膨润土负载型催化剂的制备及催化有机反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨润土负载型催化剂是一类优良的环境友好型催化剂,在目前催化研究领域中占有重要的位置。它具有制备工艺简单、催化选择性好、催化活性高、无污染、易与反应体系分离以及可循环使用等优点。本论文首先论述了膨润土负载型催化剂开发的意义及催化剂的研究进展,针对催化剂的制备和应用中存在的问题,较为系统地研究了催化剂的制备条件,进而研究了催化剂在合成缩酮、酯化、烷基化等有机反应中的应用,为实现该类催化剂的工业化应用打下了坚实的基础。本论文主要包括以下两个方面:
     1.催化剂的制备和表征
     首先对原料膨润土进行提纯和酸化处理,较系统地考察了酸化处理条件对膨润土结构及性能的影响,然后选择出最佳酸化程度的活性膨润土作为载体,负载钛锆复合氧化物和氯化锌制备固体酸催化剂。利用X射线衍射、红外光谱、比表面积、程序升温脱附等测试技术对催化剂的结构、比表面、酸中心等进行了表征。实验结果表明:适度的酸化处理并不会破坏膨润土的层状结构,同时还可以使膨润土表面积增大、酸中心增加、酸量增多,有利于活性组分的负载。活性膨润土负载钛锆复合氧化物和氯化锌之后,通过程序升温脱附测定可以发现负载膨润土的酸性位和酸量都有增加。然后对催化剂负载量和焙烧温度进行了研究,发现负载量的多少和焙烧温度对催化剂结构的形成和稳定存在显著的影响。膨润土负载钛锆复合氧化物的钛锆比为1:1,焙烧温度在500℃时催化剂比表面积最大、催化活性最高;膨润土负载氯化锌催化剂在负载量为2.0mmol/g、焙烧温度在350℃时具有最大的比表面积,氯化锌和膨润土之间可以形成稳定晶相。
     2.催化剂催化有机反应研究
     利用缩酮反应和烷基化反应分别作为对膨润土负载钛锆复合氧化物催化剂与膨润土负载氯化锌催化剂的活性评价体系,研究不同制备条件对催化剂活性的影响以及催化剂的稳定性能,并系统地探讨了合成目标产物的工艺条件。实验结果表明:膨润土复合氧化物在催化缩酮的反应中表现出良好的催化活性,在钛锆摩尔比为1:1、焙烧温度为500℃时重复使用五次仍具有很高的活性;膨润土负载氯化锌催化剂在催化烷基化反应中表现出良好的催化活性,负载量为2.0mmol/g、焙烧温度在350℃时,催化剂活性最高并且可以多次重复使用,相对酸化膨润土而言两类催化剂的催化性能和稳定性都有不同程度的提高。另外,对膨润土负载钛锆复合氧化物在酯化反应中的催化性能以及膨润土负载氯化锌在脱氨环化反应中的催化性能进行了探索性研究,成功地催化合成了乙酸正丁酯、碳酸丙烯酯等化合物。实验结果表明膨润土负载催化剂具有很高的催化选择性和催化活性。
Bentonite catalyst is a kind of excellent environment-friendly catalyst, which occupies an important position in the field of catalysis research. It has many advantages such as simple preparation process, high catalytical selectivity, high catalytical activity, non-polluting, easy to be separated from reaction system and being recycled. At the beginning of the thesis, it reviewed the development, application and the progress in the researching of bentonite catalysts. The present study mainly focuses on the preparation conditions and charaterisation of new bentonite catalysts and their application in the synthesis of ketal, esterification, alkylation, etc. The research results will be helpful to achieve the industrial application of such a kind of catalyst.
     The thesis is mainly divided into two parts:
     1. Preparation and characterization of catalysts
     Using bentonite as the starting materials, purification and acidification of bentonite were carried out and acidic treatment conditions were explored and optimized firstly. Then the loading of metal titanium, zirconium mixed oxides and zinc chloride was studied using acidified bentonite with the best level of activity as the support. The structure, specific surface area and acid center of catalysts were characterized by X-ray power diffraction, infrared spectroscopy, N2 sorption analysis applying BET method and temperature programmed desorption technology. Based on these measurements, the results show that appropriate acidification treatment of bentonite not only does not destroy the lameller structure of bentonite, but also increase the specific surface area, the acid centers and the amount of acid, which can benefit the loading of active components on the bentonite support. It can also be found that the amount of acid centers and acid strength were increased after the load of titanium-zirconium composite oxides and zinc chloride in the temperature programmed desorption experiments. Then the effects of the amount of active components loaded and the calcinations temperature on the catalysts were studied. it is suggested that the effects of the amount of active components loaded and the calcinations temperature on the catalyst preparation, structure and stability are significant, and catalysts have higher special surface area and better catalytical activity when they are prepared by loading of titanium-zirconium composite oxides with Ti/Zr mole ratio 1:1, calcinations temperature 500℃. The catalysts loaded 2.0mmol/g of ZnCl2, and calcinated in the temperature of 500℃have largest surface area, and a stable crystal phase can be formed between zinc chloride and bentonite.
     2. Study of catalytical organic reactions using the bentonite catalyst
     Thecatalytical activity and stability of the newly prepared bentonite catalysts, prepared in different conditions, were studied by using ketal reaction and alkylation reaction as evaluation system, and the catalyst preparation conditions were optimized. The results have showed that the catalytic activity of bentonite supported titanium-zirconium composite oxides catalysts act excellent activity in the reaction of ketal. The catalysts prepared under the condition of Ti/Zr mole ratio 1:1, calcinations temperature at 500℃are good catalysts for catalyzing ketal reaction reaction, which still has very high activity after reused five times. Bentonite supported ZnCl2 catalyst by loading 2.0mmol/g of ZnCl2, calcinated at 350℃acts as an excellent active catalyst in the alkylation reaction. It has the best activity and can be used repeatedly. In addition, the catalytic activity of bentonite supported titanium-zirconium composite oxides catalysts in esterification reaction, bentonite supported ZnCl2 catalysts in deamination cyclization reaction was studied. Butyl acetate and propylene carbnate were prepared successfully. The results show that bentonite catalyst has good catalytic selectivity and catalyst activity.
引文
[1]戴劲草,萧子敬,叶玲等.多孔黏土材料研究与进展[J].硅酸盐通报.1999,4:64~70.
    [2]Thomas J. Pinnavaia, Steven D. Landau, Ming Shin Tzou, Ivy D. Johnson. Max Lipsicas. Layer cross-linking in pillared clays[J]. J. Am. Chem. Soc.1985,107:7222~7224.
    [3]D. Plee, F. Borg, L. Gatineau, J. J. Fripiat. High-resolution solid-state 27Al and 29Si nuclear magnetic resonance study of pillared clays[J]. J. Am. Chem. Soc.1985,107:2362~2369.
    [4]傅新发.国产NC-02颗粒白土在宝钢苯加氢装置上的应用研究[J].非金属矿.1992,1:30~33.
    [5]罗成刚.膨润土改性机理及催化性能研究[D].广西:广西师范大学.2001.
    [6]G. W. Brindley, R. E. Sempels. Preparation and properties of some hydroxy-aluminum beidellites[J]. Clay Minerals.1977,12:229~237.
    [7]赵东源,杨亚书,郭贤.铁铝复合柱撑粘土的制备、柱结构和稳定性(Ⅰ)[J].物理化学学报.1993,9(2):100~106.
    [8]唐艳葵,梁达文,李仲民,魏光涛,童张法.羟基锆交联膨润土的制备与表征[J].广西师范大学学报.2006,24(2):56~59.
    [9]郭锡坤,张俊豪,韩宝诚,鲍仁周.介孔交联蒙脱土固体酸催化剂的结构与性能[J].无机化学学报.2005,10:1483~1489.
    [10]李栋藩,姜贤,郑禄彬.铝交联蒙脱土合成条件的研究[J].催化学报.1997,18(1):75~78.
    [11]曹明礼,余永富.聚合羟基铝柱撑蒙脱土的制备与机理研究[J].硅酸盐学报.2002,4:23~27.
    [12]C. R. Smith. Base Exchange Reactions of Bentonite and Salts of Organic Bases[J]. J. Am. Chem. Soc.1934,56(7):1561~1563.
    [13]John W. Jordan. Organophilic Bentonites. I. Swelling in Organic Liquids[J]. J. Phys.& Colloid chem.1949,53:297~300.
    [14]R. H. Bray. Ionic Competition in Base-Exchange Reactions[J]. J. Am. Chem. Soc.1942, 64(4):954~963.
    [15]R. H. Dowdy, M. M. Mortland. Alcohol-Water Interactions on Montmorillonite Surfaces. I. Ethanol[J]. Clays and Clay Minerals.1967,15:259~271.
    [16]F. Annabi-Bergaya, M. I. Cruz, L. Gatineau, J. J. Fripiat. Adsorption of alcohols by smectites; IV, Models. Clay Minerals[J].1981,16:115~122.
    [17]M. S. Stul, Jozef de Bock. Adsorption of n-aliphatic alcohols from dilute aqueous solutions on RNH3-montmorillonites; III, Interlamellar aggregation of the adsorbate[J]. Clays and Clay Minerals.1985,33:350~356.
    [18]郑贤明.有机膨润土制备及其工艺选择[J].非金属矿.1991(4):27~29.
    [19]张红新,冯安生,余丽秀.凝胶型有机膨润土制备工艺研究[J].矿产保护与利用.2008,2:15~18.
    [20]陈德芳,王重,李运康.有机膨润土的性能与结构关系的研究[J].西安交通大学学报.2000,34(8):92~95.
    [21]李永绣,冯天泽,胡平贵,何小彬,辜子英,廖荣辉.负载稀土型酸活化膨润土的醋化催化活性[J].应用化学.1996,13(1):114~115.
    [22]李永绣,胡平贵,刘辉彪,张望梅,张超英,辜子英,何小彬.稀土改性膨润土的酯化催化活性[J].稀土.1998,19(5):45~48.
    [23]张荣斌,李凤仪.钕对非晶态Ni-B/膨润土催化剂性能的影响[J].稀土.2004,25(3):42~45.
    [24]石秋杰,李万刚,谌伟庆.稀土对非晶态Ru-B/膨润土合金催化剂性能的影响[J].稀土.2005,26(4):20~24.
    [25]普红平,梅向阳,黄小凤.微波稀土改性膨润土制备吸附剂除磷的研究[J].应用化工.2006,35(12):935~938.
    [26]蒋月秀,郭尚伟,张雪,童张法.铈对SO42-/TiO2/Al-PILC固体超强酸改性的研究[J].稀土.2006,27(2):12~14.
    [27]胡玉才,叶兴凯,吴越.杂多酸在膨润土上的固载化(Ⅰ)表面酸性和吸附机理的研究[J].离子交换与吸附.1995,11(1):58~67.
    [28]胡玉才,叶兴凯,吴越.杂多酸在膨润土上的固载化(Ⅱ)液固相中催化合成乙酸丁醋的研究[J].河北轻化工学院学报.1996,17(3):55~61.
    [29]林深,郑瑛,许利闽,陈守正.用钨杂多酸/膨润土催化剂催化合成丙酸乙酯[J].福建师范大学学报.1995,11(4):46~51.
    [30]王少君,李德才,安庆大,王梦林,翟滨.插层固载磷钨酸催化剂的制备与催化[J].化工学报.2003,54(10):1378~1380.
    [31]张翠仙,涂华民,栾文楼.表面活性剂修饰蒙脱石负载杂多酸催化剂的制备及表征[J].化学世界.2004,7:376~379.
    [32]李克景,靳海波,赵震.Fe2(SO4)3/膨润土固体酸催化剂的制备及催化性能考察[J].石油化工高等学校学报.2008,21(3):16~20.
    [33]李克景,靳海波,赵震.Fe2(SO4)3/膨润土固体酸催化剂催化萘异丙基化反应[J].化学工业与工程.2008,25(3):224~228.
    [34]行春丽,成战胜,徐燕.SO42-/Si2Zr2CLR固体超强酸催化合成己二酸二庚酯[J].化学与生物工程.2004,6:21~23.
    [35]于少明,郝文正,王华林,陆亚玲,翟林峰,史铁钧.锆铝复合层柱黏土固体超强酸的制
    备及催化性能[J].硅酸盐学报.2007,35(10):1410~1414.
    [36]李连生,马淑杰,张艳秋,包玉敏.粘土固体超强酸的合成与表征[J].吉林大学自然科学学报.1995,2:87~90.
    [37]林裕,曲济方.钛柱撑膨润土催化合成柠檬酸三丁酯[J].山西大学学报(自然科学版).2009,32(1):96~99.
    [38]Stephane Chalais, Pierre Laszlo, Arthur Mathy. Catalysis of the cyclohexdienone-phenol rearrangement by a lewis-acidic clay system[J]. Tetrahedron Lett.1986,27:2627~2630.
    [39]Jun-ichi Tateiwa, Takahiro Nishimura, Hiroki Horiuchi, Sakae Uemura. Rearrangement of alhyl Phenyl ethers to alkylphenols in the presence of cation-exchanged Montmorillonite(Mn+-mont)[J]. J. Chem. Soc.1994,1:3367~3371.
    [40]张雷,柳忠阳,胡友良.蒙脱土为载体的茂金属催化剂催化乙烯聚合[J].石油化工.1998,27(12):890~894.
    [41]王丽梅,贺爱华,董金勇,韩志超,黄雅钦.剥离型聚丙烯-蒙脱土纳米复合材料Ⅰ.Ziegler-Natta/有机改性蒙脱土复合催化剂催化丙烯聚合[J].石油化工.2006,35(9):881~885.
    [42]J. H. Clark, K. Martin, A. J. Teasdale, J. Barlow. Environmentally friendly catalysis using supported reagents:evolution of a highly active form of immobilised aluminium chloride[J]. J. Chem. Soc., Chem. Commun.1995,19:2037-2040.
    [43]Pierre Laszlo, Jean Lucchetti. Catalysis of the diels-alder reaction in the presence of clays[J]. Tetrahedron Lett.1984,25:1567~1570.
    [44]Pierre Laszlo, Helene Moison. Catalysis of Diels-Alder Reactions with Acrolein as Dienophile by Iron(Ⅲ)-Doped Montmorillonite[J]. Chem.Lett.1989,18:1031.
    [45]GB/T 20973-2007,膨润土国家标准[S].
    [46]罗太安,刘晓东,李翠珍,陈泉水.膨润土的酸活化工艺条件优化研究[J].矿业研究与开发.2005,25(4):35~36.
    [47]朱利中,陈宝梁.有机膨润土及其在污染控制中的应用[M].北京:科学出版社,2006,53.
    [48]何坚,孙宝国.香料化学与工艺学-天然、合成、调和香料[M].北京:化学工业出版社,1995.
    [49]Nishi Takehide, Takemoto Toshiyasu. Medicine composition containing aminoalcohol derivative[P]. JP:2003267974,2003-09-25.
    [50]Martin Quibell, Steven Taylor, Magnus N. Cysteine protease inhibitors[P]. US: 2003203900,2003-10-30.
    [51]Manuel Martin-Lomas, Maria Flores-Mosquera, Joseluis Chiara. Attempted synthesis of type-A inositolphosphoglycan Mediators-Synthesis of a Pseudohexasaccharide Precursor[J]. Eur. J. Org. Chem.2000,2000(8):1547~1562.
    [52]张富捐,盛淑玲,张翔宇.氨基磺酸催化合成苯甲醛缩1,2-丙二醇[J].精细石油化工.2005(1):18~20.
    [53]谭志伟,黎碧娜,陈振华.稀土固体超强酸SO42-/TiO2Y(Ⅲ)催化合成环己酮乙二醇缩酮[J].化学与生物工程.2004(5):29~31.
    [54]刘士荣,王录芳,李策.活性炭负载杂多酸催化合成环己酮缩乙二醇[J].江南大学学报(自然科学版).2003,2(1):76~79.
    [55]张义军,王敏,杨水金.分子筛MCM-48负载硅钨酸催化合成丁酮-1,2-丙二醇缩酮[J].化学试剂.2007,29(2):69~71.
    [56]毛东森,卢冠忠,陈庆龄.钛锆复合氧化物载体的制备、物化性质及在催化反应中的应用[J].催化学报.2004,25(6):501~510.
    [57]王存德,杨新华,钱文元.固体超强酸TiO2/SO42-催化合成缩醛(酮)[J].精细化工.1992,9(3):4~7.
    [58]程能林,胡声闻.溶剂手册(下册)[M].北京:化学工业出版社,1986.
    [59]李述文,范如霖编译.实用有机化学手册[M].上海:上海科学出版社,1981,327~331.
    [60]Vasant R. Choudhary, Suman K. Jana, B. P. Kiran. Highly active and moisture-insensitive solid catalysts-GaCl3 and InCl3 supported on montmorillonite-K10 and Si-MCM-41 for benzylation of benzene[J]. Catal Lett.2000,64(2~4):223~226.
    [61]赵峰,刘绍英,李建国等.钛酸钾催化碳酸丙烯酯和甲醇酯交换合成碳酸二甲酯[J].天然气化工.2007,32(03):41~45.
    [62]Su WY, Speranza GP. A process for preparing alkylene carbonates[P]. EP:0443758A1, 1991.
    [63]Yutaka K, Takashi O, Masahayu D. A process for producing alkylene carbonates[P]. EP: 0581131,1993.
    [64]孙予罕,魏伟,李奇飚.一种合成碳酸丙烯酯或碳酸乙烯酯的方法[P].CN:02155480,2003-06-04.
    [65]YIN Shuang-feng, DAI Wei-li, LI Wen-sheng, ZHOU Xiao-ping, SHIMADA Shigeru. Synthesis of novel organobismuth complexes bearing a sulfur-bridged biphenolate ligand and their catalytic application to CO2 cycloaddition with propylene epoxide [J]. Journal of Molecular Catalysis.2007,21(3):264~267.
    [66]杨红建,李渊,赵新强等.CO2与环氧丙烷气固相连续催化合成碳酸丙烯酯[J].大庆石油学院学报.2005,29(3):39~41.
    [67]陶龙骧.层柱粘土催化剂在有机反应中的应用[J].石油化工.1998,27(4):292~299.
    [68]宫宝安.蒙脱石类催化剂进展[J].化学与粘合.1990,1:43~49.
    [69]潘业才,强颖怀,陈辉,杨斌,纪中兵.第二届中国非金属矿工业科技与市场交流大会: 我国利用高岭土、膨润土制备矿物纳米材料的研发现状与展望[C].北京:中国非金属矿工业协会.2006.
    [70]金钦汉.微波化学[M].北京:科学出版社.1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700