产氢产乙酸优势菌群的选育及其生理生态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在参与厌氧生物处理的各微生物类群中,产氢产乙酸菌群在营养生态位上位于产酸发酵菌群和产甲烷菌群之间,在功能生态位上起到承上启下的重要作用。它能将产酸发酵菌群代谢产生的丙酸、丁酸、戊酸等挥发性有机酸和乙醇等进一步降解转化为乙酸和CO_2、H_2,不仅为后续的产甲烷菌群提供了可以直接利用的底物,同时解除了底物对其生长和代谢的限制。产氢产乙酸代谢活性作用的增强,有望使厌氧生物处理系统的效能得到显著提高。论文以四格室的厌氧折流板反应器(ABR)第二和三格室中的厌氧活性污泥为出发菌群,进行了产氢产乙酸优势菌群的富集选育。
     通过丙酸和丁酸混合培养基的富集,获得了H82和H83两个产氢产乙酸菌和产甲烷菌为优势的混合菌群。研究发现,H83菌群对丙酸的降解能力优于H82菌群,而且H83菌群对丙酸和丁酸的降解速率存在显著差异。以H83菌群为初发菌群,分别接种到丙酸培养基和丁酸培养基中,进行多次传代富集培养后,分别获得了B83菌群和D83菌群,并分别考察了H83菌群、B83菌群和D83菌群的底物降解特性。
     借助于生理生化试验和DGGE分子生物学手段对D83菌群结构稳定性进行分析,结果表明,经过7次传代富集培养,D83菌群结构基本稳定;对葡萄糖、蔗糖、丙酸有一定的降解能力,但不能降解乙醇和乳酸。在以酸水解酪蛋白为氮源时,D83菌群对丁酸的降解能力最强,平均降解速率高达518.1 mg/L·d;以氯化铵为氮源,以丁酸为碳源时,D83菌群的生长最为旺盛,可达20.5 mgMLVSS/L·d。D83菌群的生长和对丁酸的降解符合非抑制型Monod方程。
Among the bacteria colony in anaerobic organic wastewater treatment system, hydrogen-producing acetogens (HPA) connect acidogenic fermentation bacteria with methanogens in functional niche. They can convert interim products such as ethanol, propionic acid, and butyric acid into acetic acid, H_2 and CO_2, which can be metabolized directly by methanogens to methane. This results in relieving the restriction for metabolism of HPA in the meantime. The efficiency of anaerobic organic wastewater treatment system would be improved by enhancing the hydrogen-producing acetogensis. Microorganism communities dominated by hydrogen-producing acetogens were enriched and bred from the anaerobic activated sludge in an anaerobic baffled reactor (ABR) in this paper.
     Two mixed cultures, i.e. H82 and H83, dominated by HPA and methanogens were obtained firstly, enriched step by step in selective medium incloding propionic acid and butyric acid as carbon sources. The results indicated that H83 had better degradation ability for propionic acid than H82. Farther more, the degrading ratioes for propionic acid and butyric acid were different remarkably in H83. Enriched in propionic acid and butyric acid mediums respectively up to four times, two mixed cultures, named B83 and D83, were bred. B83 and D83 were both dominated by HPA and their metabolic characteristics were made out partly.
     According to the results of physiological and biochemical test and denaturing gradient gel electrophoreses (DGGE) analysis, the community structure of D83 was perfect after bred for seven times reculture. D83 could degrade glucose, sucrose and propionic acid, but not ethanol and lactic acid. When D83 was cultured with amicase casein acid hydrolysate as nitrogen source, a degrading ratio for butyric acid as high as 518.1 mg/L·d was reached. A cell multiplication ratio of 20.5 mg/L·d was obtained for D83 with ammonium chloride as nitrogen source and butyric acid as carbon source, and the growth and degradation process could characterize by Monod equation.
引文
1.陈亚,林波.废水厌氧生物处理及其理论研究.江西化工. 2007,(1):18~21
    2.赵立军,滕登用,刘金玲等.废水厌氧生物处理技术综述与研究进展.环境污染治理技术与设备. 2001,2(5):58~66
    3.陈威,朱雷,梁华杰.废水厌氧生物处理的研究与进展.国外建材科技. 2006,27(1):51~53
    4.郑元景,沈永明,沈光范.污水厌氧生物处理.中国建筑工业出版社, 1987:10~30
    5.张希衡.废水厌氧生物处理工程.中国环境科学出版社, 1996:10~30
    6.胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:1~4
    7.凌代文,刘聿太,乐华爱.厌氧消化器中微生物生态学的研究.微生物学报. 1992, 32(2):79~84
    8.胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:24~37
    9. J. G.. Eikus. Microbial Population in Digesters. Anaerobic Digestion Applied Science Publishers LTD, 2004:61~89
    10.东秀珠.甲酸盐和分子氢在丙酸和丁酸互营降解中的作用.微生物学通报. 1997,24(1):51~56
    11. M. J. Mcinerney, M. P. Bryant. An Anaerobic, Syntrophic, Fatty Acid- Oxidizing Bacterium. Applied and Environmental Mcrobiology. 2001, 41(4): 1029~1039
    12. B. K. Ahring, P. Westtermann. Thermophilic Anaerobic Degradation of Butyrate- Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria. Apple. Environ. Microbiol. 2004,53(2):429~433
    13. K. R. Ahring, M. P. Bryant. Propionate Degrading Bacterium, Syntrophobacter Wolinii, so. nov. From Methanogenic Ecosystems. App. envion. Microbia.. 2005, 40(2):626~632
    14. S. Beaty, M. J. Mcinernery. Growth of Syntrophomonas Wolfei in Pure Culture on Crotonate. Arch Microbiol.. 2003,(147): 389~393
    15. F. P. Houwen, C. Dijkema. C-NMR Study of Propionate Degradation by a Methanogenic Coculture. FEM Microbiology. 2005,(41):269~274
    16.胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:49~51
    17.闵航,陈美慈,赵宇华等.厌氧微生物学.浙江大学出版社,1993:162~178
    18.陈晓蕾.有机废水产酸发酵顶极群落研究——生态因子pH、Eh的影响.哈尔滨建筑大学硕士论文. 1998:44~46
    19.李建政.连续流两相厌氧生物处理系统的生理生态学研究.哈尔滨建筑大学硕士论文. 1997:43~44
    20.柯益华,方治华,孙学梅.厌氧消化过程微生物生态系统的建模与生态规律的研究.中国沼气. 1994,12(2):10~14
    21. M. Talabardon, J. P. Schwirzguébel, P. Péringer. Anaerobic Thermophilic Fermentation for Acetic Acid Production from Milk Ermeate. Journal of Biotechnology. 2003,(76):83~92
    22.闵航,陈美慈,赵宇华等.厌氧微生物学.浙江大学出版社,1993:111~122
    23. M. Talabardon, J. P. Schwirzguébel, P. Péringer. Anaerobic Thermophilic Fermentation for Acetic Acid Production from Milk Ermeate. Journal of Biotechnology. 2003,(76):83~92
    24. R. Tabassum, M. I. Rajoka. Methanogenesis of Carbohydrates and Their Fermentation Products by Dystrophic Methane Production Bacteria Isolated From Freshwater Sediments. Bioresource Technology. 2004,(72):199~205
    25. C. Y. Li. Methanogenic Digestion Using Mixed Substrate of Acetic, Propionic And Butyric Acids. Water Res.. 2006,20(3):385~394
    26. Y. Ueno, S. Haruta, M. Ishii. Microbial Community in Anaerobic Hydrogen- Producing Microflora Enriched from Sludge Compost. Appl Microbiol Biotechnol.. 2005,( 57): 555~562
    27. A. Buchan, S. Y. Newell, M. Butler. Dynamics of Bacterial and Fungal Communities on Decaying Salt Marsh Grass. App. Environ. Microbiol.. 2003,(69): 6676~6687
    28. G. E. Hutchinson. Concluding Remarks. Cold Spring Symposia on Quantitative Biology. 1957,(22): 415~427
    29.任南琪,马放,杨基先等.污染控制微生物学(修订版).哈尔滨工业大学出版社,2004:335~336
    30. A. G. Lettinga. Use of Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment. Biotech. Bioeng.. 2000, (22):699~734
    31.罗斯君.UASB+SBR工艺处理糖果废水.广东化工. 2008,35(4):89~91
    32.朱翠霞,吕建伟.葡萄酒生产废水处理工程.给水排水. 2008, 34 (3):66~67
    33.胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:155~191
    34.李清雪,华玉芝.厌氧折流板反应器处理高浓度有机废水.河北建筑科技学院学报. 2003, 20(3):13~14
    35.常海荣张振家王欣泽.厌氧膨胀颗粒污泥床(EGSB)在高浓度工业废水处理中的应用.环境工程. 2004,22(3):14~16
    36.江瀚,王凯军,倪文等.有机负荷及水力条件对EGSB运行效果影响的研究.环境污染治理技术与设备. 2005,6(1):40~43
    37. Lin Ch-Y, Sato K, Noike T, et al. Methanogenic Digestion Using Mixed Substrate of Acetic, Propionic and Butyric Acids. Water Research. 1986, 20(3):385~394
    38.刘艳玲.两相厌氧系统底物转化规律与群落演替的研究.哈尔滨工业大学博士学位论文. 2001:58~98
    39. B. K. Ahring, P. Westtermann. Thermophilic Anaerobic Degradation of Butyrate-utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria. Apple.Environ.Mircobiol.. 1987,53(2):429~433
    40. B. K. Ahring, P. Westtermann. Kinetics of Butyrate, Acetate and Hydrogen Metabolism in a Thermophilic Anaerobic Butyrate-Degrading Triculture. Apple. Environ. Microbiol.. 1987,53(2):434~439
    41.胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:22~28
    42.刘聿太,王大耜.产氢产乙酸菌与产甲烷菌互养培养物的分离.中国沼气. 1987, 5(3):8~11
    43. M. J. McInerney , M. P. Bryant , N. Pfennig. Anaerobic Bacterium that Degrades Fatty Acids in Syntrophic Association with Methanogens. Arch. Microbiol.. 1979, (122):129~135
    44.东秀珠.厌氧降解中互营产甲烷代谢机制的探讨.微生物学通报. 1993,20(1):36~42
    45. M. J. McInerney, M. P. Bryant, Norbert Pfennig. Anaerobic Bacterium that Degrades Fatty Acids in Syntrophic Association with Methanogens. Arch. Microbiol.. 1979, (122):129~135
    46. R. Nandi, S. Sengupta. Microbial Production of Hydrogen:an Overview. Cri. Rev. Microbiol.. 1998,(24):61~84
    47.柯水洲,马晶伟.生物制氢研究进展(Ⅰ)产氢机理与研究动态.化工进展. 2006,25(9):1001~1005
    48. Jun Miyake, Masato Miyake, Yasuo Asada. Biotechnological Hydrogen Production: Research for Efficient Light Energy Conversion. Journal of Biotechnology. 1999, (70):89~101
    49. Bernd Mahro, L. Horst Grimme. H2-photoproduction by green algae: the significance of anaerobic pre-incubation periods and of high light intensities for H2-photoproductivity of Chlorella fusca. Archives of Microbiology. 1982, (132): 82~86
    50. Shireen Meher Kotay, Debabrata Das. Microbial Hydrogen Production with Bacillus coagulans IIT-BT S1 Isolated from Anaerobic Sewage Sludge. Bioresource Technology. 2007, (98): 1183~1190
    51.牛莉莉,刘晓黎,陈双雅等.一个新的高温产氢菌及产氢特性的研究.微生物学报. 2006,46(2):280~284
    52.卢文玉,刘铭辉,陈宇等.厌氧发酵法生物制氢的研究现状和发展前景.中国生物工程杂志. 2006,26(7):99~104
    53. N.Q. Ren , H. Chua , S.Y. Chan. Assessing Optimal Fermentation Type for Bio-hydrogen Production in Continuous-flow Acidogenic Reactors. Bioresource Technology. 2007,(98):1774~1780
    54. Yongfang Zhang, Jianquan Shen. Enhancement Effect of Gold Nanoparticles on Biohydrogen Production from Artificial Wastewater. International Journal of Hydrogen Energy. 2007, (32):17 ~23
    55. A. Bouzasa, J. Ribesa, J. Ferrer, et al. Fermentation and Elutriation of Primary Sludge: Effect of SRT on Process Performance. Water Research. 2007, (41): 747 ~756
    56. R. R. Lichtl, M. J. Bazin, D. O. Hall. The Biotechnology of HydrogenProduction by Nostoc flagelliforme under Chemostat Conditions. Appl. Microbiol. Biotechnol.. 1997, (47):701~70735
    57. M. A.Rachman, Y.Nakashimada, T. Kakizono, et al. Hydrogen Production with High Yield and High Evolution Rate by Self-flocculated Cells of Enterobacter aerogenes in a Packed-bed Reactor. J. Ferment. Bioeng.. 1998,(49):450~454
    58. Yoshiyuki Ueno, Masahiro Tatara, Hisatomo, et al. Fukui. Production of Hydrogen and Methane from Organic Solid Wastes by Phase-separation of Anaerobic Process. Bioresource Technology. 2007, (98): 1861~1865
    59. Chi-Neng Lina, Shu-YiiWua, Jo-Shu Chang. Fermentative Hydrogen Production with a Draft Tube Fluidized Bed Reactor Containing Silicone-gel-immobilized Anaerobic Sludge. International Journal of Hydrogen Energy. 2006,(31):2200 ~ 2210
    60. Ken-Jer Wu, Jo-Shu Chang. Batch and Continuous Fermentative Production of Hydrogen with Anaerobic Sludge Entrapped in a Composite Polymeric Matrix. Process Biochemistry. 2007, (42): 279~284
    61.洪天求,郝小龙,俞汉青.有机废水厌氧发酵产氢技术的现状与发展.合肥工业大学学报(自然科学版) . 2003, 26(5):947-952
    62. Nanqi Ren, Jianzheng Li,Yong Wang, et al. Biohydrogen Production from Molasses by Anaerobic Fermentation with a Pilot-scale Bioreactor System. International Journal of Hydrogen Energy. 2006, (31):2147~2157
    63. Osamu Mizuno, Richard Dinsdale, et al. Enhancement of Hydrogen Production from Glucose by Nitrogen Gas Sparging. Bioresource Technology. 2000, (73): 59~65
    64. Bruce E. Logan, Sang-eun Oh, et al. Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environ. Sci. Technol.. 2002, (36): 2530~2535
    65. Sang-Eun Oh, Prabha Iyer, et al. Biological Hydrogen Production Using a Membrane Bioreactor. Biotechnology and Bioengineering. 2004, 87(1): 119~127
    66. Wang Xiangjing, Ren Nanqi, et al. Partial Characteristics of Hydrogen Production by Fermentative Hydrogen-producing Bacterial Strain B49. High Technology Letters. 2003, 9(3):65~70
    67. Li Jianzheng, Ren Nanqi, et al. Startup of Hydrogen Producing Fermentation Process with Anaerobic Activated Sludge and Acclimatization of the Dominant Ethanol-type Fermentation Population. High Technology Letters (China). 2004, 14(9):90~94
    68. David B. Levin, Lawrence Pitt, Murray Love. Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy. 2004, (29): 173~185
    69. M. P. Bryant, E. A. Wolin, M. J. Wolin. et al. Methanobacillus omelianskii, a Symbiotic Association of Two Species of Bacteria. Archiv for Microbiolgy. 1967,(59):20~31
    70.李建昌,张无敌.氢分压对种间氢转移的影响.云南师范大学学报. 2005,25(5): 21~25
    71. M. J. McInerney , M. P. Bryant , N. Pfennig. Anaerobic Bacterium that Degrades Fatty Acids in Syntrophic Association with Methanogens. Arch. Microbiol.. 1979, (122):129~135
    72. M. J. McInerney, R. I. Mackie, M. P. Bryant. Syntrophic Association of a Butyrate-Degrading Bacterium and Methanosarcina Enriched from Bovine Rumen Fluid. Applied and .Environmental Microbiology. 1981, (41):826~828
    73. A. J. M. Stams, Metabolic Interactions between Anaerobic Bacteria in Methanogenic Environments. Antonie van Leeuwenhoek. 1994, (66):271~294
    74. B. K. Ahring, P. Westerman, Thermophilic Anaerobic Degradation of Butyrate by a Butyrate-Utilizing Bacterium in Coculture. Applied and .Environmental Microbiology. 1987, (53):429~433
    75. Zhao H, Yang D, Woese C R, et al. Assignment of Fatty Acidβ-Oxidizing Syntrophic Bacteria to Syntrophomonadaceae fam.nov.on the Basis of 16S rRNA Sequence Analysis. Int.J.Syst.Bacteriol.,1993,(43):278~286
    76. D. R. Boone, M. P. Bryant. Propionate-degrading Bacterium, Syntrophobacter wolinii sp.nov. gen. nov., from Methanogenic Ecosystems. Applied and .Environmental Microbiology. 1980,(40):626~632
    77. A. J.M Stams, C. Dijkema, et al. Growth of Syntrophic Propionate-Qxidizing Bacteria with Fumarate in the Absece of Methanogenic. Appliedand Environmental Microbiology. 1993,(59):1114~1119
    78.钱泽澍,马晓航.丁酸盐降解菌和氢营养菌共培养物的研究.微生物学报. 1989,29(5):321~329
    79.赵宇华,钱泽澍.硬脂酸降解菌与嗜氢产甲烷杆菌共培养物的研究.浙江农业大学学报. 1991,17(1):75~79
    80.程光胜,屠雄海,东秀珠等.厌氧降解丁酸共培养物中产氢产乙酸细菌与产甲烷细菌的分离与再组合.微生物学报. 1995, 35(6):442~449
    81.竺建荣,胡纪萃,顾夏声.颗粒厌氧污泥中的产氢产乙酸细菌研究.微生物学通报. 1994,21(4):207~209
    82.李艳娜,许科伟,堵国成等.厌氧生境体系中产氢产乙酸细菌的FISH定量解析.微生物学报. 2007,47(6):1038~1043
    83.国家环境保护局.水与废水监测分析方法.第4版.北京:中国环境科学出版社, 2001: 213~215
    84.单国彬,金文标,林佶侃等.变性梯度凝胶电泳在环境微生物生态学中的应用.生态学杂志. 2006,25(10) :1257~1264
    85. G. Muyzer,E. C. D. Waal,A. G..Uitterlinden. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction Amplified Genes Coding for 16S rRNA. Appl. Environ. Microbiol. . 1993, 59(3):695~700
    86.杨洋,左剑恶,全哲学等.UASB反应器中厌氧氨氧化污泥的种群分析.中国环境科学. 2006, 26(1):52~56
    87.谭田丰,邵宗泽.海洋石油烃降解茵群构建及其在降解过程中的动态分析.厦门大学学报(自然科学版) . 2006,(45):262~266
    88.邢德峰,任南琪,宫曼丽. PCR——DGGE技术解析生物制氢反应器微生物多样性.环境科学. 2005,26(2):172~176
    89. L. Raskin, J. M. Stromley, B. E. Rittmann, at el. Group-specific 16S rRNA Hybridization Probes to Describe Natural Communities of Methanogens. Appl. Environ. Microbiol. . 1994, (60): 1232~1240
    90.邢德峰,任南琪,宋佳秀等.不同16S rDNA靶序列对DGGE分析活性污泥群落的影响.环境科学. 2006, 27(7):1424~1428
    91. B J Bassam, Caetano-Anolles G, P M.Gresshoff. Fast and Sensitive Silver Staining of DNA in Polyacrylamide Gels. Anal. Biochem. . 1991, (196): 80~83
    92.胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:84~87
    93.何良菊,李培杰,魏德洲等.石油烃微生物降解的营养平衡及降解机理.环境科学. 2004, 25(1): 91~94
    94.胡纪萃,周孟津,左剑恶等.废水厌氧生物处理理论与技术.中国建筑工业出版社,2003:36~37
    95.何品晶,潘修疆,吕凡等. pH值对有机垃圾厌氧水解和酸化速率的影响.中国环境科学. 2006, 26(1):57~61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700