CSTR甲烷发酵系统向产酸发酵系统转化的调控运行
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续流搅拌槽式反应器(CSTR)系统内微生物群落均成絮状结构,并且在搅拌状态下很难得到结构良好的颗粒污泥,因此常被用来作为产酸发酵及发酵生物制氢的装置。CSTR属悬浮絮状厌氧活性污泥系统,在传质和反应速度上较颗粒污泥系统具有明显优势,但目前尚无采用CSTR成功培养完整厌氧消化体系的研究报道。论文借助于两种结构型式的CSTR,在前期成功培育出具有完整甲烷发酵微生物系统的基础上,探讨了CSTR甲烷发酵系统向产酸发酵系统转化的运行控制对策,以期为以下两个方面的应用奠定基础:(1)CSTR厌氧消化系统的运行控制;(2)借助于产酸发酵菌群和产氢产乙酸菌群的生物质深度发酵产氢技术的研发。
     研究证明,采用好氧活性污泥为种泥,以稀释糖蜜为底物,在控制进水COD浓度7000 mg/L、HRT 18 h、温度35±1℃、pH 6.5~7.5等条件下,通过改变HRT和系统pH,可以实现CSTR甲烷发酵系统向产酸发酵系统的转变。主要调控方式为逐渐缩短HRT致8 h,之后逐渐降低系统pH值,使其保持在5.0左右。反应器运行稳定时未检出CH4,H2含量达到21.6%,液相末端产物VFAs总量达到1992mg/L,其中乙酸、丙酸、丁酸、戊酸和乙醇的百分含量分别为36%、27%、4.5%、2%和30%,呈现混合酸发酵特征。
     为了在CSTR反应系统中建立以产酸发酵菌群和产氢产乙酸菌群为优势的微生物群落,本论文研究了向CSTR甲烷发酵系统中投加特异性产甲烷菌抑制剂的控制方法。首先,利用选择性丁酸培养基,通过摇瓶试验,比较了特异性产甲烷菌抑制剂氯仿和2-溴乙烷磺酸钠的作用特征,发现2-溴乙烷磺酸钠具有更明显的产甲烷菌活性抑制作用,并初步确定2-溴乙烷磺酸钠的投加量为10 mmol/L。根据静态试验结果,通过进水向CSTR甲烷发酵系统连续投加2-溴乙烷磺酸钠,投加浓度分阶段依次提高,最终在CSTR反应系统内成功抑制了产甲烷作用。转化后的CSTR发酵系统,产气速率稳定在9 L/d,H2含量稳定在2.6%,CH4未检出;液相末端发酵产物VFAs总量达到3357mg/L,其中乙酸、丙酸、丁酸、戊酸和乙醇的百分含量分别为40%、38%、7%、4.2%和7%,呈现典型的丙酸型发酵。
The anaerobic active sludge in CSTR has obvious advantages on mass-transfer and reaction rate compared with granular sludge resulted in the suspended flora. However, there are few reports in culturing anaerobic flora with a function of methane production in CSTR. Anaerobic flora with a function of methane production had bred in two CSTRs in previous study. The engineering control measures of transformation from methane fermentation system to acidogenic fermentation system were investigated in this paper. The results would lay a foundation for the application in the following two respects: (1) the engineering control of anaerobic digestion system in CSTR; (2) developing a new hydrogen-producing fermentation process, in which acidogens and hydrogen-pruducing acetogens could degrade organic material step by step and more hydrogen yield could obtained..
     The results indicated that a transformation from methane fermentation system to acidogenic fermentation system could carry out in CSTRⅡunder the following condition: influent COD 7000 mg/L (diluted molasses), hydrolic retention time (HRT) 18 h, pH 6.5~7.5 and a temperature of (35±1)℃. And then, the reactor was operated by shortenning HRT from 18 h to 8 h stage by stage and decreased the pH in the system to 5.0. When the fermentation system reached its steady state, methane was not detected in the biaogas and hydrogen content achieved 22%. The total liquid fermentation products was 1992 mg/L, among which the contents of acetic acid , propionic acid , butyric acid, pentanoic acid and ethanol were 36 %、27 %、4.5 %、2 % and 30 %respectively, indicating a typical mixed acid fermentation had occurred in the CSTRⅡ.
     In order to establish a microbial community dominated by acidogens and hydrogen-producing acetogens, specific methanogen inhibitor (2-bromoethanesuLfonate) was put in CSTRⅠcontinuously. The results indicated that methanogesis could be inhibited completely in CSTRⅠwhen the dose reached at above 10 mmol/L and an acidogenic fermentation system was obtained. When the system reached its steady state, the biogas yield kept about 9 L/d with a hydrogen content of 2.2%, with no CH4 been detected. The total liquid fermentation products reached 3357 mg/L, among which the percentage of acetic acid,propionic acid,butyric acid,pentanoic acid and ethanol were 40%, 38%, 7%, 4.2% and 7% respectively, indicating a typical propionic acid type fermentation in CSTRⅠ.
引文
1.周生贤.国务院关于当前水环境形势和水污染防治工作的报告.全国人民代表大会常务委员会公报. 2007,(1):111~116
    2.田一梅,王煊,汪泳.区域水资源与水污染控制系统综合规划.水利学报.2007,38(1):32~38
    3.龙腾锐,姜文超,何强.水资源承载力内涵的新认识.水利学报.2004,35(1):38 ~45
    4.王明霞.水污染管理与经济增长协调发展的研究.生态经济.2007,(3):63~65
    5.仇保兴.切实从源头治理水污染维护和恢复城乡水生态.给水排水.2007,33 (2):1~3
    6.刘如平.城市污水处理行业发展建设的问题探讨.科技情报开发与经济.2005,13(5):57~58
    7.黄秋洪.体制创新是水污染防治的关键.水污染防治.2007,(3):53~55
    8.陈勇.我国水污染防治立法有待完善.环境经济杂志. 2006,36(12):45~49
    9.闵航.厌氧微生物学.杭州:浙江大学出版社,1993
    10. J. Garc?′a, V. Capel, A. Castro. et al. Anaerobic Biodegradation Tests and Gas Emissions from Subsurface Flow Constructed Wetlands, Bioresource Technology. 2007,( 98):3044~3052
    11. R. H. Kadlec. Effects of Pollutant Speciation in Treatment Wetlands Design, Ecol. Eng. 2005,(20):1~16
    12. BRYANTMP. Microbial Methane Production the Oretical Aspects. Janimal Science. 1979,(48):193-201
    13.凌代文,刘聿太,乐华爱.厌氧消化器中微生物生态学的研究.微生物学报. 1992,32(2):79~84
    14. ZEIKUSJG. Microbial Populations in Digestors, Anaerobic Digestion. Appl Sci Publisher. 1979,66~89
    15. LETTINGAG, FIELDJ. Advanced Anaerobic Wastewater Treatment in the Near Future. Water Science and Technology. 1997,35(10):5~12
    16.钱易,米祥友.现代废水处理新技术.北京:中国科学技术出版社, 1992.67~71
    17.贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社, 1998.54~58
    18. G. L. Schroepfer. The Anaerobic Contact Process as Applied to Packing House Wastes. Sewage and Ind Wastes. 1995,27(4):460-480
    19. Stronach. Anaerobic Digestion Process. Industrial Wastewater Treatment. 1986,(6):23-35
    20. G. L. ettinga, A. C. van Haadel. Anaerobic Digestion for Energy Production and Environmental Protection. 1993.817-839
    21. J. Iza. Anaerobic Fluidized Bed Reactors (AFBR). Performance and Hydraulic Behavior. Anaerobic Digestion. 1988(2):155-163
    22.张希衡等.废水厌氧生物处理工程.北京:中国环境科学出版社,1996.120~124
    23.北京水环境技术与设备研究中心.三废水处理工程技术手册(废水卷).北京:化学工业出版社, 2000.58~65
    24. J. G. Eikus. Microbial. Population in Digesters. Anaerobic Digestion Applied Science Publishers LTD. 2004:61~89
    25. M. J. Mcinerney, M. P. Bryant. An Anaerobic, Syntrophic, Fatty Acid-Oxidizing Bacterium. Applied and Environmental Mcrobiology. 2001,41(4):1029~1039
    26. B. K. Ahring, P. Westtermann. Thermophilic Anaerobic Degradation of Butyrate-Utilizing Bacterium in Coculture and Triculture with Methanogenic Bacteria. Apple. Environ. Microbiol. 2004,53(2):429~433
    27. K. R. Ahring, M. P. Bryant. Propionate Degrading Bacterium. Syntrophobacter Wolinii. so. nov. From Methanogenic Ecosystems. App.envion. Microbia. 2005,40(2):626~632
    28. S. Beaty, M. J. Mcinernery. Growth of Syntrophomonas Wolfei in Pure Culture on Crotonate. Arch Microbiol. 2003,(147): 389~393
    29. F. P. Houwen, C. Dijkema. C-NMR Study of Propionate Degradation by a Methanogenic Coculture. FEM Microbiology. 2005,(41):269~274
    30.方芳,龙腾锐.厌氧生物滤池的研究及应用现状.中国给水排水. 1999,(4):24)27
    31. G. Lettinga. Biotech and Bioeng. 1980,22(2):699~734
    32.李绍衡.厌氧生物处理技术的原理及其在城市污水处理中的应用.湖南大学学报. 2001,28(3):57~62
    33.许保玖,龙腾锐.当代给水与废水处理原理(第2版).北京:高等教育出版社,2000.47~50
    34.夏凤毅.厌氧生物处理工艺——有机污水处理的重要工艺之一.中国环保产业. 2002.94~101
    35. R. E.斯皮思.工业废水的厌氧生物处理技术(第1版).李亚新译.北京:中国建筑工业出版社,2001.67~84
    36. M. P. Bryant. J.Animal Science. 1979,48(1):193~201
    37. J. G. Zeikus. Anaerobic Digestion. Applied Science Pub-lisher Ltd. 1980.61-87
    38. S. H. Zinder. Appl. Environ. Microbiol. 1984,(47):796-807
    39.胡纪萃.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003.56~87
    40.马溪平.厌氧微生物学与污水处理.化学工业出版社,2005.87~91
    41. M. Talabardon, J. P. Schwirzguébel, P. Péringer. Anaerobic Thermophilic Fermentation for Acetic Acid Production from Milk Ermeate. Journal of Biotechnology. 2003,(76):83~92
    42.柯益华,方治华,孙学梅.厌氧消化过程微生物生态系统的建模与生态规律的研究.中国沼气. 1994,12(2):10~14
    43.唐受印等.水处理工程师手册.北京:化学工业出版社, 2000.74~79
    44. D. Katherine, G. McMahon, I. Mackie, et al. Anaerobic Codigestion of Municipal Solid Waste and Biosolids under Various Mixing Conditions—II: Microbial Population Dynamics. Water Research. 2005,7(35):1817~1827
    45. L. Virbinia Beard, L. Mc-Carty. Performance Characterlistics of the Anaer-obic Baffled Reactor. Water Res. 1985
    46. P. WilIiam Barber, C. David Stuckey. Startupstrategies for Anaerobic Baffled Reactors Treating Asynthetic Sucrose Feed. Proc 8th International Conf on Anaerobic Digestion. 1997.87~90
    47. A. Grobicki, D. C. Stuckey. Performance of Theanaerobic Baffled Reactor under Steady-State And Shock Loading Conditions. Biotech. and Bio-eng. 1991, 344~355
    48. S. Nachaiyasit, D. C. Stuckey. Effect of Low Tem-Peratures on the Performance of an Anaerobicbaffled Reactor (ABR). Joural Chem. Tech.Biotech. 1997,69:276~284
    49. S. Sung, R. R. Dague. Laboratory Studies on Theanaerobic Sequencing Batch Reactor. Water Environment Research. 1995,67(3):294~301
    50. U. J. Ndon, R. R. Dague. Effects of Temperatureand Hydraulic Retention Time on Anaerobic Sequencing Batch Reactor Treatment of Low-strength Wastewater. Water Research. 1997,31(10):2455~2466
    51. R. R. Dague, G. C. Bunik, T. G. Ellis. Anaerobicsequencing Batch Reactor Treatment of Dilatewastewater at Psychrophilic Temperatures. Water Research. 1998, 70(2):155~160
    52.赵一章.产甲烷细菌及其研究方法.成都:成都科技大学出版社,1997.94~100
    53. M. T. Kato, J. A. Field, R. Kerebezerm. et al. Treatment of Low Strength SoLuble Wastewater in UASB Reactors. Journal of Fermentation and Bioengineering. 1994,77(6):679~685
    54. T. Kato. The AnaerobicTreatment of Low Strengeh Wastewater in UABS and EGSB Reactors. Water Science and Technology. 1997,36(6):375~382
    55. L. A. Nuneu. Anaerobic Treatment of SLaughterhouseWastewater in an Expanded Granular Sludge Bed (EGSB) Reactor. Water Science and TechnoLogy. 1990,40(8):99~106
    56. J. H. F. Pereboom. Methanogenic Granule Development in Full Scale Internal Circulation Reactors. Water Science and Technology. 1994,30(8):9~21
    57.任南琪,刘敏,等.两相厌氧系统中产甲烷相有机酸转化规律.环境科学. 2003,24(4):89~93
    58.赵文玉,吴振斌.新型厌氧处理反应器的发展及应用.四川环境. 2002,21(1): 32~36
    59.许玉东.味精废水处理工艺设计.给水排水,2002,28(3):34~37
    60. J. N. Udemedon. Effects of Temperature and Hydraulic Retention Time on ASBR Treatment of Low Strength Wastewater. Water Research. 1997,31(10):2455~2466
    61. W. R. Ross. PracticaL Application of ADUF Process to the Full-scale Treatment of a Maize procesing Effluent. Water Science and Technology. 1992,25(10):27-39
    62.我国几种工业废水治理技术研究.第三分册:高浓度有机废水.北京:化学工业出版社,1988.87~91
    63.涂建成.现代厌氧反应器的现状与发展.新疆环境保护.2004,26(3):09~12
    64. S. Yoshihiro, S. Takamasa, T. Na-oki. Dehydrogenation of Ethylbenzene with an Activated Carbon-supported Vanadium Catalyst. Applied Catalysis. 2000(192):281~288
    65. P. Albers, R. Burmeister, K. Seibold. Investigations of Palladium Catalysts on Different Carbon Supports. Journal of Ca ta lysis. 1999(181):145~154
    66.周岭,李文哲.我国厌氧工艺的发展近况.可再生能源.2002,(5):12~15
    67.赵立军,腾登用等.废水厌氧生物处理技术综述与研究进展.环境污染治理技术与设备.2001,2(5):58~66
    68.李鹏,王爱杰等.污水厌氧生物处理的新工艺-IC厌氧反应器.哈尔滨商业大学学报.2004,20(1):86~89
    69.胡纪萃.废水厌氧生物处理理论与技术.北京:中国建筑工业出版社,2003.97~100
    70.马溪平.厌氧微生物学与污水处理.化学工业出版社,2005.124~128
    71. M. P. J. Bryant. Animal Science. 1979,48(1):193~201
    72. J. G. Zeikus. Anaerobic Digestion. Applied Science Publisher Ltd. 1980. 61~87
    73. S. H. Zinder. Appl. Environ. MicrobioL. 1984(47):96~807
    74.董艇,沈耀良,王承武.厌氧反应器技术的发展及ABR反应器的工艺特点.江苏环境科技.2001,14(4):9~11
    75.黄永恒.折流板厌氧反应器的工艺特性及应用.中国给水排水. 1999,(7):18~20
    76.沈耀良,王宝贞等.厌氧折流板反应器处理垃圾渗滤混合废水.中国给水排水.1999,(5):10~12
    77.左剑恶.厌氧消化过程中的酸碱平衡及pH控制的研究.中国沼气.1998,16(1):3~7
    78. C. Y. Li. Methanogenic Digestion Using Mixed Substrate of Acetic. Propionic And Butyric Acids. Water Res. 2006,20(3):385~394
    79. Y. Ueno, S. Haruta, M. Ishii. Microbial Community in Anaerobic Hydrogen-Producing Microflora Enriched from Sludge Compost. Appl Microbiol Biotechnol. 2005,( 57):555~562
    80. H. J. Gijzen. Anaerobic Bacteria Community. Biotech. and Bioeng.2001,31(4):418~425
    81. A. Buchan, S. Y. Newell, M. Butler. Dynamics of Bacterial and Fungal Communities on Decaying Salt Marsh Grass. App. Environ. Microbiol.2003,69: 6676~6687
    82.刘双江,胡纪萃,顾夏声.厌氧颗粒污泥形成过程的微生物学研究.中国环境科学. 1992,12(6):405~409
    83. R. Tabassum, M. I. Rajoka. Methanogenesis of Carbohydrates And Their Fermentation Products By Dystrophic Methane Production Bacteria Isolated From Freshwater Sediments. Bioresource Technology. 2004,(72):199~205
    84. G. E. Hutchinson. Concluding Remarks. Cold Spring Symposia on Quantitative Biology. 1957,22: 415~427
    85.于宏兵,吴睿等.固定化酶酸化/UASB两相厌氧有机酸代谢特征.环境科学.2006,27(3):483~487
    86. D. H. Zitomer. Feasibility and Benefits of Methanogenesis Under Oxygen-limited Conditions. Waste Management. 1998,18:107~116
    87.陈亚,林波.废水厌氧生物处理及其理论研究.江西化工.2007,(1):18~21
    88.赵立军,滕登用,刘金玲等.废水厌氧生物处理技术综述与研究进展.环境污染治理技术与设备.2001,2(5):58~66
    89.陈威,朱雷,梁华杰.废水厌氧生物处理的研究与进展.国外建材科技,2006,27(1):51~53
    90.郑元景,沈永明,沈光范.污水厌氧生物处理.中国建筑工业出版社, 1987:10~30
    91.凌代文,刘聿太,乐华爱.厌氧消化器中微生物生态学的研究.微生物学报. 1992,32(2):79~84
    92.陈艺阳,刘和,堵国成等. 2-溴乙烷磺酸盐对污泥厌氧发酵过程中乙酸累积及细菌种群的影响.应用与环境生物学报.2007,13(1):108~111
    93. G. GottschaLk. Bacterial Metabolism. New York: Springer-Verlag.1986. 242~249
    94. J. I. Horiuchi, T. Shimizu, K. Tada. Dynamic Behavior in Response to pH Shift During Anaerobic Acidogenesis with a Chemstat Culture. Biotech Tech. 1999,13:155~157
    95. J. I. Horiuchi, T. Shimizu, K. Tada. Selective Production of Organic Acids inAnaerobic Acid Reactor by pH Control. Bioresource Technology.2002.82: 209~213
    96. N. Q. Ren, B. Z. Wang, F. Ma. Hydrogen Bio-production of Car-bohydrate Fermentation by Anaerobic Sludge Process. In: Proceedings 68th Annual Water Environmental Federal Conference. Miami: Kluwer Academic/PLenum Publisher.1995.145~152
    97. N. Q. Ren, B. Z. Wang, J. C. Huang. Ethanol-type Fermentation from Carbohydrate in High Rate Acidogenic Reactor. Biotechnol.& Bioeng. 1997,54(5): 428~433
    98. A. Cohen, J. M. Gemert, R. J. Zoeremeyer. Main Characteristics and Stoichiometric Aspects of Acidogenesis of Soluble Carbohydrate Containing Wastewater. Proc.Biochem. 1984,19 (6): 228~232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700