平菇遗传转化体系和转漆酶工程菌株的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国每年仅农业生产中形成的农作物残渣(麦秸、玉米秸秆)等就约6亿t,其富含木质纤维素。应用食用菌转化秸秆、变废为宝是一条成功的途径。为提高食用菌利用木质纤维素的能力,提高食用菌对秸秆的生物学效率,本文以平菇天达300为材料,构建了高效遗传表达体系,并进行了漆酶基因转化。研究结果如下:
     (1)平菇sdi启动子的克隆及表达载体25号的构建和转化
     克隆了平菇天达300的同源启动子-1.3kb的sdi启动子,利用重叠PCR将sdi启动子片段和潮霉素抗性基因hph融合,构建了以pMD19-T载体为骨架,含有sdi启动子和hph以及CaMV终止子的表达载体25号。
     以液体培养的平菇菌丝为实验材料,0.6mol/L甘露醇作渗透压稳定剂,浓度为1.6%的溶壁酶溶液,30℃酶解3h,获得具有再生活力的原生质体。平菇天达300原生质体的得率约为5.7×10~6个/mL,在RCM再生平板上的再生率为0.46%。
     通过平菇的潮霉素抗性试验,确定了其菌丝和原生质体的潮霉素致死浓度。据此将转化的初筛浓度定为80μg/mL,复筛浓度定为100μg/mL。采用PEG-CaCl_2介导原生质体转化的方法,将表达载体25号转化入平菇,在含80μg/mL潮霉素RCM平板上,获得一系列转化子。这些转化子经过复筛和PCR鉴定后得到潮霉素抗性基因hph整合入宿主基因组的阳性转化子。将阳性转化子菌株进行表型和RNA转录水平验证,表明hph基因整合入平菇的基因组,其抗性可以稳定的遗传和表达,从而建立了平菇的遗传转化体系。
     (2)食用菌不同转化体系转化效率的比较
     将两个含有潮霉素抗性基因但启动子不同的真菌表达质粒pAN7-1和PBHt1,导入平菇中与25号做比较表明,不同的启动子得到的抗性转化子生长速率、转化率、RNA水平上的转录都不同。pAN7-1抗性转化子转化率最高,0.4个转化子/μg质粒DNA,其hph目的基因的表达量最大;其次是25号抗性质粒,0.2个转化子/μg质粒DNA;PBHt1的表达量较少。
     (3)平菇漆酶基因poxc的克隆和同源表达
     利用RT-PCR和LA PCR步行等技术从平菇天达300中获得编码漆酶基因poxc的gDNA和cDNA。gDNA全长为3818bp,包含19个内含子和20个外显子。cDNA序列全长为1607bp,编码533个氨基酸的蛋白,与其它真菌漆酶蛋白序列有较高的同源性,并且含有3个真菌类Cu-oxidase的高度保守结构域。
     构建了含有sdi启动子和poxc基因的同源表达载体PIPOXC和PI2POXC,和25号抗性表达载体共转化平菇的原生质体,获得了具有潮霉素抗性的假定转化子21个,但是经PCR检测后发现poxc基因未完全整合入平菇基因组,漆酶酶活提高不明显,没有筛选到预期的漆酶活性较高的转化子。
There were about 600 million tons crop residues produced per year in China. They were rich in lignocelluloses. It was a successful approach to turn crop residues into wealth food using edible fungi. In present study, we constructed an effective genetic transformation system for transformation laccase gene into Pleurotus ostreatus Tianda 300 to enhance its capacity of decomposing the lignocelluloses from crop residues and the biological efficiency. The results were as follows:
     (1) Cloning of sdi promoter of Pleurotus ostreatus and construction of expression Vector 25
     Homologous sdi promoters with 1.3 kb of Pleurotus ostreatus tianda 300 was cloned and fused with gene hph by overlapping PCR. The hygromycin resistance expression vector 25 was constructed, which was constituted of sdi promoter, hph gene and CaMV termination in skeleton of pMD19 - T carrie.
     Protoplasts with regeneration ability of Pleurotus ostreatus tianda 300 were obtained by hydrolysis mycelium using 1.6% lyticase enzyme in 30℃for 3h, and 0.6 mol/L mannitol as osmotic pressure stabilizer. The protoplast yield was about 5.7 X 106/ mL, and regeneration rate on RCM plate was 0.46%.
     The hygromycin resistance concentration of mycelium and protoplast of Pleurotus ostreatus tianda 300 was determined, and base on it hygromycin concentration of preliminary and counter screening for transformation was set up as 80μg/mL and 100μg/mL, respectively. The expression vector 25 was transformed into mushroom by PEG-CaCl_2 mediated protoplast method, and some transformants grew on RCM plate with 80μg/mL hygromycin. These transformants were all identified as positive ones through the screening test, gene DNA PCR, and mRNA RT-PCR. It was proved that the hph gene integrated into the genome and expressed stability. Thereby, we established a genetic transformation system of Pleurotus ostreatus.
     (2) Compare between different transformation systems of Pleurotus ostreatus
     The transformations frequency of three expression vectors 25 and pAN7-1 into Pleurotus ostreatus tianda 300 were 0.2 transformants/μg plasmid DNA, 0.4 transformants/μg plasmid DNA, respectively, and the lowest of PBHt1. The RNA transcription levels of hph gene of these three expression vectors were similar with their transformations frequency.
     (3) Cloning and homologous expression of laccase poxc gene of Pleurotus ostreatus
     The gDNA and cDNA of laccase poxc gene of Pleurotus ostreatus tianda 300 were cloned. The gDNA length was 3818bp, including 19 introns and 20 exons. The cDNA length was 1607bp, encoding 533 amino acid protein, containing three highly conserved Cu-oxidase domains homologized higher with other fungal laccase protein.
     Laccase poxc homologous expression vector PIPOXC and PI2POXC of Pleurotus ostreatus were constructed by using gDNA and cDNA of Pleurotus ostreatus tianda 300 replace hph gene of expression vectors 25, and co-transformation with expression vectors 25 into Pleurotus ostreatus protoplast by PEG-CaCl_2 mediated, respectively. 21 hygromycin transformants were obtained. But we found poxc did not fully integrate into the genome by PCR detection, laccase activities did not differ from start strain. There were not any positive transformants obtained.
引文
[1]李想,赵立欣,韩捷.农业废弃物资源化利用新方向——沼气干发酵技术[J].中国沼气,2006,24(004):23-27.
    [2]王激清,张宝英,刘社平.我国作物秸秆综合利用现状及问题分析[J].江西农业学报, 2008,20(8):126-128.
    [3]杨雪薇.白腐真菌形态发育与木质纤维素降解的关系及作用机制的研究[D].华中科技大学硕士论文,2008.
    [4] Tien M, Kirk T K. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase[J]. Proceedings of the National Academy of Sciences. 1984, 81(8): 2280-2284.
    [5]刘本洪.降解作物秸秆的大球盖菇菌株选育及应用[D].四川大学硕士论文,2004.
    [6]雷廷武.作物秸秆综合利用的创新技术[J].农业工程学报, 2000,16(1):14-17.
    [7]臧金灿,樊国燕.作物秸秆物理、化学和生物处理方法研究进展[J].郑州牧业工程高等专科学校学报,2003,23(2):11-14.
    [8]李金民,柴民杰,李磊.我国秸秆的利用现状及发展趋势分析[J].应用科学,2009(19): 158.
    [9]吕作舟.食用菌栽培学[Z].北京:高等教育出版社,2006.
    [10]贺新生,候大斌.世界栽培蕈菌的种类和分类系统[J].食用菌学报,1997,4(002): 54-64.
    [11]肖艳.我国食用菌产业发展趋势[J].西北园艺(蔬菜),2006(002):49-50.
    [12]史青山,杨国俊,诸化斌.发展食用菌产业推动秸秆循环利用[J].上海农业科技,2004 (005):17-18.
    [13] T K, Kirk T K. Enzymatic combusition:the microbial degradation of lignin departmen of biotechnology [Z]. AnnRey Microbiol, 1987,41: 465-505.
    [14]王永军,田秀娥,李浩波.菌糠的营养价值与开发利用[J].中国饲料,2001,1(12): 30-31.
    [15]毛恒西,郭永涛,刘亚锋.对河南省食用菌产业的思考[J].食用菌,2008(005):2-3.
    [16]王传福,李洪昭,苏大军.河南省食用菌产业发展现状及发展对策浅议[J].中国食用菌,2008,27(006):57-59.
    [17]张树庭,Miles,杨国良.食用蕈菌及其栽培[M].河北大学出版社,1992.
    [18]王泽生.国内外食用菌产业现状与发展趋势[J].中国菌物产业与科技研讨会暨展览会论文集,2005.
    [19]张金霞,黄晨阳,郑素月.平菇新品种——秀珍菇的特征特性[J].中国食用菌,2005,24(004):26.
    [20]王贺祥.食用菌学[Z].北京:中国农业大学出版社,2004.
    [21]杨新美.中国食用菌栽培学[M].农业出版社, 1988.
    [22]陈杰,庞江琳,李尚德.平菇微量元素含量的分析[J].广东微量元素科学, 2003, 10(011):59-60.
    [23]薛辉,张坤贞.平菇的营养价值及食用方法[J].农业知识(瓜果菜),2004,14(5): 32-35.
    [24]程超.平菇水溶性多糖提取工艺优化[J].食品科技,2004(011):37-39.
    [25]暴增海,李月梅,柳焕章.食用菌栽培原理与技术[M].中国标准出版社,2000.
    [26] Kerem Z, Friesem D, Hadar Y. Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium[J]. Applied and environmental microbiology,1992, 58(4): 1121-1127.
    [27]刘尚旭,董佳里.糙皮侧耳菌木质素降解酶的比较研究[J].四川大学学报(自然科学版),2000,37(004):594-598.
    [28] Zadra Il F. Conversion of different plant waste into feed by basidiomycetes[J]. Applied Microbiology and Biotechnology,1980, 9(3): 243-248.
    [29]杭怡琼,薛惠琴,陈谊.利用白腐真菌对稻草秸秆的降解研究[J].上海交通大学学报(农业科学版),2002(001):11-14.
    [30]谢君,黄乾明,冯蕾.白腐菌液体和固体培养产生木质纤维素降解酶的比较研究[J].菌物学报,2007,26(002):266-272.
    [31]谢君,任路.侧耳菌产生木质纤维素酶及其降解植物生物质的研究[J].兰州大学学报(自然科学版),2002,38(002):121-126.
    [32] Hadar Y, Kerem Z, Gorodecki B, et al. Utilization of lignocellulosic waste by the edible mushroom, Pleurotus[J]. Biodegradation,1992, 3(2): 189-205.
    [33]宋瑞清,邓勋. 13种食用菌对稻草生物降解能力的研究[J].林业研究(英文版), 2004,15(3).
    [34] Pozdnyakova N N, Rodakiewicz-Nowak J, Turkovskaya O V,et al. Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators[J]. Enzyme and Microbial Technology,2006, 39(6): 1242-1249.
    [35]董佳里,黄维藻,张义正.木质素降解真菌粗毛栓菌(Trametes gallica)蓝色漆酶的分离纯化及性质研究[J].四川大学学报(自然科学版),2004,41(002):431-435.
    [36] Palmieri G, Giardina P, Bianco C, et al. A novel white laccase from Pleurotus ostreatus[J]. Journal of Biological Chemistry,1997, 272(50): 31301.
    [37]江蕾,张朝晖,段文凯.平菇及其在木质素降解中的应用研究[J].饲料工业,2006,27(024):62-64.
    [38] Baldrian P, Gabriel J. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium[J]. FEMS Microbiology letters,2003, 220(2): 235-240.
    [39] Baldrian P, ValáskováV, MerhautováV, et al. Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc[J]. Research in microbiology,2005, 156(5-6): 670-676.
    [40] Baldrian P, Gabriel J. Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium[J]. FEMS Microbiology letters,2003, 220(2): 235-240.
    [41]郭丽琼,陈守才.食用菌遗传转化研究进展[J].食用菌学报,2001,8(004):47-53.
    [42]胡乐琴,潘迎捷.食用菌分子转化研究状况[J].中国食用菌,2006,25(004):7-10.
    [43]黄小丹,柳建良.食用菌分子生物学研究进展[J].仲恺农业工程学院学报,2009, 22(003):53-58.
    [44] Challen M P, Rao B G, Elliott T J. Transformation strategies for Agaricus[J]. 1991.
    [45] Royer J C, Horgen P A. Towards a transformation of the edible basidiomycete Agrocybe aegerita with the URA1 gene±characterization of integrative events and of rearranged free plasmids in transformants[J]. Current Genetics, 1991, 22(1): 53-59.
    [46] Binninger D M, Chevanton L, Skrzynia C, et al. Targeted transformation in Coprinus cinereus[J]. Molecular and General Genetics MGG,1991, 227(2): 245-251.
    [47] Irie T, Honda Y, Hirano T, et al. Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals[J]. Applied microbiology and biotechnology, 2001, 56(5): 707-709.
    [48] Chen X, Stone M, Schlagnhaufer C, et al. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus[J]. Applied and environmental microbiology, 2000, 66(10): 4510.
    [49] Jia J, Buswell J A, Peberdy J F. Transformation of the edible fungi, Pleurotus ostreatus and Volvariella volvacea[J]. Mycological Research,1998, 102(07): 876-880.
    [50] Hirano T, Sato T, Yaegashi K, et al. Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance[J]. Molecular and General Genetics MGG,2000, 263(6): 1047-1052.
    [51] Kim S, Song J, Choi H T. Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme-mediated integration[J]. FEMS microbiology letters,2006, 233(2): 201-204.
    [52]郭丽琼,柳永,赵姝娴.银耳芽孢完整细胞高效转化体系的建立[J].中国科学(C辑), 2008,38(010):974-981.
    [53] Schiestl R H, Petes T D. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences,1991, 88(17): 7585-7589.
    [54] Hirano T, Sato T, Yaegashi K, et al. Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance[J]. Molecular and General Genetics MGG,2000, 263(6): 1047-1052.
    [55]方卫国,张永军.根癌农杆菌介导真菌遗传转化的研究进展[J].中国生物工程杂志, 2002,22(005):40-44.
    [56] Stark M, Milner J S. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3[J]. Yeast,2004, 5(1): 35-50.
    [57] Raguz S, Yaguea E, Wood D A, et al. Isolation and characterization of a cellulose-growth-specific gene from Agaricus bisporus[J]. Gene,1992, 119(2): 183-190.
    [58] Kajiwara S, Yamaoka K, Hori K, et al. Isolation and sequence of a developmentally regulated putative novel gene, priA, from the basidiomycete Lentinus edodes[J]. Gene,1992, 114(2): 173-178.
    [59] Gomi K, Kitamoto K, Kumagai C. Transformation of the industrial strain of Aspergillus oryzae with the homologous amdS gene as a dominant selectable marker[J]. Journal of Fermentation and Bioengineering,1992, 74(6): 389-391.
    [60] Yague E, Mehak-Zunic M, Morgan L, et al. Expression of CEL2 and CEL4, Two Proteins from Agaricus Bisporus with Similarity to Fungal Cellobiohydrolase I and {beta}-mannanase, Respectively, is Regulated by the Carbon Source[J]. Microbiology,1997, 143(1): 239-244.
    [61] Hirano T, Sato T, Okawa K, et al. Isolation and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Lentinus edodes[J]. Bioscience, biotechnology, and biochemistry,1999, 63(7): 1223-1227.
    [62] Zhao J, Chen Y H, Kwan H S. Molecular cloning, characterization, and differential expression of a glucoamylase gene from the basidiomycetous fungus Lentinula edodes[J]. Applied and environmental microbiology,2000, 66(6): 2531-2535.
    [63] Schuren F, Wessels J. Highly-efficient transformation of the homobasidiomycete Schizophyllum commune to phleomycin resistance[J]. Current genetics,1994, 26(2): 179-183.
    [64] van de Rhee M D, Mendes O, Werten M, et al. Highly efficient homologous integration via tandem exo-β-1, 3-glucanase genes in the common mushroom, Agaricus bisporus[J]. Current genetics,1996, 30(2): 166-173.
    [65]刘洪博,王宇光,李兵.平菇遗传转化的研究进展[J].安徽农业科学,2008,36(008):3152-3154.
    [66] Li G, Li R, Liu Q, et al. A highly efficient polyethylene glycol-mediated transformation method for mushrooms[J]. FEMS microbiology letters,2006, 256(2): 203-208.
    [67] Peng M, Lemke P A, Shaw J J. Improved conditions for protoplast formation and transformation of Pleurotus ostreatus[J]. Applied Microbiology and Biotechnology,1993, 40(1): 101-106.
    [68] Sunagawa M, Magae Y. Transformation of the edible mushroom Pleurotus ostreatus by particle bombardment[J]. FEMS microbiology letters,2002, 211(2): 143-146.
    [69] Irie T, Honda Y, Matsuyama T, et al. Isolation and sequence analysis of the promoter and an allelic sequence of the iron-sulfur protein subunit gene from the white-rot fungus Pleurotus ostreatus[J]. Journal of Wood Science,1998, 44(6): 491-494.
    [70] Koji Y, Kumiko Y, Hideki U, et al. The integrative transformation of Pleurotus ostreatus using bialaphos resistance as a dominant selectable marker[J]. Biosci Biotech Biochem,1996, 60: 472-475.
    [71] Honda Y, Matsuyama T, Irie T, et al. Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus[J]. Current Genetics,2000, 37(3): 209-212.
    [72] Irie T, Honda Y, Watanabe T, et al. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus[J]. Applied microbiology and biotechnology,2001, 55(5): 566-570.
    [73] Tsukihara T, Honda Y, Sakai R, et al. Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus[J]. Journal of biotechnology,2006, 126(4): 431-439.
    [74]范雷法,潘慧娟.食用菌属间原生质体融合研究初报[J].中国食用菌, 2005,24(005): 21-22.
    [75]刘朝贵,高金权,李成琼.糙皮侧耳(Pleurotus ostreatus)降解转化稻草秸秆研究[J].西南农业大学学报,2006,28(002):258-263.
    [76]王谦,巩竞,杨栋慧.原生质体诱变技术选育糙皮侧耳秸秆分解菌株[J].食用菌,2009, 31(001):12-14.
    [77] Palmieri G, Giardina P, Bianco C, et al. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus[J]. Applied and environmental microbiology,2000, 66(3): 920-924.
    [78] Velazquez-Cedeno M, Farnet A M, Billette C, et al. Interspecific interactions with Trichoderma longibrachiatum induce Pleurotus ostreatus defence reactions based on the production of laccase isozymes[J]. Biotechnology letters,2007, 29(10): 1583-1590.
    [79] Rho H S, Kang S, Lee Y H. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea[J]. Molecules and cells,2002, 12(3): 407-411.
    [80]陈振明,郭泽建.以潮霉素抗性为选择标记的毛壳霉原生质体转化[J].浙江大学学报(农业与生命科学版),2001,27(001):19-22.
    [81] Kuo C Y, Chou S Y, Huang C T. Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes[J]. Applied microbiology and biotechnology, 2004, 65(5): 593-599.
    [82] Woods J P, Heinecke E L, Goldman W E. Electrotransformation and expression of bacterial genes encoding hygromycin phosphotransferase and beta-galactosidase in the pathogenic fungus Histoplasma capsulatum[J]. Infection and immunity, 1998, 66(4): 1697-1707.
    [83]陈建民,姚泉洪,熊爱生.植物转基因整合座位的结构[J].遗传,2007,29(002): 157-162.
    [84]王关林,方宏筠.植物基因工程[J].北京:科学出版社,2002,742-749.
    [85]曾凡锁,詹亚光.转基因植物中外源基因的整合特性及其研究策略[J].植物学通报, 2004,21(005):565-577.
    [86]夏兰芹,王远.外源基因在转基因植物中的表达与稳定性[J].生物技术通报, 2000(003):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700