J]. Proteomics, 2007, 7 (20): 3726-3734.
    [34] Gagne JP, Ethier C, Gagne P, Mercier G, et al. Comparative proteome analysis of human epithelial ovarian cancer[J]. Proteome Sci, 2007, 5 (16):16.
    [35] Chio LF, Oon CJ. Changes in serum alpha 1 antitrypsin, alpha1 acid glycoprotein and beta 2 glycoprotein I in patients with malignant hepatocellular carcinoma[J]. Cancer, 1979, 43 (2): 596-604.
    [36] Lee HB, Yoo OJ, Ham JS, Lee MH. Serum alpha 1-antitrypsin in patients with hepatocellular carcinoma[J]. Clin Chim Acta, 1992, 206 (3): 225-230.
    [37]冯钜涛,刘银坤, ALMOFTI MR,等.双向电泳-质谱技术筛选肝癌血清标记物[J].生物化学与生物物理进展, 2005, 32 (7): 673-677.
    [38] Petrache I, Fijalkowska I, Medler TR, Skirball J, et al. alpha-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis[J]. Am J Pathol, 2006, 169 (4): 1155-1166.
    [39] Daemen MA, Heemskerk VH, van't Veer C, Denecker G, et al. Functional protection by acute phase proteins alpha(1)-acid glycoprotein and alpha(1)-antitrypsin against ischemia/reperfusion injury by preventing apoptosis and inflammation[J]. Circulation, 2000, 102 (12): 1420-1426.
    [40] Davidson DJ, Haskell C, Majest S, Kherzai A, et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78[J]. Cancer Res, 2005, 65 (11): 4663-4672.
    [41] Duffy MJ. The urokinase plasminogen activator system: role in malignancy[J]. Curr Pharm Des, 2004, 10 (1): 39-49.
    [42] Rabbani SA, Mazar AP. The role of the plasminogen activation system in angiogenesis and metastasis[J]. Surg Oncol Clin N Am, 2001, 10 (2): 393-415, x.
    [43] Choong PF, Nadesapillai AP. Urokinase plasminogen activator system: amultifunctional role in tumor progression and metastasis[J]. Clin Orthop Relat Res, 2003, 415 (415 Suppl): S46-58.
    [1] Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26 (4): 239-257.
    [2] Searle J, Lawson TA, Abbott PJ, Harmon B, et al. An electron-microscope study of the mode of cell death induced by cancer-chemotherapeutic agents in populations of proliferating normal and neoplastic cells[J]. J Pathol, 1975, 116 (3): 129-138.
    [3]张向阳.细胞凋亡检测方法[J].济宁医学院学报, 2008, 31 (3): 258-260.
    [4] Baxa DM, Luo X, Yoshimura FK. Genistein induces apoptosis in T lymphoma cells via mitochondrial damage[J]. Nutr Cancer, 2005, 51 (1): 93-101.
    [5]彭黎明,王曾礼.细胞凋亡的基础与临床[M].北京:人民卫生出版社; 2000:153-218.
    [6] Wronski R, Golob N, Grygar E, Windisch M. Two-color, fluorescence-based microplate assay for apoptosis detection[J]. Biotechniques, 2002, 32 (3): 666-668.
    [7] Tatton NA, Tezel G, Insolia SA, Nandor SA, et al. In situ detection of apoptosis in normal pressure glaucoma. a preliminary examination[J]. Surv Ophthalmol, 2001, 45 (3): 268-276.
    [8]姜泊,潭晓华,许岸高.细胞凋亡基础与临床[M].北京:人民军医出版社; 1999:9-15.
    [9]王修庚,高洪.细胞凋亡与疾病[J].中国畜牧兽医, 2006, 33 (9): 4-6.
    [10] O'Brien IE, Reutelingsperger CP, Holdaway KM. Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants[J]. Cytometry, 1997, 29 (1): 28-33.
    [11] Heerde WL, Robert-Offerman S, Dumont E, Hofstra L, et al. Markers of apoptosis in cardiovascular tissues: focus on Annexin V[J]. Cardiovasc Res, 2000, 45 (3): 549-559.
    [12]郑骏年.细胞凋亡检测方法研究进展[J].国外医学临床生物化学与检验学分册, 1999, 20 (3): 124-126.
    [13] Ravagnan L, Roumier T, Kroemer G. Mitochondria, the killer organelles and their weapons[J]. J Cell Physiol, 2002, 192 (2): 131-137.
    [14] Tian R, Zhang GY, Yan CH, Dai YR. Involvement of poly(ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells[J]. FEBS Lett, 2000, 474 (1): 11-15.
    [15] Philchenkov AA. Caspases as regulators of apoptosis and other cell functions[J]. Biochemistry (Mosc), 2003, 68 (4): 365-376.
    [16]王书奎,周振英.实用流式细胞术彩色图谱[M].上海:第二军医大学出版社; 2004:4.
    [17]丛玉隆.流式细胞仪及其临床应用[J].医学检验与临床, 2006, 17 (4): 1-2.
    [18] Huigsloot M, Tijdens IB, Mulder GJ, van de Water B. Differential regulation of doxorubicin-induced mitochondrial dysfunction and apoptosis by Bcl-2 in mammary adenocarcinoma (MTLn3) cells[J]. J Biol Chem, 2002, 277 (39): 35869-35879.
    [19] Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserineexpression on early apoptotic cells using fluorescein labelled Annexin V[J]. J Immunol Methods, 1995, 184 (1): 39-51.
    [20]李刚,容敏华,钟艳平,等. EGCG诱导人肝癌SMMC-7721细胞早期凋亡及基因和蛋白谱的变化研究[J].中国药理学通报, 2009, 25 (11): 1482-1486.
    [21] Span LF, Pennings AH, Vierwinden G, Boezeman JB, et al. The dynamic process of apoptosis analyzed by flow cytometry using Annexin-V/propidium iodide and a modified in situ end labeling technique[J]. Cytometry, 2002, 47 (1): 24-31.
    [22] Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis[J]. EMBO Rep, 2006, 7 (9): 880-885.
    [23] Schumm M, Feuchtinger T, Pfeiffer M, Hoelle W, et al. Flow cytometry with anti HLA-antibodies: a simple but highly sensitive method for monitoring chimerism and minimal residual disease after HLA-mismatched stem cell transplantation[J]. Bone Marrow Transplant, 2007, 39 (12): 767-773.
    [24]朱启星,沈彤.细胞凋亡检测的研究进展[J].安徽医科大学学报, 2002, 37 (6): 411-414.
    [25]王建中,王淑娟.当前临床流式细胞仪细胞分析的发展趋势[J].中华检验医学杂志, 2002, 25 (1): 5.
    [26] Elstein KH, Zucker RM. Comparison of cellular and nuclear flow cytometric techniques for discriminating apoptotic subpopulations[J]. Exp Cell Res, 1994, 211 (2): 322-331.
    [27]杨明杰,周建嫦,李志,等. CD71荧光抗体和PI染色的微核流式细胞术检测研究[J].卫生研究, 2005, 34 (1): 25-28.
    [28]曾文军,王柳均,樊翌明,等.细胞凋亡的流式细胞仪检测技术研究进展[J].医学文选, 2005, 24 (3): 425-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700