蜂花粉中有效成分的提取及功能性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花粉是植物的雄性生殖细胞,含有丰富的各种营养成分,在国际上有“天然完全营养素”的美誉。玉米花粉多糖具有抗肿瘤、抗氧化、增强免疫力等功能,但坚硬的花粉壁阻碍了多糖成分的溶出,降低了提取效率。动态超高压微射流技术是一项新兴的高压均质技术,其剧烈的处理条件可导致植物细胞破碎,且对活性成分几乎无破坏。
     本研究侧重于应用动态超高压微射流技术对玉米花粉进行破壁,并与干法粉碎破壁、复合酶酶解破壁比较破壁效果和多糖得率,在此基础上对玉米花粉多糖抗氧化活性功能进行了评价,为今后玉米花粉多糖更深入的研究与开发奠定基础。同时对花粉中有于治疗前列腺疾病的功能因子--环氧肟酸进行了定性和定量分析。本论文的主要研究内容与结论如下:
     1、以葡萄糖为对照,优选蒽酮-硫酸法测定玉米花粉多糖的含量。结果表明:玉米花粉多糖的吸收光谱与葡萄糖基本一致,标准曲线的线性关系良好(R2=0.9996),此法在回收率、精密度、稳定性方面均较好,可作为测定玉米花粉多糖含量较为理想的方法。
     2、采用正交试验优化干法粉碎花粉并提取多糖的条件,结果表明提取溶液pH值对多糖得率有极显著的影响,最佳条件为:取粉碎并过120目筛分的花粉,调节花粉乳液pH值7.0,料液比1:15,提取温度70℃,提取时间3 h,提取两次,此时多糖得率为7.239%。
     3、采用果胶酶和纤维素酶组成的复合酶对玉米花粉进行酶解破壁处理,通过正交试验优化酶解条件。结果表明果胶酶添加量是影响花粉多糖得率的最主要因素。最佳条件为:果胶酶添加量300U/g花粉,纤维素酶添加量150U/g花粉,20%花粉乳浓度,pH4.5,50℃酶解破壁5h,在此条件下多糖得率为7.194%。
     4、采用动态超高压微射流技术对玉米花粉进行湿法破壁处理,Box-Benhnken响应面设计优化条件参数。结果表明均质压力和提取温度对多糖得率的线性效应和曲面效应均显著。最佳提取条件为:微射流均质压力127MPa,均质处理一次,料液比1:20,72.4℃下提取1.7 h,提取2次,此时玉米花粉多糖得率达到理论最大值8.086%,与验证试验结果一致。与干法粉碎和酶解破壁提取结果相比,提取时间缩短了1.3 h,多糖得率提高了0.847%。
     5、红外光谱扫描的结果表明三种破壁方式提取的多糖的红外光谱图基本吻合,主要官能团没有差异,说明使用高压微射流技术不会破坏玉米花粉多糖的结构。高倍扫描电镜观察破壁效果的结果表明:干法粉碎和酶解破壁处理的花粉仍有少量未完全破壁的花粉颗粒,粒径不均匀,可见原材料的粉末特征;而经微射流均质处理的花粉均完全裂解为大量碎片,粒度明显变小,内容物全部溢出。因此,超高压微射流技术处理花粉的破壁效果最好。
     6、初步探讨超高压微射流技术使花粉破壁的机理是:高压均质过程中剧烈的处理条件使花粉细胞的组织结构完全破碎,原来颗粒比较粗大的花粉乳液被加工成颗粒非常细微的乳浊液,使花粉细微颗粒充分与提取溶剂相接触,从而提高提取效率。
     7、通过紫外扫描和HPLC-MS对舍尼通药片提取物进行定性分析,最终确定其为环氧肟酸,纯度约为94%。采用Sephadex G-25和G-10二者联用对玉米花粉DIBOA提取液进行纯化,经HPLC定量分析并计算得到玉米花粉中环氧肟酸的含量约为0.029%(290μg/g)。
     8、玉米花粉粗多糖和精制多糖组分PPMC对DPPH、O2和.OH自由基均有一定的清除作用,并且随着多糖浓度的增大清除作用增强。二者对DPPH的清除作用最大,对·OH和O2·-自由基的清除作用都比较弱。在同一浓度下,精制多糖组分PPMC对这三种自由基的清除率都略高于粗多糖。
Pollen is male reproductive cells of plants. It is rich in various nutrients and hailed as natural complete nutrients internationally. Maize pollen polysaccharides are capable of antitumor, antioxidant, enhancing the immune function. But stiff pollen wall hindered dissolution of polysaccharides and lowered extraction efficiency. Dynamic high pressure micro-fluidization (DHPM) is a rising high pressure homogenization technique. Plant cells could be disrupted by violent treatment conditions, and the active ingredient was little damaged.
     Dynamic high pressure micro-fluidization technology was applied on maize pollen wall-breaking in this study. Maize pollen wall-breaking effect and yield of polysaccharides were compared with dry grinding and enzymatic hydrolysis wall-breaking. Then anti-oxidative function of maize pollen polysaccharides was evaluated in order to prepare for future research and development of maize pollen polysaccharides from now on. At the same time, the pollen function factor cyclic hydroxamic acid which contributed to treatment of prostate diseases was done qualitative and quantitative analysis. The main contents and conclusions were as follows:
     1. The content of maize pollen polysaccharides was determined by selected anthrone-sulfuric acid method with glucose as standard. The results were as follows: The absorption spectrum of maize pollen polysaccharides was consistent with glucose, and the linear relationship of standard curve was good (R2=0.9996). The recovery, precision and stability of this method were good, so anthrone-sulfuric acid method was ideal method which could be used to determine pollen polysaccharides content.
     2. Polysaccharides were extracted from broken maize pollen by dry comminution, and optimum extract conditions were obtained by orthogonal experiment. Results showed that pH value of extract had most significant impact on yield of polysaccharides. The optimum conditions were as follows:pollen by dry comminution and got over 120 mesh, extract of pH 7.0, ratio of solid-liquid 1:15, 70℃of extraction temperature for 3h, and extraction two times. The yield of polysaccharides was 7.239% under these conditions.
     3. Maize pollen wall was broken by enzymolysis with composition of pectinase and cellulase enzyme, and optimum enzymolysis conditions were obtained by orthogonal experiment. Results showed that pectinase addition was principal factor that affected yield of polysaccharides. The optimum conditions were as follows: pectinase addition of 300U/g pollen, cellulase addition of 150U/g pollen,20% of pollen concentration, pH4.5,50℃of enzymolysis temperature for 5h. The yield of polysaccharides was 7.194% under these conditions.
     4. Maize pollen wall was disrupted with wet method using DHPM technology, and the parameters were optimized by Box-Benhnken response surface method. The results showed that the linear effect and surface effect of homogenization pressure and extraction temperature on polysaccharides yield were significant. The optimum conditions were as follows:homogenization pressure 127.35 MPa, homogenizing one time, ratio of solid-liquid 1:20,72.41℃of extraction temperature for 1.74 h and extraction two times. Under these conditions the yield of maize pollen polysaccharides was theoretical maximum of 8.086% which was consistent with validation experiment results. Compared with dry comminution and enzymolysis wall-breaking extraction, extraction time was shortened 1.26 h and the yield of polysaccharides increased 0.847%.
     5. IR spectra scan results showed that infrared spectrum of maize pollen polysaccharides extracted by three wall-breaking methods was basically identical, and major functional groups had no differences. This indicated that the structure of pollen polysaccharides was not destroyed by DHPM. Pollen wall-breaking effect of three wall-breaking methods was observed by SEM. The results showed that:a few of incompletely broken pollen grains were still observed after dry comminution and enzymolysis treatment, and particles size was not uniform, the powder characteristics of raw materials were observed. However, pollen cells had been completely broken into lots of pieces after treatment by DHPM, and particles size was significantly smaller, and all of the contents overflowed. Therefore, wall-breaking effect of DHPM was best.
     6. The mechanism of maize pollen broken after DHPM treatment was preliminarily discussed as follows:in the high pressure homogenization process, the organizational structure of pollen cells was completely broken as a result of violent treatment conditions, and the original coarse grain pollen emulsion was processed into particles fine emulsion. The surface area of pollen particles was increased so that particles could fully contact with extraction solvent, thereby the extraction efficiency was enhanced.
     7. Cernilton extract was done qualitative analysis by UV spectral scan and HPLC-MS, and it was ultimately determined as cyclic hydroxamic acid whose purity was about 94%. Maize pollen DIBOA extract was purified by Sephadex G-25 and G-10 combined column. The content of maize pollen DIBOA was about 0.029% (290μg/g) after HPLC quantitative analysis and calculation.
     8. Antioxidant abilities of crude and refined maize pollen polysaccharides PPMC were measured as DPPH scavenging activity, activity against hydroxyl radical and superoxide anion scavenging activity. The investigation demonstrated that they possessed free radical scavenging activity, and scavenging effect enhanced with increasing of polysaccharides concentration. Scavenging activity of crude and refined polysaccharides on DPPH was better than the scavenging activity of hydroxyl radical and superoxide anion. In the same concentration, scavenging activity of refined polysaccharides PPMC was slightly better than crude polysaccharides.
引文
[1]曾志将.养蜂学[M].北京:中国农业出版社,2003:171-196.
    [2]耿越,王开发.玉米花粉多糖的免疫学作用分析[J].动物学报,2001(47):250-254.
    [3]王开发,邹朝中,陆明.玉米花粉多糖抑制肿瘤的作用效应研究[J].蜜蜂杂志,2001(2):3-4.
    [4]郭芳彬.花粉的营养成分特点浅析[J].蜜蜂杂志,2002,(6):8~10.
    [5]Qian Bo-chu. Immological studies on bee pollen. The book of abstracts of original communications [M].Brighton, UK:ⅧInternational congress of Nutrition,1985:81.
    [6]赵霖,鲍善芬.松花粉破壁前后显微形态和营养成分的研究[J].营养学报,2001,23(2):153-156.
    [7]杨晓萍,余志勤.油菜花粉破壁方法研究[J].华中农业大学学报,2004,23(6):671-672.
    [8]周顺华,陶乐仁,徐斐,等.用液氮淬冷法进行花粉破壁的实验研究[J].上海理工大学学报,2002,24(3):233-237.
    [9]CEAUSESCU S, KEREFT I, JAVORNIC B. Determination of free amino acid in pollen carried by apis melif ica carpatica[J]. An Univ Bucuresti Biol,1981,30:101.
    [10]郑建仙主编.功能性食品(第二卷).北京:中国轻工业出版社.1999
    [11]Stanley. R. G, Linskens. H. F. Pollen biology, biochemistry, management.[M] Springer-Verlag, Berlin Hedelberg,1974.
    [12]李福高,章振东,倪贇荣.花粉活性成分的提取与分离现状及展望[J].蜜蜂杂志,2007,(6):7-10
    [13]Kroh M, Knuiman B. Ultrastructure of cell wall and Plugs of tobacco pollen tubes after chemical extraction of polysaccharides. Planta,1982,154:241-250
    [14]Heslop-Harrison J. Pollen germination and pollen-tube growth. Int Rev Cytol,1987, 107:1-78
    [15]王俊丽.花粉学研究.河北:河北大学出版社,1997,2-3
    [16]宋心方,邵有全编著.蜜蜂产品的应用与检测加工技术.中国农业出版社,2000
    [17]王开发.花粉的功能与应用[M].北京:化学工业出版社,2004
    [18]胡筱波,徐明刚,吴谋成等.温差破壁法对油菜蜂花粉中主要营养素含量的影响[J],食品科学,2005,26(10):120~124
    [19]唐维,张星海.花粉破壁方法的研究进展[J].食品与发酵工业,2003,29(12):86-91
    [20]曹龙奎,黄威,王景会等.玉米花粉超微粉碎破壁技术的试验研究[J].农业工程学报,2003,11(6):209-211
    [21]苗前,杜红霞,王文正.玉米花粉几种机械破壁方法的研究.食品科学,1997,18(11):43-45
    [22]李道平,梁昭燕.超声波在花粉破壁技术中的应用.陕西师大学报,1992,20(1):87-87
    [23]张智维,杨辉等.超声波时油菜花粉破壁作用的研究[J].食品工业科技,2005,26(3):65~ 66
    [24]王娟,余少文.花粉的营养成分、结构及破壁方法[J].食品研究与开发,2007,28(8):150-153.
    [25]章定生.花粉SR萃取脱壁法的机理及其应用前景的探讨.蜜蜂杂志,1998,12:3-4
    [26]杨晓宇,杨少玲,杨华.花粉资源利用研究进展[J].特产研究,2003(4):52-56.
    [27]卢挺.青藏高原油菜蜂花粉酶解破壁研究.食品科学,2002,8(23):126-127
    [28]杨晓萍,余志勤.油菜花粉破壁方法研究.华中农业大学学报,2004a,23(6):671-672
    [29]李道荣,李魁,段雪梅.蒲黄花粉多糖提取工艺研究[J].郑州工程学院学报,2002,23(4):55~58
    [30]李柏勋,潘薛波,胡舜跃.油菜花粉发酵破壁最佳条件的确定.饮料工业,2003,6(1):23-29
    [31]吴懿平,陈力.花粉的振动粉碎破壁技术研究[J].食品工业科技,2003,24(6):29-31
    [32]Iesel Van der Plancken, Ann Van Loey. Foaming properties of egg white protein affected by heat or high pressure treatment [J]. Journal of Food Engineering,2007,78:1410-1426.
    [33]TU Zong-cai, WANG Hui, et al. Dynamic High Pressure Micro-fluidization Effects on Structure and Physico-chemical Properties of Egg White Protein. Chem. Res. Chinese Universities.2009,25(3):302-305.
    [34]Jana Gecioval, Dean Bury, Paul Jelen. Methods for disruption of microbial cells for potential use in the dairy industry. International Dairy Journal 2002 (12):541-553.
    [35]刘成梅,刘伟,涂宗财等.微射流均质机流体动力学行为分析[J].食品科学,2004(4):58~62
    [36]代元忠,赵永强,马国涛,郭华.超高压对撞技术装备在食品和生物工程中的应用[J].包装与食品机械,2004,22(3):30-33
    [37]王习魁.高压微射流超细粉碎关键技术研究[D].江南大学,2005
    [38]张志森,唐书泽,汪勇.微射流高压均质过程动量及流场结构分析[J].包装与食品机械,2005,23(1):5-7.
    [39]Michael H. Tunick, Diane L.Van Hekken, Peter H. Cooke. Effect of high pressure microfluidization on microstructure of mozzarella cheese[J].Lebensm-Wiss.u-Technol,2000(33), 538-544.
    [40]N. Lagoueyte, P. Paquin. Effects of microfluidization on the functional properties of xanthan gum[J], Food Hydroeolloids,1998(12):365-371.
    [41]Paul Paquin. Technological properties of high pressure homogenizers:the effect of fat globules, milk proteins, and polysaccharides [J]. International Dairy Journal,1999(9):329-335.
    [42]M.Iordache, P.Jelen. High pressure microfluidization treatment of heat denatured whey proteins for improved, functionality [J].Innovative Food Science and Emerging Technologies, 2003(4):367-376.
    [43]Wei Liu, Jianhua Liu, et al. Activation and conformational changes of mushroom polyphenoloxidase by high pressure micro-fluidization treatment. Innovative Food Science and Emerging Technologies,2009 (10):142-147.
    [44]Liu C M, Liu W, Xiong H W, et al. Effect of instantaneous high pressure(IHP) treatment on solubility and rheologic properties of soybean dietary fiber. In 232nd ACS national meeting, San Francisco, America.2006.33.
    [45]Tu Zongcai, Wang Jingqin, Roger Ruan, Effect of high-pressure micro-fluidization on the functional properties of soy protein isolate. American Chemical Soeiety 234th National Meeting& Exposition August19-23,2007 Boston, MA USA 1080377.
    [46]涂宗财,汪菁琴,阮榕生等.动态超高压微射流均质对大豆分离蛋白起泡性、凝胶性的影响[J].食品科学,2006,27(10):101-103
    [47]张宏康,李里特.高压对食品组分的影响.第二届中日食品新技术研讨会论文集,北京:中国轻工业出版社2000.30235.
    [48]钟汉左.高压均质技术提取山楂叶总黄酮的工艺及机理研究[D].华南师范大学,2007
    [49]王利文,潘家祯.超高压超临界微射流技术在牛蒡菊糖提取中的应用[J].食品与生物技术学报,2008,27(6):61-64
    [50]胡江涌.天然产物中有效成分的高压均质提取和高速逆流色谱分离技术研究[D].华南师范大学,2007
    [51]欧阳琴,陈兴才,黄亚治,雨生红球藻提取虾青素不同机械破壁方法的研究.福州大学学报(自然科学版),2005,33(1):111-115.
    [52]H. Z. Kuyumcu, L. Rolf. Application of high-pressure water jets for comminution [J].Int. J. Miner. Process,2004,74:191-198.
    [53]徐翠莲,黄晓书等.玉米花粉的采集、干燥和贮藏的初步研究.河南农业科学.1996,(2):8-10
    [54]何余堂,孟良玉,赵大军.玉米花粉活性多糖的分离提取研究[J].食品科学,2005,26(11):112-114.
    [55]杨晓萍,罗祖友,吴谋成.油菜花粉多糖提取工艺条件研究[J].食品科学,2004,25(9):128-131
    [56]耿越,王开发,张玉兰.玉米花粉多糖PMAI的结构解析[J].天然产物研究与开发,2006,18(2):263~265.
    [57]耿越,王暖波等.花粉多糖组分的高效毛细管电泳分析[J].山东科学,2001,14(4):10~13.
    [58]许家喜,缪平等.几种花粉多肽和多糖的研究[J].北京大学学报,1999,35(2):178~182.
    [59]王开发,邹朝中等.玉米花粉多糖抑制肿瘤的作用效应研究[J].蜜蜂杂志.2001,(2):3-4.
    [60]陆明,王开发.花粉、花粉多糖、灵芝孢子抑制肿瘤作用的对比研究[J].蜜蜂杂志,2002,(11):6~7.
    [61]Yang Xiaoping, Guo Dayong, Wu Moucheng. Reparation and anti-tumor activity of pollen polysaccharide [J]. International Immunopharmacology.2006,Vol.15(5):330-338.
    [62]耿越,王开发,张玉兰等.玉米花粉多糖的免疫学作用分析[J].动物学报.2001,(47):250-254.
    [63]耿越,王开发.玉米蜂花粉多糖对小白鼠免疫功能影响[J].山东师大学报,1999,14(20):184-186
    [64]吕建新,金丽琴等.玉米花粉多糖对大鼠肺泡巨噬细胞的激活作用[J].中国病理生理杂 志,1999,15(6):509~511
    [65]金丽琴,吕建新等.玉米花粉多糖对人胸腔巨噬细胞的激活作用[J].中国病理生理杂志.2000,16(8):726-729.
    [66]屈洪岩等,花粉多糖对新城疫弱毒苗免疫效果影响—玉米、油菜、养麦3种花粉多糖作用的比较[J].中国兽医杂志.1998,24(9):3-5.
    [67]陆芹章,温纳相等.玉米花粉多糖对猪瘟免疫效果的研究[J].广西农业生物科学,2001,20(1):21~26
    [68]亢泽坤,张鸿飞.治疗良性前列腺增生的药物新进展[J].河北中西医结合杂志,1999,8(3):345-346.
    [69]谢海宝,林兵,施政等.前列康片治疗前列腺增生症100例.新药与临床,1988,7:15.
    [70]郭芳彬.蜂花粉与前列腺增生[J].蜜蜂杂志,2000,(10):27-28.
    [71]Buck AC, Cox R, Rees RW, et al. Treatment of outflow tract obstruction due to BPH with the pollen extract cernilton—a double-blind, placebe-controlled study [J]. Br J Urol,1990, 66(4):398-404.
    [72]Yasumoto R, Kawahishi H, Tsujino T, et al. Clinical evaluation of long time treatment using cernitin pollen extract in patients with benign prostatic hypertrophy [J].ClinicalTherapeutics,1995,37:82-86.
    [73]李磊,徐昌玉,沈华才等.舍尼通治疗前列腺增生的临床疗效(附136例报告)[J].临床泌尿外科杂志,2000,15(10):480-481.
    [74]刘雪莉,朱丽秋,袁玉英等.蜂花粉治疗老龄犬前列腺增生的形态学观察[J].中草药,1990,(21):164.
    [75]TALPUR N,ECHARD B,BAGCHI D, et al. Comparison of Saw Palmetto (extract and whole berry) and Cernitin on prostate growth in rats [J]. Molecular and Cellular Biochemistry. 2003,25(1-2):21-26.
    [76]Loschen G, Ebeling L. Inhibition of the arachidonate metabolism by an extract from rye pollen [J].Drug Res,1991,41:162-167.
    [77]Kimura M, Kimura I, Nakase K, et al. Micturition activity of pollen extract:contractile effects on bladder and inhibitory effects on urethral smooth muscle of mouse and pig [J]. Planta Medica,1986,2:148-151.
    [78]钱芸,钱伯初.蜂花粉醇提物改善排尿功能的实验研究.中华泌尿外科杂志,1990,11:90.
    [79]Habib FK, Ross M, Buck AC, et al. In vitro evaluation of the pollen extract, cernitin T-60, in the regulation of prostate cell growth. Br J Urol,1990,66: 393.
    [80]王志平,陈一戎,刘国栋.花粉提取物对前列腺增生细胞作用的研究[J].中华泌尿外科杂志,1995,16(12):732-733.
    [81]CHEN Hong-jie, WANG Zhi-ping, CHEN Yi-rong, et al. Effects of Pollen extract EA-10, P5 on chronic Prostatitis or infertility with chronic Prostatitis [J].Acta. Pharmacol Sin.2002, 23(11):1035-1039.
    [82]Zhang X, Habib F K, Ross M. Isolation and characterization of a cyclic hydroxamic acid from a pollen extract, which inhibits cancerous cell growth in vitro. Journal Medicinal Chemistry,1995,38,735-737.
    [83]周键.蜂花粉中功能因子的提取、纯化及应用研究[D].杭州:浙江工业大学,2004
    [84]宋心仿,邵有全.蜜蜂产品的应用与检测加工技术.中国农业出版社,2000,39
    [85]Galston AW, Sawhney RK,1990. Polyamine in plant physiology [J].Plant Physiol,94(1): 406-410.
    [86]Rastogi R, sawhney VK,1990. Polyamines and flower development in the male sterile stamenless-2 mutant of tomatoLycopersilav esalentum Mill.Ⅱ Effects of polyamines and their biosynthetic inhibitors on the development of normal and mutant floral buds culturedin vitro [J]. Plant Physiol,93(1-2):446-452
    [87]Walden R, CordeiroA, TiburciosAF,1997. Polyamines small molecules triggering pathways in plant growth and development [J].Plant Physiol,116:617-625.
    [88]Tabor C W, et al. Polyamines. Ann Rev Biochem,1984,53:749.
    [89]Grillo M A. Metabolism and function of poly-amines. Int J Biochem,1986,17(9):943
    [90]Kiyokazu Nakase, Ikuko Kimura, Masayasu Kimura. Effects of pollen-extract components, diamines and derivatives of feruloylputrescine on isolated bladder and urethral smooth muscles of mice. Japan J Pharmacol,1990,53(2):157-64
    [91]刘贤锡,赵春华,林毓琴等.良性增生前列腺组织中鸟氨酸脱羧酶活性及多胺含量的变化.中国病理生理杂志,1996,12(2):138-141
    [92]钱伯初,刘雪莉等.花粉醇的抗前列腺增生作用.中华泌尿外科杂志,1992,13:365
    [93]韩慧英.前列康及其原料油菜花粉(Brassica napus L.pollen)活性成分的研究[D].沈阳药科大学,2004
    [94]徐小军,李燕,余志红等.良性前列腺增生的药物治疗临床评价.中国医院用药评价与分析,20033(4):210-212
    [95]王开发,支崇远,王隆华.我国花粉多糖测定及其意义[J].养蜂科技,2004,(3):2-3
    [96]冯婷,何聪芬,赵华等.植物多糖研究概况[J].北京工商大学学报,2004,22(5):1-4
    [97]李云捷.玉米花粉多糖的分离_纯化_结构鉴定及抗氧化活性的研究[D].华中农业大学,2005.
    [98]Elif Turabi, Gulum Sumnu, Serpil Sahin. Optimization of Baking of Rice Cakes in Infrared-Microwave Combination Oven by Response Surface Methodology [J]. Food Bioprocesing Technolagy.2007,03:13-23.
    [99]Gao-Qiang Liu, Xiao-Ling Wang. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazer [J]. Application Microbiolgy Biotechnology.2007,74:78.
    [100]Lee W C, Yusof S, Hamid N S A, et al. Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM) [J]. J Food Eng,2006,75:473~479
    [101]黄一帆,马玉芳,李富文等.超微粉碎对黄连解毒散中栀子苷和小檗碱溶出的影响[J].福建农林大学学报:自然科学版,2006,35(4):394-397.
    [102]Juliane Floury U, Anne Desrumaux, Jeremie Lardieres. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions[J].Innovative Food Science and Emerging Technology,2000,1:127-134
    [103]范本隽,张志森.高压均质机超细粉碎机理探讨[J].华东理工大学学报,2004,30(1):96-98
    [104]Habib F K, Ross M, Lewenstein A, Zhang X, Jaton JC. Identification of a prostate inhibitory substance in a pollen extract. The Prostate,1995,26(3):33-39.
    [105]Eri Nakagawa, Takashi Amano, Nobuhiro Hirai and Hajime Iwamura. Non-induced cyclic Hydroxamic acids in wheat during juvenile stage of growth. Phytochemistry,1995,38(6): 1349-1354.
    [106]Eri Nakagawa, Takashi Amano, Nobuhiro Hirai and Hajjme Iwamura. Non-induced cyclic hydroxamic acids in wheat during juvenile stage of growth. Phytochemistry,1995, 38(6):1349-1354.
    [107]MICHAEL D. WOODWARD, Luis J. CORCUERA, JOHN P. HELGESON, ARTHUR KELMAN. Quantitation of 1,4-Benzoxazin-3-ones in Maize by Gas-Liquid Chromatography. Plant Physiol,1979,63,14-19.
    [108]MICHAEL D. WOODWARD, Luis J. CORCUERA, HEINRICH K. SCHNOES, JOHN P. HELGESON, AND CHRISTEN D. UPPER. Identification of 1,4-Benzoxazin-3-ones in Maize Extracts by Gas-Liquid Chromatography and Mass Spectrometry. Plant Physiol,1979,63,9-13.
    [109]ANNETTE FRIEBE, MARGOT SCHULZ, PETER KOCK and HEIDE SCHNABL. Phytotoxins from shoot extracts and root exudates of agropyron repens seedlings. Phytochemistry,1995,38(5):1157-1159.
    [110]杨玲,汪河滨,罗锋.甘草多糖清除自由基活性的研究[J].塔里木大学学报,2007,19(1):1~3
    [111]Aruoma O I.Nutrition and health aspects of free radicals and antioxidants[J]. Food Chemical Toxicology,1994,Vol.32(7):671~683
    [112]Benzie I F.Evolution of antioxidant defence mechanisms[J].European Journal of Nutrition, 2000,Vol.39:53~61
    [113]弓晓峰,谢明勇,陈奕.黑灵芝与赤灵芝提取物的抗氧化作用比较[J].食品科学,2006,27(4):44~47
    [114]Pyo Y H,Lee T C,Logendra L,et al. Antioxidant activity and phenolic compounds of swiss chard (Beta vulgaris subspecies cycla) extracts[J].Food Chemistry,2004,85,19~26
    [115]Xiaolan Li,Aiguo Zhou,Yong Han.Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro[J].Carbohydrate Polymers,2006, Vol.66(1):34~42.
    [116]Yuhua Jiang, Xiaolu Jiang.The antitumor and antioxidative activities of polysaccharides isolated from Isaria farinosa B05[J].Microbiological research,2006,Vol.(3):112~119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700