聚氨酯/白炭黑有机—无机杂化材料及其对橡胶的互穿网络改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机杂化材料是一种在纳米水平均匀分散的多相材料,兼备有机聚合物和无机材料的性能优势。它们可以是无机改性有机聚合物,也可以是有机改性无机材料。通过调节有机相与无机相的组成、比例及结构形态,可实现对其性能或功能的“剪裁”和“组装”。
     本论文通过机械混炼原位反应法制备了新型聚氨酯/白炭黑(PU/silica)有机-无机杂化材料。这种新型PU/silica杂化材料在无扩链剂和交联剂情况下,直接通过PU预聚体链端的-NCO与白炭黑表面的-OH发生化学键合反应,形成有机/无机杂化网络,其中白炭黑充当了PU交联剂和扩链剂的作用。该方法不仅在理论上创新性显著,而且具有工艺简单、成本低廉、环境污染小、能显著提升材料的综合性能等优点。由于PU预聚体和白炭黑的混合物粘度大,易与橡胶均匀混合并同步交联,本论文通过机械共混法,采用PU/silica杂化材料对极性的丁腈橡胶(NBR)、非极性的丁苯橡胶(SBR)分别进行互穿网络改性,制备了相容性好、综合性能优异的NBR/(PU-silica)和SBR/(PU-silica)两种互穿网络聚合物(IPN),深入研究和探讨了PU/silica对橡胶的改性机理以及IPN的结构与性能之间的关系。
     通过机械混炼原位反应法制备了PU/silica有机-无机杂化材料。红外光谱(FTIR)、X射线光电子能谱(XPS)、固体核磁共振(29Si-HMR)和差示扫描量热法(DSC)分析结果表明,在一定温度和压力下,PU预聚体链端的-NCO与白炭黑表面的-OH发生化学键合反应,形成有机/无机杂化网络。固化动力学研究表明PU/silica体系最佳固化温度为120℃,其固化反应遵循一级反应动力学规律,表观反应活化能为76.16kJ/mol。由n(NCO):n(OH)等于2.3:1制备的NCO封端PU预聚体中,当白炭黑表面的羟基与PU预聚体中NCO当量比为1.06:1.00时,得到的杂化材料的交联网络最完善,综合性能最好。与异佛尔酮二异氰酸酯(IPDI)相比,由2,4-甲苯二异氰酸酯(TDI)制备的杂化材料结晶性能更强,微相分离程度更大,其综合力学性能更优。由聚己二酸乙二醇酯二醇(PEA1000)制备的PU/silica杂化材料的综合性能优于聚四氢呋喃二醇(PTMG1000)、聚氧化丙烯二醇(PPG1000)和聚己内酯二醇(PCL1000)的,其拉伸强度和撕裂强度高达48.3MPa和128.0kN/m,并且同时保持高达557%的扯断伸长率。
     通过机械共混法用PU/silica杂化材料对NBR、SBR进行互穿网络改性,制备了NBR/(PU-silica)和SBR/(PU-silica)两种IPN材料。固化动力学研究表明,IPN材料中橡胶体系(NBR或SBR)和PU/silica体系各自分别按照自由基聚合和加成反应机理进行交联,二者交联速率匹配,形成同步互穿聚合物网络,且橡胶与PU/silica两个体系相互之间有促进交联作用。PU/silica的加入降低了IPN材料的硫化活化能。透射电镜(TEM)、NBR橡胶与PU/silica相界面能谱扫描结果表明橡胶与PU/silica两相间发生了网络互穿缠结。NBR橡胶与PU/silica两组分的180°T剥离实验结果是橡胶基体发生断裂,表明两相界面结合性好。动态力学性能测试(DMA)结果显示IPN材料中橡胶体系的Tg向PU/silica体系的Tg方向靠拢,进一步表明两组分相容性得到改善。橡胶与PU/silica两相界面网络互穿缠结是IPN材料两组分间相容性提高和综合性能优异的主要原因。
     随着PU/silica用量的增加,IPN的综合力学性能提高,IPN中PU/silica相畴的连续性增加。当PU/silica用量为50wt%左右时,NBR与PU/silica形成明显的双相连续结构;而SBR与PU/silica的双相连续性稍差。PU/silica对NBR和SBR的耐屈挠龟裂性能和耐磨性能均有显著的改善作用。添加50wt%PU/silica杂化材料时,NBR/(PU-silica)-IPN和SBR/(PU-silica)-IPN的一级屈挠龟裂寿命分别达到62万次和56万次;其阿克隆磨耗体积分别0.71cm3/1.61km和0.94cm3/1.61km,相对于纯NBR和SBR分别下降73.8%和79.0%。IPN材料抗屈挠龟裂性能的显著提高主要是由于相互贯穿的柔性橡胶网络和刚性PU/silica网络两者之间的相互协调作用,以及IPN材料中PU/silica相硬段微区的氢键松弛应力阻止裂纹扩展。不同种类二元醇制备的IPN材料中,由PEA1000制备的NBR/(PU-silica)-IPN和SBR/(PU-silica) IPN材料的综合力学性能最好,其拉伸强度、扯断伸长率和撕裂强度分别达到34.3MPa、620%、59.0kN/m和27.2MPa、595%、50.4kN/m。
Organic/inorganic hybrid materials are multiphase materials evenly dispersed at thenanometer level. It possesses the advantage of both organic polymer and inorganic materials.It can be organic polymers modified by inorganic materials, or inorganic materials modifiedby organic polymers. The function of the materials can be tailored and assembled throughadjusting the compositions and proportions of the organic and inorganic phases.
     Novel polyurethane (PU)/silica organic/inorganic hybrid materials were prepared bymechanical blending in situ reactive method. The PU/silica hybrid materials were formed bythe reaction of NCO groups in the PU prepolymer and OH groups of silica in the case of nochain extenders and crosslinking agents. Silica acted as the crosslinking agent and chainextender of the PU. The method is significantly innovative in theory, and has the advantagesof simple technology, low cost, little environment pollution and significantly improving thecomprehensive performance of the materials.The mixture of PU prepolymer and silica ishigh-viscosity, which can be easily evenly mixed with rubber and synchronized crosslinked.As a result, the PU/silica hybrid materials were used to modify polar nitrile rubber (NBR) andnonpolar styrene-butadiene rubber (SBR) through interpenetrating network (IPN) technology.NBR/(PU-silica)-IPN and SBR/(PU-silica)-IPN with good compatibility and excellentcomprehensive performance were prepared by mechanical blending method. A further andcomprehensive discussion is also made on the modification mechanism of PU/silica on rubberand the relationship between structure and performance of IPN.
     The PU/silica organic-inorganic hybrid materials were prepared by mechanical blendingin situ reactive method. Under certain temperature and pressure, the organic-inorganic hybridmaterials were formed through the reaction of NCO groups of PU prepolymer and OH groupsof silica, which was characterized by Fourier-transform infrared (FTIR) spectroscopy, X-rayphotoelectron spectroscopy (XPS), solid-state NMR (29Si-HMR) and differential scanningcalorimetry (DSC). Curing kinetics analysis results show that the best curing temperature is120oC, the curing reaction follows first order kinetics, and the apparent activation energy is76.16kJ/mol. The PU prepolymer prepared with the molar ratio of NCO and OH of2.3:1, arecrosslinked by silica according to the equivalent ratio of OH in silica and NCO in PUprepolymer of1.06:1.00, and the resulting hybrid materials possess the most perfectcrosslinked network and have the best comprehensive performance. Compared withisophorone diisocyanate (IPDI), the appearance of soft segment crystalline melting peak andincreased hard segment crystalline melting enthalpy of PU/silica hybrid materials prepared from toluene diisocyanate (TDI) indicating the good crystalline properties and greatermicro-phase separation. They have increased curing rate and better comprehensivemechanical properties as well. Compared with polytetrahydrofuran glycol (PTMG1000),polyoxypropylene glycol (PPG1000) and polycaprolactone glycol (PCL1000), thecomprehensive mechanical properties of PU/silica hybrid materials prepared frompoly(diethylene glycol adipate)(PEA1000) are the best, the tensile strength, tear strength andelongation at break of which are48.31MPa,128kN/m and557%respectively.
     NBR and SBR were modified by PU/silica hybrid materials through interpenetratingnetwork (IPN) technology by mechanical blending method, and the resultingNBR/(PU-silica)-IPN and SBR/(PU-silica)-IPN were prepared. The curing kinetics studiesshow that the rubber system (NBR or SBR) and PU/silica system in the IPN crosslinkedrespectively in accordance with the radical polymerization and addition reaction. Thecrosslinking rates of the two systems matched; as a result, simultaneous interpenetratingpolymer networks were formed. NBR system and PU/silica system have an accelerating effecton the cure. The activation energy of the IPN was decreased by the addition of PU/silica. Thenetworks interpenetrate in the interface of NBR and PU/silica, which is characterized bytransmission electronic microscopy (TEM) and energy spectrum scan. The NBR matrixfracture from180oT-peel experiments of NBR and PU/silica indicated good interfacecombination. Dynamic Mechanical Analysis (DMA) results show that the Tg of NBR systemin IPN moved closer to the direction of the Tg of PU/silica system, which further evidence theimproved compatibility. The increased compatibility between the two components of the IPNis mostly due to the interpenetrating polymer networks structures in the interface of rubberand PU/silica.
     With increasing PU/silica content, the mechanical properties of IPN improved, and thecontinuity of the PU/silica domains in the IPN increased. When the PU/silica content is about50wt%, the NBR and PU show co-continuous morphology, however the two-phase continuityof SBR and PU/silica is a little poor. The abrasion resistance and anti-flex cracking propertiesof rubber (NBR and SBR) are significantly improved by the incorporation of PU/silica. Whenthe PU/silica content is50wt%, the flex-fatigue life of NBR/(PU-silica)-IPN andSBR/(PU-silica)-IPN are620and560thousand cycles; and the Akron abrasion loss are0.71and0.94cm3/1.61km, which are73.8%and79.0%decreases compared with neat NBR andSBR respectively. The significantly improvement of anti-flex cracking properties is mostlydue to the coordinating role of the flexible rubber networks and the rigid PU/silica networksand the hydrogen bond in the hard segment which can relax stress to prevent crack propagation. Among the IPNs prepared by the different types of diols, theNBR/(PU-silica)-IPN and SBR/(PU-silica)-IPN prepared by PEA1000have the bestmechanical properties, the tensile strength, elongation at break and tear strength of them are34.3MPa,620%,59kN/m and27.2MPa,595%,50.4kN/m respectively.
引文
[1]张贻瑞,王建.基础材料与新材料[M].天津:天津大学出版社,1994,
    [2] Fan Q.Y., Zhan H.B. Organic-Inorganic Hybrid Materials for Bone Repair[J]. Progress inChemistry,2012,24(1):54-60
    [3] Misra R.D., Jia Z.Y., Huang H.Z., et al. Tunable Nanometer-Scale Architecture ofOrganic-Inorganic Hybrid Nanostructured Materials for Structural and FunctionalApplications[J]. Macromolecular Chemistry and Physics,2012,213(3):315-323
    [4] Sun Y., Liu W.Q. Preparation and properties of an organic-inorganic hybrid materialsbased on fluorinated block copolymer[J]. Journal of Materials Science,2012,47(4):1803-1810
    [5] Sanchez C., Soler-Illia G.J., Ribot F., et al. Designed hybrid organic-inorganicnanocomposites from functional nanobuilding blocks[J]. Chemistry of Materials,2001,13(10):3061-3083
    [6] Choi J.W., Tamaki R., Kim S.G., et al. Organic/inorganic imide nanocomposites fromaminophenylsilsesquioxanes[J]. Chemistry of Materials,2003,15(17):3365-3375
    [7] Yang P., Wang G.Q., Xia X., et al. Preparation and thermo-mechanical properties ofheat-resistant epoxy/silica hybrid materials[J]. Polymer Engineering and Science,2008,48(6):1214-1221
    [8] Johnsen B.B., Kinloch A.J., Mohammed R.D., et al. Toughening mechanisms ofnanoparticle-modified epoxy polymers[J]. Polymer,2007,48(2):530-541
    [9]王华林,史铁钧,李学良,等. PDMS/SiO2杂化材料研究进展[J].高分子材料科学与工程,2002,16(5):5-8
    [10]王华林,余锡宾,王长友,等. PMTES/SiO2有机/无机杂化材料的研究[J].高分子材料科学与工程,1999,15(6):92-94
    [11] Nazir T., Afzal A., Siddiqi H.M., et al. The influence of temperature and interfacestrength on the microstructure and performance of sol-gel silica-epoxynanocomposites[J]. Polymer Bulletin,2011,67(8):1539-1551
    [12] Wen X.F., Wang K., Pi P.H., et al. Organic-inorganic hybrid superhydrophobic surfacesusing methyltriethoxysilane and tetraethoxysilane sol-gel derived materials inemulsion[J]. Applied Surface Science,2011,258(3):991-998
    [13] Geiser V., Leterrier Y., Manson J.A.E. Low-stress hyperbranched polymer/silicananostructures produced by UV curing, sol/gel processing and nanoimprintlithography[J]. Macromolecular Materials and Engineering,2012,297(2):155-166
    [14] Haldorai Y., Zong T., Shim J.J. Core-Shell ZrO2/PMMA composites via dispersionpolymerization in supercritical fluid: synthesis, characterization and mechanism[J].Journal of Applied Polymer Science,2012,123(2):1176-1183
    [15]鲁德平,熊传溪.以超微细Al2O3作种子乙酸乙烯酯的乳液聚合的研究[J].高分子材料科学与工程,1995,11(6):49-52
    [16]李莹,于建,郭朝霞.原位聚合制备尼龙6/纳米SiO2复合材料研究[J].工程塑料应用,2002,30(9):7
    [17] Tae-Sik J., Eun-Jung L., Ji-Hoon J., et al. Fibrous membrane of nano-hybridpoly-L-lactic acid/silica xerogel for guided bone regeneration[J]. Journal of BiomedicalMaterials Research B: Applied Biomaterials,2012,100B(2):321-330
    [18] Al-Sagheer F.A., Ahmad Z. PVC-silica hybrids: effect of sol-gel conditions on themorphology of silica particles and thermal mechanical properties of the hybrids[J].Journal of Sol-Gel Science and Technology,2012,61(1):229-235
    [19] Ruiz-Hitzky E. Conducting polymers intercalated in layered solids[J]. AdvancedMaterials,1993,5(5):334-340
    [20] Solomon D.H., Loft B.C. Polyether-segmented nylon hemodialysis membraneⅤ:Evaluation of blood compatibility of polyether-seg-mented nylons[J]. Journal ofApplied Polymer Science,1998,67:1253-1257
    [21]付丽华,贾德民,刘卅.聚氨酯/聚甲基丙烯酸甲酯/有机蒙脱土纳米复合材料的结构、形态与力学性能[J].华南理工大学学报(自然科学版),2005,33(11):15-21
    [22] Giannelis E.P. Polymer layered silicate nanocomposites[J]. Advanced Materials,1996,8:29
    [23] Vaia R.A., Vasudevan S., Krawiec W., et al. New polymer electroIyte nanocomposites:melt intercalation of poly (ethylene oxide) in mica-type silicates[J]. Advanced Materials,1995,7:154
    [24] Bichler S., Feldbacher S., Woods R., et al. Functional flexible organic-inorganic hybridpolymer for two photon patterning of optical waveguides[J]. Optical Materials,2012,34(5):772-780
    [25] Chakrabarty T., Singh A.K., Shahi V.K. Zwitterionic silica copolymer based crosslinkedorganic-inorganic hybrid polymer electrolyte membranes for fuel cell applications[J].Rsc Advances,2012,2(5):1949-1961
    [26] Chen C.M., Sun X.Q., Wang F., et al. Electro-Optic Modulator Based on NovelOrganic-Inorganic Hybrid Nonlinear Optical Materials[J]. Ieee Journal of QuantumElectronics,2012,48(1):61-66
    [27] Geng L., He Y., Liu D., et al. New organic-inorganic hybrid membranes based onsulfonated polyimide/aminopropyltriethoxysilane doping with sulfonated mesoporoussilica for direct methanol fuel cells[J]. Journal of Applied Polymer Science,2012,123(5):3164-3172
    [28]陈意,范浩军,袁继新,等.合成革用聚氨酯-纳米SiO2原位杂化涂层的制备及其透气、透湿性能研究[J].皮革科学与工程,2009,5:23-32
    [29] Yu Y.Y., Chen C.Y., Chen W.C. Synthesis and characterization of organic-inorganichybrid thin films from poly(acrylic) and monodispersed colloidal silica[J]. Polymer,2003,44(3):593-601
    [30] Sun Y.Y., Zhang Z.Q., Wong C.P. Study on mono-dispersed nano-size silica by surfacemodification for underfill applications[J]. Journal of Colloid and Interface Science,2005,292(2):436-444
    [31]李侃社,蔡会武,樊晓萍,等.聚合物层状无机物纳米复合材料研究进展[J].西安科技学院学报,2001,21(2):140-145
    [32] Kerr T.A., Wu H. Concurrent polymerization and insertion of aniline in molybdenumtrioxide: formation and properties of a [Poly(aniline)]0.24MoO3nanocomposite[J].Chemistry of Materials,1996,8:2005
    [33] Zhang Y.H., Yu L., Su Q.S., et al. Fluorinated polyimide-silica films with lowpermittivity and low dielectric loss[J]. Journal of Materials Science,2012,47(4):1958-1963
    [34] Wang Y., Herron N. Photoconductivity of CdS nanocluster-doped polymers[J]. ChemicalPhysica Letters,1992,200:71
    [35]李英勇,陈海群,杨绪杰,等.聚苯乙烯/蒙脱土纳米复合材料的制备与表征[J].塑料工业,2003,31(10):37-39
    [36] Devaraju S., Vengatesan M.R., Kumar A.A., et al. Polybenzoxazine-silica (PBZ-SiO2)hybrid nanocomposites through in situ sol-gel method[J]. Journal of Sol-Gel Science andTechnology,2011,60(1):33-40
    [37] Zhu A.P., Cai A.Y., Zhang J., et al. PMMA-grafted-silica/PVC nanocomposites:mechanical performance and barrier properties[J]. Journal of Applied Polymer Science,2008,108(4):2189-2196
    [38]曹丹,吴林波,李伯耿,等.聚乳酸纳米复合材料的研究进展[J].高分子通报,2007,10:15-19
    [39] Jin J., Lee J.J., Bae B.S., et al. Silica nanoparticle-embedded sol-gel organic/inorganichybrid nanocomposite for transparent OLED encapsulation[J]. Organic Electronics,2012,13(1):53-57
    [40] Wirpsza Z. Polyurethanes: chemistry, technology and applications[M]. In: Kemp TJ,editor. Chichester: Ellis Horwood Limited,,1993:83-93
    [41]付明源,孙酣经.聚氨酯弹性体及其应用[J].北京:化学工业出版社,1999:6-18
    [42] Garrett J.T., Lin J.S., Runt J. Microphase separation of segmanted poly(urethane-urea)block copolymers[J]. Macromolecules,2000,33(17):6353-6359
    [43] Srichatrapimuk V.W., Cooper S.L. Infrared thermal analysis of polyurethane blockpolymers[J]. Journal of Macromolecular Science, Part B: Physics,1978,15(2):267-311
    [44] Park Sung C.S., Schneider N.S. Temperature dependence of hydrogen bonding in toluenediisocyanate based polyurethanes[J]. Macromolecules,1977,10:452
    [45]刘益军.聚氨酯原料及助剂手册[J].北京:化学工业出版社,2005:75-82
    [46] Bakare I.O., Pavithran C., Okieimen F.E., et al. Synthesis and characterization ofrubber-seed-oil-based polyurethanes[J]. Journal of Applied Polymer Science,2008,109(5):3292-3301
    [47] Deng J.N., Cao J., Li J.H., et al. Mechanical and surface properties ofpolyurethane/fluorinated multi-walled carbon nanotubes composites[J]. Journal ofApplied Polymer Science,2008,108(3):2023-2028
    [48] Son J.S., Lee S.H., Lee B., et al. Polyurethanes for biomedical application[J]. TissueEngineering and Regenerative Medicine,2009,6(4-11):427-431
    [49] Behl M., Razzaq M.Y., Lendlein A. Multifunctional Shape-Memory Polymers[J].Advanced Materials,2010,22(31):3388-3410
    [50] Chattopadhyay D.K., Raju K.V. Structural engineering of polyurethane coatings for highperformance applications[J]. Progress in Polymer Science,2007,32(3):352-418
    [51]郑丽华,刘钦甫,程宏飞.白炭黑表面改性研究现状[J].中国非金属矿工业导刊,2008,1:12-15
    [52]杨海堃.超微细气相法白炭黑的表面改性[J].化工新型材料,2006,27(10):8-12
    [53] Pfister D.P., Xia Y., Larock R.C. Recent Advances in vegetable oil-basedpolyurethanes[J]. Chemsuschem,2011,4(6):703-717
    [54] Zhang Y.C., Zhao Y.H., Kang M.Q., et al. Review of polyurethane/layered silicatenanocomposites[J]. Progress in Chemistry,2006,18(1):59-65
    [55] Salahuddin N., Abo-El-Enein S.A., Selim A., et al. Synthesis and characterization ofpolyurethane-urea clay nanocomposites using montmorillonite modified byoxyethylene-oxypropylene copolymer[J]. Polymers for Advanced Technologies,2010,21(8):533-542
    [56] Dolatzadeh F., Moradian S., Jalili M.M. Influence of various surface treated silicananoparticles on the electrochemical properties of SiO2/polyurethane nanocoatings[J].Corrosion Science,2011,53(12):4248-4257
    [57] Alvarado-Tenorio B., Romo-Uribe A., Mather P.T. Microstructure and Phase Behavior ofPOSS/PCL Shape Memory Nanocomposites[J]. Macromolecules,2011,44(14):5682-5692
    [58] Akram D., Ahmad S., Sharmin E., et al. Silica Reinforced organic-inorganic hybridpolyurethane nanocomposites from sustainable resource[J]. Macromolecular Chemistryand Physics,2010,211(4):412-419
    [59] Kuriyagawa M., Kawamura T., Hayashi S., et al. Reinforcement of polyurethane-basedshape memory polymer by hindered phenol compounds and silica particles[J]. Journal ofApplied Polymer Science,2010,117(3):1695-1702
    [60] Petrovic Z.S., Javni I., Waddon A., et al. Structure and properties of polyurethane-silicananocomposites[J]. Journal of Applied Polymer Science,2000,76(2):133-151
    [61] Jeon H.T., Jang M.K., Kim B.K., et al. Synthesis and characterizations of waterbornepolyurethane-silica hybrids using sol-gel process[J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects,2007,302(1-3):559-567
    [62] Zhang L., Zeng Z.H., Yang J.W., et al. Characterization and properties of UV-curablepolyurethane-acrylate/silica hybrid materials prepared by the sol-gel process[J]. PolymerInternational,2004,53(10):1431-1435
    [63] Chen Y.C., Zhou S.X., Yang H.H., et al. Structure and mechanical properties ofpolyurethane/silica hybrid coatings[J]. Macromolecular Materials and Engineering,2005,290(10):1001-1008
    [64] Tan H.L., Yang D.Z., Xiao M., et al. Preparation of silica/polyurethane nanocompositesby UV-induced polymerization from surfaces of silica[J]. Journal of Applied PolymerScience,2009,111(4):1936-1941
    [65]赖小娟,沈一丁,王磊.有机硅烷偶联剂对水性聚氨酯材料性能的影响[J].功能材料,2011,3(42):490-493
    [66] Zhou S.X., Wu L.M., Sun J., et al. The change of the properties of acrylic-basedpolyurethane via addition of nano-silica[J]. Progress in Organic Coatings,2002,45(1):33-42
    [67] Wu D.M., Qiu F.X., Xu H.P., et al. Preparation, characterization, and properties ofenvironmentally friendly waterborne poly(urethane acrylate)/silica hybrids[J]. Journal ofApplied Polymer Science,2011,119(3):1683-1695
    [68]朱岩,陈丽,甘万强.核磁共振法研究核壳型二氧化硅/PU纳米复合材料中核与壳的键合方式[J].高分子材料科学与工程,2009,25(1):107-110
    [69] Chen G.D., Zhou S.X., Gu G.X., et al. Effects of surface properties of colloidal silicaparticles on redispersibility and properties of acrylic-based polyurethane/silicacomposites[J]. Journal of Colloid and Interface Science,2005,281(2):339-350
    [70]石智强,李赛,刘孝波.溶胶-凝胶法制备聚氨酯/二氧化硅杂化材料[J].四川大学学报(工程科学版),2004,36(3):60
    [71] Goda H., Frank C.W. Fluorescence studies of the hybrid composite ofsegmented-polyurethane and silica[J]. Chemistry of Materials,2001,13(9):2783-2787
    [72] Chen S., Sui J.J., Chen L. Positional assembly of hybrid polyurethane nanocompositesvia incorporation of inorganic building blocks into organic polymer[J]. Colloid andPolymer Science,2004,283(1):66-73
    [73] Ronald H.B., Maki I., Akihito S., et al. Silsesquioxanes[J]. Chemical Reviews,1995,95(5):1409-1430
    [74] Madbouly S.A., Otaigbe J.U. Recent advances in synthesis, characterization andrheological properties of polyurethanes and POSS/polyurethane nanocompositesdispersions and films[J]. Progress in Polymer Science,2009,34(12):1283-1332
    [75] Baown A.S. Engineering notebook[M]. Aerospace America,1999,37:28-30
    [76] Schwab J.J., Reinerth W.A., Lichtenhan J.D., et al. POSS (TM) Nanostructured (TM)chemicals: True multifunctional polymer additives.[J]. Abstracts of Papers of theAmerican Chemical Society,2001,222:U285-U285
    [77] Fu B.X., Hsiao B.S., Pagola S., et al. Structural development during deformation ofpolyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules[J].Polymer,2001,42(2):599-611
    [78] Fu B.X., Hait S., Schwab J., et al. High temperature epoxies enhanced by polyhedraloligomeric silsesquioxane (POSS) molecules[J]. Abstracts of Papers of the AmericanChemical Society,2011,242
    [79] Fu B.X., Zhang W.H., Hsiao B.S., et al. Synthesis and characterization of segmentedpolyurethanes containing polyhedral oligomeric silsesquioxanes nanostructuredmolecules[J]. High Performance Polymers,2000,12(4):565-571
    [80] Neumann D., Fisher M., Tran L., et al. Synthesis and characterization of an isocyanatefunctionalized polyhedral oligosilsesquioxane and the subsequent formation of anorganic-inorganic hybrid polyurethane[J]. Journal of the American Chemical Society,2002,124(47):13998-13999
    [81] Liu H.Z., Zheng S.X. Polyurethane networks nanoreinforced by polyhedral oligornericsilsesquioxane[J]. Macromolecular Rapid Communications,2005,26(3):196-200
    [82] Antony P., De S.K., Van Duin M. Self-crosslinking rubber/rubber andrubber/thermoplastic blends: A review[J]. Rubber Chemistry and Technology,2001,74(3):376-408
    [83]沈家瑞,贾德民.聚合物共混物与合金[J].广州:华南理工大学出版社,1999,193-225
    [84] Dai R.J., Gao G., Zhang H.X. Different deformation mechanisms of twomodified-polystyrene bimodal systems[J]. Polymer International,2010,59(6):738-742
    [85] De Leon R.D., Morales G., Acuna P., et al. Phenomenon of phase inversion in highimpact polystyrene: physico-chemical, rheological and morphological study in thepresence of chain transfer agent and using different tapered block copolymers as theprecursor rubber[J]. Polymer Engineering and Science,2010,50(2):373-383
    [86] Kim K.J. Bifunctional silane (TESPD) effects on improved mechanical properties ofsilica containing nitrile-butadiene rubber/poly(vinyl chloride) compound[J]. Journal ofApplied Polymer Science,2012,124(4):2937-2944
    [87] Chen M., Zhou C., Liu Z.G., et al. Core-shell particles designed for tougheningpoly(vinyl chloride)[J]. Polymer International,2010,59(7):980-985
    [88] Li H.H., Wang L., Song G.J., et al. Study of NBR/PVC/OMMT NanocompositesPrepared by Mechanical Blending[J]. Iranian Polymer Journal,2010,19(1):39-46
    [89] de Abajo J., de la Campa J.G. Processable aromatic polyimides[J]. Progress in PolyimideChemistry I,1999,140:23-59
    [90]何曼君,陈维孝,董西侠.高分子物理[J].上海:复旦大学出版社,2001:107-108
    [91]张留成,刘玉龙.互穿网络聚合物[J].北京:加工出版社,1990:1-7
    [92] Lipatov Y.S. Polymer blends and interpenetrating polymer networks at the interface withsolids[J]. Progress in Polymer Science,2002,27(9):1721-1801
    [93] Chakrabarti R., Chakraborty D. Studies on engineering properties of PVC-PMMAsemi-interpenetrating polymer networks[J]. Journal of Applied Polymer Science,2005,97(4):1725-1735
    [94] Patri M., Reddy C.V., Narasimhan C., et al. Sequential interpenetrating polymer networkbased on styrene butadiene rubber and polyalkyl methacrylates[J]. Journal of AppliedPolymer Science,2007,103(2):1120-1126
    [95] Mathew A.P., Packirisamy S., Radusch H.J., et al. Effect of initiating system, blend ratioand crosslink density on the mechanical properties and failure topography ofnano-structured full-interpenetrating polymer networks from natural rubber andpolystyrene[J]. European Polymer Journal,2001,37(9):1921-1934
    [96] Riyajan S.A., Chaiphonban S. Swelling and physical properties of semi-interpenetratingNR/PVA networks[J]. KGk-Kautschuk Gummi Kunststoffe,2010,63(3):70-73
    [97] Jia D.M., You C.J., Wu B, et al. Simultaneous interpenetrating networks ofpolybutadiene-based polyurethane/poly(methyl methacrylate-co-glycoldimethacrylate)[J]. International polymer processing,1998(3):205
    [98]王小萍,朱立新,贾德民.聚氨酯/聚(甲基丙烯酸甲酯-苯乙烯)半互穿网络形成的研究[J].绝缘材料,2004,2:28-30
    [99]贾德民,王小萍,罗远芳,等.用FT-IR研究同步互穿网络形成反应动力学[J].华南理工大学(自然科学版),1994,6:1-6
    [100] Tang E.J., Zhao Y.Li G.T. Fabrication and apparent kinetic study of poly(methylmethacrylate)/poly(octyl acrylate) and poly(octyl acrylate)/poly(methyl methacrylate)latex interpenetrating polymer networks[J]. Journal of Applied Polymer Science,2010,116(4):2126-2132
    [101] Athawale V.D., Kulkarni M.A. Core-shell and interpenetrating-network PU/AC hybrids:synthesis and comparison waterborne-polyurethane/polyacrylate hybrid dispersions[J].Pigment&Resin Technology,2010,39(3):141-148
    [102] Jia D.M., Wang X.P., Pang Y X. Studies on a new thermoplastic elastomers prepared bySIN technique[J].5th International Rubber Conferenc,1995, Kobe, Japan,
    [103]王小萍,朱立新,贾德民.聚氨酯/聚(甲基丙烯酸甲酯-苯乙烯)-半互穿网络热塑性弹性体的结构与性能研究[J].绝缘材料,2004,4:23-25
    [104] Papke N., Karger-Kocsis J. Thermoplastic elastomers based on compatibilizedpoly(ethylene terephthalate) blends: effect of rubber type and dynamic curing[J].Polymer,2001,42(3):1109-1120
    [105] Deng Q., Hahn J.R., Stasser J., et al. Reinforcement of silicone elastomers with treatedsilica xerogels: silica-silicone IPNs[J]. Rubber Chemistry and Technology,2000,73(4):647-665
    [106]陈春明.氟橡胶的改性及其纳米尺度互穿网络形态研究[D].武汉理工大学,2006
    [107] Choi Y.J., Kang M.S., Moon S.H. A new preparation method for cation-exchangemembrane using monomer sorption into reinforcing materials[J]. Desalination,2002,146(1-3):287-291
    [108] Chen S.B., Wang Q.H., Wang T.M. Damping, thermal, and mechanical properties ofmontmorillonite modified castor oil-based polyurethane/epoxy graft IPN composites[J].Materials Chemistry and Physics,2011,130(1-2):680-684
    [109]钟发春.聚氨酯/聚硅氧烷IPN阻尼弹性体研究[D].中国工程物理研究院,2001
    [110]范浩军,石碧.,安州,等.聚氨酯-丙烯酸树脂互穿网络皮革涂饰剂研究[J].中国皮革,1997,26(7):10-13
    [111] Jia D.M., Pang Y.X., Liang X. Mechanical od adhesion of polyurethane/poly(methylmethacrylate) IPN adhesive to polymer substractes[J]. Journal of Polymer Science,1994,32(8):817
    [112]罗远芳,贾德民.互穿聚合物网络建筑防水材料的热老化寿命[J].华南理工大学学报,1993,21(4):95
    [113]贾德民,戴志晟.共轭三组分互穿网络在胶黏剂改性中的应用[J].橡胶工业,1990,37(9):516
    [114] Yilgor I., Yilgor E. Structure-morphology-property behavior of segmented thermoplasticpolyurethanes and polyureas prepared without chain extenders[J]. Polymer Reviews,2007,47(4):487-510
    [115] Athawale W.D., Kolekar S.L., Raut S.S. Recent developments in polyurethanes andpoly(acrylates) interpenetrating polymer networks[J]. Journal of MacromolecularScience-Polymer Reviews,2003, C43(1):1-26
    [116] Tan J., Ding Y.M., He X.T., et al. Abrasion resistance of thermoplastic polyurethanematerials blended with ethylene-propylene-diene monomer rubber[J]. Journal ofApplied Polymer Science,2008,110(3):1851-1857
    [117]苏玉峰.热塑性聚氨酯与三元乙丙橡胶双连续相共混体系的结构与性能的研究[D].北京化工大学,2003
    [118] Wang X.D., Luo X. A polymer network based on thermoplastic polyurethane andethylene-propylene-diene elastomer via melt blending: morphology, mechanicalproperties, and rheology[J]. European Polymer Journal,2004,40(10):2391-2399
    [119] Wu L., Luo X., Wang X.D. Influence of processing conditions on dual-phase continuousblend system of thermoplastic polyurethane with ethylene-propylene-diene monomerelastomer[J]. Journal of Applied Polymer Science,2006,102(6):5472-5482
    [120] Dhamodharan R., Maiti P., Radhakrishnan G. Study on blends of ethylene propylenediene rubber and thermoplastic polyurethanes[J]. Polymer-Plastics Technology andEngineering,2007,46(2):163-168
    [121]梁佚聪.乙烯-醋酸乙烯酯橡胶与热塑性聚氨酯弹性体的相容性研究[D].青岛科技大学,2007
    [122] Shi X.Y., Zhang P., Liang Y.C., et al. Preparation and compatibility of EVM/TPUblend[J]. Journal of Macromolecular Science Part B-Physics,2007,46(4):807-824
    [123]李善良.聚氨酯/硅橡胶动态硫化热塑性弹性体的制备及性能研究[D].广东工业大学,2011
    [124] Im H.G., Ka K.R., Kim C.K. Characteristics of polyurethane elastomer blends withpoly(acrylonitrile-co-butadiene) rubber as an encapsulant for underwater sonardevices[J]. Industrial&Engineering Chemistry Research,2010,49(16):7336-7342
    [125] Kotal M., Srivastava S.K., Bhowmick A.K. Thermoplastic polyurethane and nitrilebutadiene rubber blends with layered double hydroxide nanocomposites by solutionblending[J]. Polymer International,2010,59(1):2-10
    [126] Z. Susteric I.D. Morphology and finite strain rheology of NBR/TPU blends [J].International Journal of Polymeric Materials,2003,52:527-548
    [127]许晓秋,许美萱,冯晔彭,等.聚氨酯弹性体/橡胶共混改性的研究[J].化学工业与工程,1999,3(8):33-38
    [128] Sebenik U., Poljansek I., Krajnc M. Modification of NR/BR blend with unsaturatedthermo plastic polyurethane; polyurethane synthesis, blend morphology, vulcanization,and vulcanizate properties[J]. E-Polymers,2006
    [129]罗权焜,郭建华.共混橡胶的共硫化研究[J].特种橡胶制品,2011,32(5):1-7
    [130]齐兴国. NR/EPDM并用橡胶的共硫化性能研究[D].青岛科技大学,2007
    [131] Ghosh A.K., Basu D.K. Co-vulcanization of ayrylonitrile-butadiene rubber andethylene-propylene-diene rubber blends[J]. Kautschuk Gummi Kunststoffe,2003,56(3):101-109
    [132] Chapman A.V., Tinker A.J. Vulcanization of blends-crosslink distribution and its effecton properties[J]. Kautschuk Gummi Kunststoffe,2003,56(10):533-544
    [133]邓华,罗权焜,陈焜盛.聚醚型聚氨酯橡胶/氯丁橡胶共混物性能的研究[J].特种橡胶制品,2008,29(5):14-19
    [134] Maity M., Khatua B.B., Das C.K. Polyblend systems of polyurethane rubber andsilicone rubber in the presence of silane grafting agent[J]. Journal of Elastomers andPlastics,2001,33(3):211-224
    [135] Khatua B.B., Das C.K. Interchain crosslinkable polymer blends of polyurethane andpolyacrylic elastomer (Sulfur cure)[J]. Journal of Applied Polymer Science,2004,93(2):845-853
    [136] Khatua B.B., Maity M., Das C.K. Effect of blending technique on the properties ofpolyurethane and epichlorohydrin blends (sulfur cure)[J]. Journal of Applied PolymerScience,2000,76(9):1367-1376
    [137] Khatua B.B., Das C.K. Polyblend systems of polyurethane (AU) and ethylene acrylicelastomer (vamac) using the sulfur cure systems[J]. Journal of Applied Polymer Science,2001,80(14):2737-2745
    [138] Khatua B.B., Das C.K. Thermally crosslinked polymer blends of polyurethane andchlorobutyl elastomers (sulfur cure)[J]. Polymer International,2001,50(5):495-502
    [139]谭岱云,任梵,刘保龄.混炼型PU/硅橡胶共混物性能的研究[J].特种橡胶制品,2004,25(5):11-13
    [140] Bremner T., Hill D.J.T., Killeen M.I., et al. Development of wear-resistant thermoplasticpolyurethanes by blending with poly(dimethysiloxane)(2): A packing mode[J]. Journalof Applied Polymer Scienc,1997,65(5):939-940
    [141] Hill D.J.T., Killeen M.I., Odonnell J.H., et al. Development of wear-resistantthermoplastic polyurethanes by blending with poly(dimethysiloxane)(1): Physicalpropertie[J]. Journal of Applied Polymer Scienc,1996,61:1757-1758
    [142]杜禧.聚氨酯-硅橡胶海绵复合胶辊的研制[J].橡胶工业,1999,46(3):163-164
    [143] Shilov V.V., Glebova I.B., Gomza Y.P., et al. Structural characteristics and thermaltransformations of a poly(dimethylphenylsiloxane)-polyurethane (glycol diisocyanateoligomer) mixture prepared by reactive processing in a toluene solution[J]. GlassPhysics and Chemistry,2005,31(4):505-509
    [144]李法华.聚硅氧烷/聚氨酯IPN的初步研究[J].世界橡胶工业,2001,28(1):40-43
    [145] Ebdon J.K., Klein P.G., Hourston D.J. Polyurethane-polysioxane interpenetratingpolymer networks.3Poletherurethane-poly(phenylmethysiloxane) system[J].Polymer,1988,29(6):1079-1080
    [146] Desai S., Thakore I.M., Brennan A., et al. Polyurethane-nitrile rubber blends[J]. Journalof Macromolecular Science-Pure and Applied Chemistry,2001,38(7):711-729
    [147] Xu D., Karger-Kocsis J. Unlubricated rolling and sliding wear against steel ofcarbon-black-reinforced and in situ cured polyurethane containingethylene/propylene/diene rubber compounds[J]. Journal of Applied Polymer Science,2010,115(3):1651-1662
    [148] Karger-Kocsis J., Felhos D., Xu D. Mechanical and tribological properties of rubberblends composed of HNBR and in situ produced polyurethane[J]. Wear,2010,268(3-4):464-472
    [149]叶林忠,王兆波,王培山.废聚氨酯改性丁腈橡胶的研究[J].特种橡胶制品,2004,25(5):27-29
    [150] Ishak Z.A.M., Wan P.Y., Wong P.L., et al. Effects of hygrothermally decomposedpolyurethane on the curing and mechanical properties of carbon black-filled epoxidizednatural rubber vulcanizates[J]. Journal of Applied Polymer Science,2002,84(12):2265-2276
    [151] Kumar C.R., Karger-Kocsis J. Curing and mechanical behavior of carboxylated NBRcontaining hygrothermally decomposed polyurethane[J]. European Polymer Journal,2002,38(11):2231-2237
    [152]陈丽娟.新型聚氨酯/含羟基填料有机/无机杂化材料的制备与性能[D].华南理工大学,2010
    [153]王小萍,贾志欣,贾德民,陈丽娟.一种含羟基填料的聚氨酯杂化材料的制备方法
    [P]:201110452338.7,2011
    [154] Chevalier Y., Grillet A.C., Rahmi M.I., et al. The structure of porous silica-polysiloxanehybrid materials[J]. Materials Science&Engineering C-Biomimetic andSupramolecular Systems,2002,21(1-2):143-150
    [155] Kissinger H.E. Reaction Kinetics in Differential Thermal Analysis[J]. AnalyticalChemistry,1957,29(11):1702-1706
    [156] Decker C. Kinetic study and new applications of UV radiation curing[J].Macromolecular Rapid Communications,2002,23(18):1067-1093
    [157] Kamal M.R., Sourour S. Kinetics and thermal characterization of thermoset cure[J].Polymer Engineering and Science,1973,13:59-64
    [158] Li S., Vatanparast R., Lemmetyinen H. Cross-linking kinetics and swelling behaviour ofaliphatic polyurethane[J]. Polymer,2000,41(15):5571-5576
    [159] Arrillaga A., Zaldua A.M., Atxurra R.M., et al. Techniques used for determining curekinetics of rubber compound[J]. European Polymer Journal,2007,43(11):4783-4799
    [160] Coleman M.M., Skrovanek D.J., Hu J.B., et al. Hydrogen-bonding in polymer blends.1,Ftir studies of urethane ether blends[J]. Macromolecules,1988,21(1):59-65
    [161] Chattopadhyay D.K., Sreedhar B., Raju K.V. The phase mixing studies on moisturecured polyurethane-ureas during cure[J]. Polymer,2006,47(11):3814-3825
    [162] Yilgor I., Yilgor E., Guler I.G., et al. FTIR investigation of the influence of diisocyanatesymmetry on the morphology development in model segmented polyurethanes[J].Polymer,2006,47(11):4105-4114
    [163] Dounis D.V., Wilkes G.L. Structure-property relationships of flexible polyurethanefoams [J]. Polymer,1997,38(11):2819-2828
    [164] Elwell M.J., Ryan A.J., Grunbauer H.J., et al. An FTIR study of reaction kinetics andstructure development in model flexible polyurethane foam systems[J]. Polymer,1996,37(8):1353-1361
    [165] Gajewski V. Chemical degradation of polyurethane [J]. Rubber World,1990,202:15-18
    [166] Petrovie Z.S., Zavargo Z., Flyn J.H., et al.. Thermal degradation of segmentedpolyurethanes[J]. Journal of Applied Polymer Science,1994,51:1087-1095
    [167]山西省化工研究所.聚氨酯弹性体手册[M].北京:化学工业出版社,2001,223-450
    [168] Paik Sung C.S., Schneider N.S. Temperature Dependence of Hydrogen Bonding inToluene Diisocyanate Based Polyurethanes[J]. Macromolecules,1977,10(2):452-458
    [169] Paik Sung C. S., Schneider N.S. Infrared Studies of Hydrogen Bonding in TolueneDiisocyanate Based Polyurethanes[J]. Macromolecules,1975,8(1):68-73
    [170] Veerawat W., Srichatrapimuka S.L.C. Infrared thermal analysis of polyurethane blockpolymers[J]. Journal of Macromolecular Science, Part B: Physics,1978,15(2):267-311
    [171] Karger-Kocsis J., Gremmels J., Mousa A., et al. Application of hygrothermallydecomposed polyurethane in rubber recipes part1: natural rubber (NR) and nitrilerubber (NBR) stocks[J]. Kautschuk Gummi Kunststoffe,2000,53(9):528-533
    [172] Chen Y., Bagnall D.M., Koh H.J., et al. Plasma assisted molecular beam epitaxy of ZnOon c-plane sapphire:Growth and characterization[J]. Journal of Applied Physics,1998,84(7):3912-3918
    [173] Lin M.S., Chang R.J. Chemorheology on simultaneous interpenetrating networkformation of epoxy resin and unsaturated polyester[J]. Journal of Polymer Science PartB-Polymer Physics,1992,46(5):815-827
    [174] Lin M.S., Jeng K.T., Huang K.Y., et al. Optically clear simultaneous interpenetratingpolymer networks based on polyethylene glycol diacrylate and epoxy. II. Kineticstudy[J]. Journal of Polymer Science Part A-Polymer Chemistry,1993,31(13):3317-3325
    [175] Karabanova L.V., Boiteux G., Seytre G., et al. Semi-interpenetrating polymer networksbased on polyurethane and poly(2-hydroxyethyl methacrylate): Dielectric study ofrelaxation behavior[J]. Journal of Non-Crystalline Solids,2009,355(28-30):1453-1460
    [176] Chen S.B., Wang Q.H., Pei X.Q., et al. Dynamic mechanical properties of castoroil-based polyurethane/epoxy graft interpenetrating polymer network composites[J].Journal of Applied Polymer Science,2010,118(2):1144-1151
    [177] Dean K., Cook W.D. Effect of curing sequence on the photopolymerization and thermalcuring kinetics of dimethacrylate/epoxy interpenetrating polymer networks[J].Macromolecules,2002,35(21):7942-7954
    [178] Trakulsujaritchok T., Hourston D.J. Damping characteristics and mechanical propertiesof silica filled PUR/PEMA simultaneous interpenetrating polymer networks[J].European Polymer Journal,2006,42(11):2968-2976
    [179] John J., Suriyakala R., Thomas S., et al. Morphology, mechanical and thermalproperties of nano-structured full IPNs based on polyisoprene and PMMA[J]. Journal ofMaterials Science,2010,45(11):2892-2901
    [180] Hsieh K.H., Han J.L., Yu C.T., et al. Graft interpenetrating polymer networks ofurethane-modified bismaleimide and epoxy (I): mechanical behavior andmorphology[J]. Polymer,2001,42(6):2491-2500
    [181]吕仁国,李同生,刘旭军.橡胶摩擦磨损特性的研究进展[J].高分子材料科学与工程,2002,18(5):12-15
    [182]张嗣伟.橡胶磨损机理的研究[J].石油大学学报,1993,17:162-169
    [183]王磊磊,张新民.填充橡胶摩擦磨损的研究进展[J].合成橡胶工业,2009,32(5):429-434
    [184]董凌波.溶聚丁苯橡胶耐屈挠疲劳性能的研究[D].青岛科技大学,2010
    [185] Mars W.V., Fatemi A. Factors that affect the fatigue life of rubber: A literature survey[J].Rubber Chemistry and Technology,2004,77(3):391-412
    [186] Mars W.V., Fatemi A. A literature survey on fatigue analysis approaches for rubber[J].International Journal of Fatigue,2002,24(9):949-961
    [187] Bonart R. Segmentierte Polyurethane[J]. Die Angewandte Makromolekulare Chemie,1977,58(1):259-297
    [188]卢晓玲. PET醇解多元醇用于聚氨酯弹性体合成的研究[D].华南理工大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700