PVC包覆涤纶长丝的研制与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涤纶是产量最大、应用最广的合成纤维品种,涤纶纱线织造所得织物质地柔软、轻薄,一般仅应用于衣着面料。如何对涤纶进行复合生产,形成用于织造的特种复合纱,拓展其应用领域,是一个值得研究的课题。聚氯乙烯(PVC)作为世界第二大通用树脂,以其价格低廉、阻燃、绝缘、耐磨损等优良的综合性能获得了广阔的市场。本论文利用共混的方法制备一系列PVC共混物,并在一定条件下将PVC共混物均匀包覆在高强涤纶长丝外围,形成PVC/PET特种复合纱。
     由于PVC主链上的氯原子,使PVC具有许多优异性能(如阻燃性)同时,也存在一个缺点,极性强导致分子间作用力大,尤其在低温下分子链段冻结,从而硬化、脆化,耐低温性能较差。本课题采用改变PVC配方和聚合物共混改性两种方法来改善PVC的耐寒性,进行共混改性的聚合物为聚乙烯(PE)。由于PE和PVC的不相容性,分别用有机材料乙烯-醋酸乙烯酯共聚物(EVA)和无机材料纳米碳酸钙(nano-CaCO3)作为增容剂增容两相,制备得到不同的PVC共混物作为包覆丝的包覆层材料,并对包覆层PVC共混物和包覆丝的相容性、耐寒性、耐热性和力学性能等进行表征。
     研究结果表明,在PVC配方中添加耐寒增塑剂和用PE进行聚合物共混改性均能够在一定程度上改善PVC的耐寒性。其中用己二酸二辛酯(DOA)作为PVC的增塑剂可以降低PVC的玻璃化转变温度(Tg)和脆化温度,但最佳效果为邻苯二甲酸二辛酯(DOP)和DOA配合使用。EVA增容PVC/PE时PVC、PE和EVA的最佳比例组成为100/10/10(质量比,下同),此时脆化温度-31.7℃。但EVA用量较大时,本身有一定的增韧效果,因此当PE用量固定时,脆化温度随着EVA含量的增加而降低。nano-CaCO3由于比表面积大、表面能高,易团聚,因此先用钛酸酯偶联剂进行表面处理,减小表面张力和表面能。用偶联剂表面处理后的nano-CaCO3增容PVC/PE共混物对PVC的耐寒改性效果最佳,当nano-CaCO3含量为5wt%时脆化温度可达到-35℃,光学显微镜观察到的相形态图也显示5wt%含量的nano-CaC03增容的PVC和PE分散相尺寸最为均匀,且两相相畴尺寸较小。
     对上述几种方法制备的改性PVC进行热失重分析,EVA增容的PVC/PE共混物和PVC热降解的第一阶段活化能基本相同,第二阶段活化能有较大提高,两者在平衡状态下的初始分解温度都在220℃左右。而nano-CaCO3增容的PVC/PE共混物热稳定性有较大幅度地提升,同等升温速率下初始分解温度比前两者高出20℃。而挤出包覆最适宜温度的研究表明,PVC、PVC/PE/EVA、PVC/PE/nano-CaCO3三者的最佳包覆温度依次增大。
     分别将PVC(不同增塑剂配方)、PVC/PE/EVA(100/10/10)、PVC/PE/nano-CaCO3(5wt%)和涤纶进行挤出包覆,制备的包覆丝强度都在3cN/dtex以上,以PVC/PE/nano-CaCO3(5wt%)/PET包覆丝强度最高,达3.6cN/dtex。
Polyester is the most widely used synthetic fiber, but the fabrics from polyester yarn are usually used in clothing because they are soft and light. How to expand the application of PET fibers is of high commercial interest, such as forming a composite yarn with coated flexible resin layer. Polyvinyl chloride (PVC) is the world's second largest general resin with extensive use because of its low price, UV resistance, flame retardance, insulation, abrasive resistance, etc. In this thesis a series of PVC blends were prepared under certain conditions, which are used as cover layer. The PVC blends were coated on the high-strength polyester multifilament, the fabrics woven from this special PVC/PET composite yarn can be used in many leisure areas, for example, bench chair and table mat in restaurant.
     Because of the chloride (Cl) atom in PVC chain, PVC is excellent of flame resistance. However for the strong polarity of Cl, the intermolecular force is quite strong, thus the low temperature performance is poor because the molecular chains would be frozen that leads to embrittlement and hardening in cold environment. The different PVC formulations and PVC blended with polyethylene (PE) were used to improve the cold resistance in this work. For the incompatibility of PE and PVC, the organic materials ethylene-vinyl acetate copolymer (EVA) and inorganic material nano calcium carbonate (nano-CaCO3) were used as compatibilizer, respectively. The compatibility, cold resistance, thermal stability and mechanical properties were discussed, and the proper processing conditions were also analysised in this thesis.
     The results indicate both different methods can improve the cold resistance of PVC to some extent. The glass transition temperature (Tg) and the brittle temperature can be reduced by adding dioctyl adipate (DOA) as the plasticizer instead of dioctyl phthalate (DOP). But DOA should be used as a secondary plasticizer with DOP for the best performance. The brittle temperature is-31.7℃of PVC/PE/EVA (100/10/10, mass ratio), and EVA is applied as the compatibilizer of PVC and PE. However with the fixed PE content, the larger amount of EVA, the lower brittle temperature of PVC/PE.
     Conglomeration of nano-particles has been deemed as one of the main obstacles in the preparation of polymer based nano-materials, thus the surface modification of nano-CaCO3 is necessary. Titanate coupling agent was used to decrease the surface tension and surface energy so that the nano-CaCO3 can disperse uniformly in the matrix. When the content of nano-CaCO3 is 5wt%, the brittle temperature of PVC/PE blends is lowest with the value of-35℃, as well as good thermal stability and mechanical properties. The morphology of PVC and PE phase detected via optical microscope also shows the perfect compatibility of PVC/PE.
     The Thermal Gravimetric Analysis (TGA) concludes that there are two stages of the thermal degradation of both PVC and PVC/PE blends. The first stage is almost the same with similar apparent activation energy (E) while the apparent activation energy of the PVC/PE blends is increased significantly for the second stage. Both the initial decomposition temperature in equilibrium state is over 220℃. The PVC/PE/nano-CaCO3 blends show the best thermal stability, under the same heating rate, the initial decomposition temperature is 20℃higher than those for PVC and PVC/PE blends. The study of optimum extruding temperature reveals that the processing temperature of PVC, PVC/PE/EVA, PVC/PE/nano-CaC03 increases in turn.
     Polyester multifilament was coated with PVC (different formulas with different plasticizer), PVC/PE/EVA (100/10/10, mass ratio) and PVC/PE/nano-CaCO3 (5wt%) by single screw extruder. Concentricity of the coated yarn can be well controlled. The breaking strength of all the ccoated yarns was over 3cN/dtex, and the best breaking strength was 3.6cN/dtex when the clad layer is PVC/PE/nano-CaCO3.
引文
[1]谢建玲,桂祖桐,蔡绪福.聚氯乙烯树脂及其应用[M].北京:化学工业出版社,2007:1-2.
    [2]袁茂全,潘祥江,章长明.增塑高聚合度聚氯乙烯的结构与性能[J].中国塑料,2002,16(3):30-33.
    [3]董纪震,赵耀明.合成纤维生产工艺学[M].上海:中国纺织出版社,1994:1-4.
    [4]Jie Bian, Sheng Rong Ye, Lin Xian Feng. Heterogeneous nueleation on the crystallization poly(ethylene terephthalate)[J]. J.Polym.Sci Part B:Polymer Physics. 2003,41(18):2135-2144.
    [5]何曼君,张红东,陈维孝,董西侠.高分子物理(第三版)[M].上海:复旦大学出版社,2007:107-114.
    [6]刘永红,黄纯次.2004年中国聚酯工业发展回顾及2005年的展望[J].聚酯工业,2005,18(4):7-9.
    [7]顾祥万.浅谈PET纤维的市场现状及对策[J].聚酯工业,2010,23(4):7-10.
    [8]M Ekelund, H Edin, U W Gedde. Long-term Performance of Poly(vinyl chloride)Cables Partl: Mechanical and Electrical Performances[J]. Polymer Degradation and Stability,2007,92(4):617-629.
    [9]杭孝友.PVC电缆料如何应对REACH法规[J].聚氯乙烯,2010,38(4):5-7.
    [10]Tatsiana Espevig, Michelle DaCosta, Lindsey Hoffman, Trygve S. Aamlid, Anne Matte Tronsmo, Bruce B. Clarke and Bingru Huang. Freezing Tolerance and Carbohydrate Changes of Two Agrostis Species during Cold Acclimation [J]. Crop Science,2010,51(3):1188-1197.
    [11]Jin Feng Cui, Jun Hong Guo, Yong Qiang Ma, Yan Hua Li, Cai Xia Qing, Ying Ping Zhou, Yu Zheng, Bao Ping Yang. Study of PVC Plasticized by Octodecyl Acyl Tributyl Citrate [J]. Advanced Materials Research,2011,233:2778-2784.
    [12]Paola Persico, Veronica Ambrogi, Domenico Acierno, Cosimo Carfagna. Processability and mechanical properties of commercial PVC plastisols containing low-environmental-impact plasticizers[J]. Journal of Vinyl and Additive Technology, 2009,15(3):139-146.
    [13]贺春芳,吕平.提高PVC软制品耐寒性能的试验[J].聚氯乙烯,1996,(6):51-53.
    [14]Biplab K. Deka, T.K. Maji. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite[J]. Composites Science and Technology,2010,70(12):1755-1761.
    [15]王娟娟,马晓燕,王颖,冯立起.聚氯乙烯共混改性研究进展[J].绝缘塑料,2003,(3),40-45.
    [16]张宇东,张新立.聚氯乙烯(PVC)共混合金[J].化工进展,1994,(5):53-58.
    [17]吴培熙,张留城.聚合物共混改性[M].北京:轻工业出版社,1996:4-6.
    [18]Zsuzsanna Czegeny, Emma Jakab, Marianne Blazso. Thermal Decomposition of Polymer Mixtures Containing Poly (vinyl chloride)[J]. Macromolecular Materials and Engineering,2002,287(4):277-284.
    [19]宋谋道,张邦华,周庆业,郑俊文,陈俊杰,何炳林PVC/PE交联共混体系的动态力学研究[J].高等学校化学学报,1996,17(2):311-314.
    [20]Raija Mikkonen, Antti Savolainen Blends of low density polyethylene/ plasticized poly(vinyl chloride):The rheological, morphological, and mechanical characterization[J]. Journal of Applied Polymer Science,1990,39(8):1709-1725.
    [21]Zhuang Du, Chao Xu, Zhiqiang Zhao, Jiruo Zhao, Ying Feng. Blend toughening of poly(vinyl chloride) by chlorinated polyethylene/hydroxy ethyl acrylate graft copolymer[J]. Journal of Applied Polymer Science,2011,121(1):86-96.
    [22]Xiao Ling Xie, Wen Hai Li, Ying Hui Wei. Effect of Blending Modification on Tensile Performance of CPE/PVC[J]. Advanced Materials Research,2011,284: 1732-1735.
    [23]Yu Gang Meng, Rui Ting Huo, Chun Zhi Qi, Ling Yu Chang. Effect of Blending with Additives on Mechanical Properties of PVC Architectural Membrane Material[J]. Materials Science Forum,2011,687:617-620.
    [24]徐春晖.CPE改性硬质PVC[J]塑料,1997,(1):26-28.
    [25]杨文君,王建民. PMMA,SAN改性PVC/CPE共混体的研究[J].高分子材料科学与工程,1993,(6):98-101.
    [26]Soumia Amina Kabdi, Naima Belhaneche Bensemra. Compatibilization of regenerated low density polyethylene/poly (vinyl chloride) blends[J]. Journal of Applied Polymer Science,2008,110(3):1750-1755.
    [27]Zhou Ju, Hao Zhe, Diao Jianzhi. Advance in Research of PP/PVC Blend[J]. Journalof Shijiazhuang Railway Institute,2007, (2):103-106.
    [28]杨治,李志军,莫笑君,刘滔,苏胜培,欧阳湘会,张芳,周乃安.乙烯-甲基丙烯酸甲酯共聚物对聚氯乙烯/聚丙烯复合材料性能的影响[J].精细化工中间体,2009,39(5):62-66.
    [29]张宇东,金日光.共混合金力学性能的研究[J].高分子材料科学与工程,1998,(6):92-97.
    [30]T. Kurauchi, T. Ohta. Energy absorption in blends of polycarbonate with ABS and SAN[J]. Journal of Materials Science,1984,19(5):1699-1709.
    [31]S. M. Gheno, F. R. Passador, L. A. Pessan. Investigation of the phase morphology of dynamically vulcanized PVC/NBR blends using atomic force microscopy [J]. Journal of Applied Polymer Science,2010,117(6):3211-3219.
    [32]Elnaz Esmizadeh, Ghasem Naderi, Mir Hamid Reza Ghoreishy, Gholam Reza Bakhshandeh. Optimal Parameter Design by Taguchi Method for Mechanical Properties of NBR/PVC Nanocomposites[J]. Iranian Polymer Journal,2011,20(7): 587-596.
    [33]Simoni Maria Gheno, F. R Passador, L. A. Pessan. Effect of NBR partitioning agent on the mechanical properties of PVC/NBR blends and investigation of phase morphology by atomic force microscopy[J]. Polymer Bulletin,2009,63(6):865-881.
    [34]N. R Manoj, P. P. De, S. K. De. Self-crosslinkable plastic-rubber blend system based on poly (vinyl chloride) and acrylonitrile-co-butadiene rubber [J]. Journal of Applied Polymer Science,1993,49(1):133-142.
    [35]王炼石,夏明飞.粉末NBR对PVC的增韧作用[J].塑料工业,1999,27(5):15-17.
    [36]郑精益,蔡宝瑜NBR/PVC/CO耐油胶管的研制[J].特种橡胶制品,1999,(5):37-40.
    [37]Zhen Xiu Zhang, Chun Hua Chen, Xin Wen Gao, Jin Kuk Kim, Zhen Xiang Xin. A study on the compatibility and physical properties of chlorinated polyethylene rubber/nitrile rubber blends [J]. Journal of Applied Polymer Science,2011,120(2): 1180-1185.
    [38]Azman Hassan, Barry Haworth. Impact properties of acrylate Rubber-modified PVC:Influence oftemperature [J]. Journal of M aterials Processing Technology,2006, 172(3):341-345.
    [39]杨坤民,陈福林,张兴华.NBR增韧改PVC的加工进展[J].聚氯乙烯,2004,5(3):1-5.
    [40]陈学武,张军.液体丁腈橡胶改性聚氯乙烯泡沫塑料的研制[J].特种橡胶制品,1999.20(1):5-7.
    [41]X. Y. Shi, Bi Weina, Zhao Shugao. Study on the damping of EVM based blends [J]. Journal of Applied Polymer Science,2011,120(2):1121-1125.
    [42]M.D. Zuga, Lucretia Miu, M. Crudu, V. Bratulescu, H. Iovu, E. Manaila. Products of Ethylene-Propylene Terpolymer Rubber (EPDM) Obtained by an Environmentally Friendly Process [J]. Advanced Materials Research,2007,23: 333-336.
    [43]Maria Daniela Stelescu. Physico-Mechanical Characteristics of Some EPDM/ Plasticized PVC Blends[J]. Macromolecular Symposia,2008,263(1):70-77.
    [44]C. Zhou, X. Y. Bao, Z. Y. Tan, S. L. Sun, Y2 H. Ao, H. D. Yang, H. X. Zhang. Transition from crazing to shear deformation in ABS/PVC blends [J]. Journal of Polymer Science Part B:Polymer Physics,2006,44(4):687-695.
    [45]周丽玲,蔺玉胜,杨静漪,吴其晔.ABS增韧硬质聚氯乙烯的结构形态和增韧机理[J].中国塑料,2001,(10):29-32.
    [46]陶国良,汝海林,毛科人. HDP-PVC/ABS合金材料的研究[J].中国塑料,2000,14(9):20-24.
    [47]杨金平,梁吉,葛涛,刘新民,郭红革. ABS/PVC共混改性的研究[J].中国塑料,2002,16(10):49-53.
    [48]G Wu, J. Zhao, H. Shi, H. Zhang. The influence of core-shell structuredmodifiers on the toughness of poly (vinyl chloride)[J]. European Polymer Journal,2004,40(11): 2451-2456.
    [49]冯鹏程,余剑英.纳米CaCO3对CPE/ACR共混增韧PVC力学性能的影响[J].高分子材料科学与工程,2010,(1):81-84.
    [50]Jianying Yu, Pengcheng Feng, Henglong Zhang. Effects of core-shell acrylate particles on impact properties of chlorinated polyethylene/polyvinyl chloride blends[J]. Polymer Engineering & Science,2010,50(2):295-301.
    [51]Bernard Schneier. Polymer compatibility[J]. Journal of Applied Polymer Science, 1973,17(10):3175-3185.
    [52]封朴.聚合物合金[M].上海:同济大学出版社,1997:33-34.
    [53]P. Bataille, C. Jolicoeur, H. P. Schreiber. Polymer reprocessing:Properties of polyethylene-polyvinyl chloride mixtures[J]. Journal of Vinyl Technology,1980,2(4): 218-221.
    [54]D. R Paul, C. E. Locke, C. E. Vinson. Chlorinated polyethylene modification of blends derived from waste plastics Part I:Mechanical behavior[J]. Polymer Engineering & Science,1973,13(3):202-208.
    [55]A. Zarraga, M. E. Munoz, J. J. Pena, A. Santamaria. The role of a dechlorinated PVC as compatibiliser for PVC/polyethylene blends[J]. Polymer Bulletin,2002,48: 283-290.
    [56]Xu Xi, Meng Xiande, Chen Keqiang. A study onpoly(vinyl chloride) blends with chlorinated polyethylene and polyethylene[J]. Polymer Engineering & Science,1987, 27(6):391-397.
    [57]Jayamma Francis, K.E. George. Studies on PVC/LLDPE Blends[J]. Journal of Elastomers and Plastics,1992,24(2):151-166.
    [58]A. Zarraga, M. E. Muntoz, J. J. Pena, A. Santamaria. Rheological effects of the incorporation of chlorinated polyethylene compatibilizers in a HDPE/PVC blend[J]. Polymer Engineering & Science,2001,41(11):1893-1902.
    [59]王士财,李宝霞.改性石油树脂的合成及其增容PVC/PE共混物的研究[J].塑料工业,2004,32(7):44-47.
    [60]Chengwei Xu, Zhengping Fang, Jianhua Zhong. Study on compatibilization-crosslinking synergism in PVC/LDPE blends[J]. Macromolecular Materials and Engineering,1993,212(1):45-52.
    [61]Chengwei Xu, Zhengping Fang, Jianhua Zhong. Study on phase dispersion-crosslinking synergism in binary blends of poly(vinyl chloride) with low density polyethylene[J]. Polymer,1997,38(1):155-158.
    [62]张邦华,王光,周庆业,郝广杰,宋谋道,张莹PVC/NBR/HDPE共混体系相容性研究(Ⅰ)增容剂对力学性能的影响[J].高分子材料科学与工程,1996,12(2):68-71.
    [63]张邦华,王光,周庆业,郝广杰,宋谋道,张莹. PVC/NBR(HNBR)/HDPE共混体系相容性的研究(Ⅱ)增容剂对共混物形态的作用[J].高分子材料科学与工程,1996,12(3):61-64.
    [64]张邦华,王光,周庆业,郝广杰,宋谋道,张莹. PVC/NBR(HNBR)/HDPE共混体系相容性研究(Ⅲ)共混体系动态力学行为和结晶行为研究[J].高分子材料科学与工程,1996,12(4):120-124.
    [65]钟明强,许承威PVC/PE共混体系的研究——ELVALOY741、EVA对PVC/LLDPE共混物的增容作用[J].中国塑料,1990,(4):40-46.
    [66]L. Elias, F. Fenouillot, J.-C. Majeste, G Martin, P. Cassagnau. Migration of nanosilica particles in polymer blends[J]. Journal of Polymer Science Part B:Polymer Physics,2008,46(18):1976-1983.
    [67]谢峰.PP/弹性体/无机粒子三元复合材料的研究[J].塑料科技,2007,35(9):73-76.
    [68]浦鸿汀,曹艺华,王坚. CaCO3改性ABS/PVC/PE-C共混体系的研究[J].工程塑料应用,2001,29(8):4-7.
    [69]张璐.纳米碳酸钙增容PVC LDPE共混体系的研究[D].浙江:浙江大学,2005.
    [70]J. Vermant, G Cioccolo, K. Golapan Nair, P. Moldenaers. Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles[J]. Rheologica Acta,2004,43(5):529-538.
    [71]Yong Wang, Qin Zhang, Qiang Fu. Compatibilization of Immiscible Poly(propylene) /Polystyrene Blends Using Clay[J]. Macromolecular Rapid Communications,2003,24(3):231-235.
    [72]Qin Zhang, Yong Wang, Qiang Fu. Shear-induced change of exfoliation and orientation in polypropylene/montmorillonite nanocomposites[J]. Journal of Polymer Science Part B:Polymer Physics,2003,41(1):1-10.
    [73]Meng Feng, Fangling Gong, Chungui Zhao, Guangming Chen, Shimin Zhang, Prof Mingshu Yang. Effect of clay on the morphology of blends of poly(propylene) and polyamide 6/clay nanocomposites[J]. Polymer International,2004,53(10): 1529-1537.
    [74]M. Y. Gelfer, Hyun H. Song, Lizhi Liu, Benjamin S. Hsiao, Benjamin Chu, Miriam Rafailovich, Mayu Si, Vladimir Zaitsev. Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends[J]. Journal of Polymer Science Part B:Polymer Physics,2003, 41(1):44-54.
    [75]G Guerrica-Echevarria, J. I. Eguiazabal, J, NazabaL Morphology and physical properties of injection-molded, mineral-filled polyamide 6/poly(hydroxy ether of bisphenol A)blends[J]. Journal of Applied Polymer Science,1999,73(9):1805-1814.
    [76]郑学刚,唐黎华,俞丰,应卫勇,朱子彬.PVC的热失重和热解动力学[J].华东理工大学学报,2003,29(4):346-350.
    [77]梅成国,陈苏.聚氯乙烯热稳定性测试方法的研究[J].南京工业大学学报,2007,29(2):78-81.
    [78]李蔷.哈克转矩流变仪在PVC配方研究中的应用[J].上海塑料,2008,(3):30-33.
    [79]Z.H. Liu, K.W. Kwok, R.K.Y. Li, C.L. Choy. Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites[J]. Polymer,2002,43(8):2501-2506.
    [80]赵振国.接触角及其在表面化学研究中的应用[J].化学研究与应用,2000,12(4):370-374.
    [81]Tretinnikov O N. On neglecting the polar nature of halogenated hydrocarbons in the surface energy determination of polar solids from contact angle measurements[J]. Journal of Colloid and Interface Science,2000,229(2):644-647.
    [82]胡福增.材料表面与界面[M].上海:华东理工大学出版社,2008:254-257.
    [83]王晖,顾帼华,邱冠周.接触角法测定高分子材料的表面能[J].中南大学学报(自然科学版),2006,37(5):942-946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700