过瘤胃脂肪和过瘤胃葡萄糖对奶牛生产性能和能量代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奶牛泌乳早期能量代谢特点是干物质摄入减少、机体能量需求增加所致的能量负平衡。严重的能量负平衡会造成奶牛酮病、脂肪肝。它们是威胁奶牛泌乳早期代谢健康和泌乳性能的重要的营养代谢病,已被世界奶牛养殖业列为重要的围产期疾病而加以研究和防治。为了有效的缓解奶牛泌乳早期能量负平衡,减少奶牛酮病和脂肪肝的发生,本试验开展了过瘤胃脂肪和过瘤胃葡萄糖对泌乳早期奶牛生产性能和机体能量代谢的影响的研究工作,旨在明确过瘤胃脂肪和过瘤胃葡萄糖预防奶牛泌乳早期能量负平衡的效果,阐明其作用机制,确立其有效的添加剂量,为今后推广应用该制剂提供科学依据。
     选取产后10~15天,年龄、胎次、产奶量相近,年产奶量大于6吨的荷斯坦奶牛42头,随机分为7组,每组各6头。Ⅰ、Ⅱ、Ⅲ组分别在基础日粮中每头每天添加200g、300g和400g过瘤胃脂肪;Ⅳ、Ⅴ、Ⅵ组分别在基础日粮中每头每天添加200g、300g和400g过瘤胃葡萄糖;Ⅶ组为对照组,饲喂基础日粮。过瘤胃脂肪和过瘤胃葡萄糖分早晚两次混于精料中,任其自由采食,饲喂期20天。通过对试验奶牛在饲喂前、饲喂后10天和20天的干物质摄入量、产奶量、乳汁成分的分析以及血液代谢产物(葡萄糖、β-羟丁酸、游离脂肪酸、尿素氮、总胆固醇和甘油三酯)和激素(胰岛素、瘦素和胰高血糖素)的测定,结果显示:(1)与对照组比较,各试验组干物质摄入量无显著变化(P>0.05);Ⅲ组和Ⅳ组产奶量极显著升高(P<0.01);乳脂肪、乳蛋白、乳糖和乳非脂固形物水平均不显著(P>0.05)。(2)与对照组比较,Ⅲ组血糖浓度显著升高(P<0.05),Ⅴ组血糖浓度极显著升高(P<0.01);Ⅵ组血浆β-羟丁酸浓度显著升高(P<0.05);Ⅴ组血浆胰岛素水平显著升高(P<0.05);Ⅰ组和Ⅳ组血浆胰高血糖素水平显著升高(P<0.05);血浆游离脂肪酸、甘油三酯、总胆固醇、尿素氮和瘦素变化均不显著(P>0.05)。
     这些结果表明(1)过瘤胃脂肪和过瘤胃葡萄糖能提高奶牛泌乳性能;(2)过瘤胃脂肪能提高血糖水平,从而改善奶牛的能量负平衡;同样地200g和300g过瘤胃葡萄糖能提高血糖水平,改善奶牛的能量负平衡;(3)200g过瘤胃脂肪和200g过瘤胃葡萄糖均能增加经济效益,但200g过瘤胃葡萄糖获得的经济效益最大。
Energy metabolism in early lactating cows is characteristic of negative energy balace caused by a decrease of dry matter intake and a increase of body energy demand. The severe negative energy balance can bring about cows’ketosis and fatty liver, which are thought highly of as important metabolic diseases threatening health and milk performance of ealy lactating cows in all dairy cows county. To search for more effctive methods of relieving negative energy balance, decrease incidence of cows’ketosis and fatty liver in early lactation. In the experiment, effects of rument bypass fat and rument glucose on production performance and body energy metabolism were observed to understand its preventive effect on negative energy balance, to clarity its mechanism of action, to establish effectvie additive dosage, and to provide the scientific basis for its application in future.
     Forty two Holstein cows which have silimar age, parity, and milk yield (more than 6000kg/305d), were randomly divided into seven groups at 10~15 day postpartum, 6 cows in each group. Every day cows in group I, II, and III were fed by a basal diets containing 200g, 300g, and 400g rumen bypass fat respectively. Each cow in groupⅣ,Ⅴ, andⅥwere fed by a basal diets containing 200g, 300g and 400g rumen bypass glucose respectively. GroupⅦis control group fed a basal diet. Rumen bypass fat and rumen bypass glucose are mixed into grain feed in the morning and in the evening, freedom feeding for 20 days. Dry matter intake, milk yield, milk ingredients, blood metabolites (glucose,β-hydroxybutyrate, free fatty acid, urea nitrogen, total cholesterol and triglyceride) and hormone (Insulin, leptin and glucagons ) were measured before feeding and 10 day, 20 day after feeding, results showed that (1) Compared with controls, dry matter intake change nonsignificantly in all treatmemt cows (P > 0.05), and milk yield increased very significantly in group III and IV (P < 0.01), but levels of milk fat, protein, lactose, and solids-not-fat vary nonsignificantly. (2) Compared with controls, concentration of plasma glucose increased markedly in groupⅢ(P < 0.05), and increased very significantly in groupⅤ(P < 0.01). Concentrations of plasmaβ-hydroxybutyric acid increased significantly in groupⅥ(P < 0.05). Level of plasma insulin increased significantly in groupⅤ(P < 0.05). Level of plasma glucagons increased significantly in groupⅠ, andⅣ(P < 0.05). Concentration of plasma free fatty acid, triglyceride, cholesterol, urea nitrogen, and leptin vary non- significantly (P > 0.05).
     Conclusions obtained that (1) Rumen bypass fat and glucose can improve cows milk performance in early lactation. (2) Rumen bypass fat can raise up plasma glucose level of early lactating cows, thereby improve cows’negative energy balance. As well, plasma glucose level can increase in early lactating cows fed a diet containing 200g and 300g rumen bypass glucose, thereby improve cow negative energy balance. (3) The more economic benefits obtained in early lactating cows fed a diets containing 200g rumen bypass fat or 200g rumen bypass glucose, but the maximum economic benefits obtained in a diet containing 200g rumen bypass glucose.
引文
[1]刘艳琴,李建国,江富华,等.泌乳早期奶牛日粮中添加脂肪酸钙对乳成分的影响.中国畜牧杂志, 2000, 36(5): 38~39
    [2]高士争,雷风,杨炳毅,等.脂肪酸钙添加剂提高奶牛生产性能的研究.中国奶牛, 1998, 4: 21~22
    [3] Schauff D J, Clark J H, Drackley J K. Effects of Feeding Lactating Dairy Cows Diets Containing Extruded Soybeans and Calcium Salts of Long-chain Fatty Acids. J Dairy Sci, 1992, 75(11): 3003~3019
    [4]张克春.瘤胃稳定性脂肪对产后奶牛泌乳、繁殖性能和抗病力的影响: [博士学位论文].南京:南京农业大学, 2006
    [5]杨金波,李非.过瘤胃脂肪对奶牛体况及生产性能的影响.中国奶牛, 2006, 6: 19~20
    [6] Raclot T. Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog Lipid Res, 2003, 42(4): 257~288
    [7]王吉峰,王加启.奶牛营养代谢对乳脂合成调控机制的研究进展.中国畜牧兽医, 2003, 30(2): 6~10
    [8] Olsson H, Stralfors P, Belfrage P. Phosphorylation of the basal site of hormone-sensitive lipase by glycogen synthase kinase-4. FEBS Letters, 1986, 209(2): 175~180
    [9] Greenberg A S, Shen W J, Muliro K, et al. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem, 2001, 276(48): 45456~45461
    [10] Wang M Y, Lee Y, Unger R H. Novel form of lipolysis induced by leptin. J Biol Chem, 1999, 274(25): 17541~17544
    [11] Smih F, Rouet P, Lucas S, et al. Transcriptional regulation of adipocyte hormone-sensitive lipase by glucose. 2002, 51: 293~300
    [12] Berraondo B, Martínez J A. Free Fatty Acids Are Involved in the Inverse Relationship between Hormone-Sensitive Lipase (HSL) Activity and Expression in Adipose Tissue after High-Fat Feeding orβ3-Adrenergic Stimulation. Obesity Research, 2000, 8: 255~261
    [13]车英玉,孙国权,张辉,等.葡萄糖对体外培养的牛脂肪细胞HSL mRNA和ADPN mRNA丰度的影响.中国兽医学报, 2008, 28(2): 200~203
    [14]张辉,丛立新,张才,等. NEFA和BHBA对体外培养的脂肪细胞HSL、ADPN mRNA表达的影响. 2008, 28(7): 840~843
    [15] Vockley J, Whiteman D A. Defects of mitochondrial beta-oxidation: a growing group of disorders. 2002, 12(3): 235~246
    [16] Bennett M J, Rinaldo P, Strauss A W. Inborn errors of mitochondrial fatty acid oxidation. Crit Rev Clin Lab Sci, 2000, 37(1): 1~44
    [17] Wanders R J, Vreken P, den Boer ME, et al. Disorders of mitochondrial fatty acyl-CoA beta-oxidation. J Inherit Metab Dis, 1999, 22(4): 442~487
    [18]郭冬生,彭小兰.反刍动物挥发性脂肪酸消化代谢规律刍议.畜牧与饲料科学, 2005, 1:1~3
    [19]孙德成,智力,曼琳,等.脂肪酸添加剂对奶牛瘤胃挥发性脂肪酸和甲烷的影响.畜牧与兽医, 2008, 40(11): 21~24
    [20]徐运杰,方热军,戴求仲.短链脂肪酸的营养生理作用.饲料研究, 2007, 8: 26~ 28
    [21]唐晓艳,张洪友,寇力军.“酮病制剂1号”防治奶牛酮病效果观察.现代畜牧兽医, 2007, 4: 8~10
    [22]钟国清.双乙酸钠的合成和应用研究.兽药与饲料添加剂, 2000, 5: 30~32
    [23]李伟忠,单安山.挥发性脂肪酸在动物体内的作用.中国饲料, 2003, 12: 23~25
    [24]孟冬娅,胡晓芳,伍建中.体内脂肪的代谢特点和非酯化脂肪酸的临床意义.国外医学临床生物化学与检验学分册, 1999, 20(4): 156~157
    [25] Bell A W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J Anim Sci, 1995, 73: 2804~2819
    [26] Frayn K N. Non-esterified fatty acid metabolism and postprandial lipaemia. Atherosclerosis, 1998, 141: 41~46
    [27] Saleh J, Sniderman A D, Cianflone K. Regulation of p lasma fatty acid metabolism. Clinica Chimica Acta, 1999, 286: 163~180
    [28] Lee R G. Nonalcoholic steatohepatitis: a study of 49 patients. Human Pathol, 1989, 20(6): 594~598
    [29] Kleppe B B, R J Aiello, R R Grummer, et al. Triglyceride Accumulation and Very Low Density Lipoprotein Secretion by Rat and Goat Hepatocytes In Vitro. J Dairy Sci, 1988, 71(7): 1813~1822
    [30]孙斌,赵凯,王洪,等.奶牛酮病及其研究进展.黑龙江八一农垦大学学报, 1999, 11(3): 48~51
    [31]赵占宇,吴跃明,刘建新.高产奶牛酮病的研究进展.中国草食动物, 2007, 5: 58~60
    [32]卢德勋.反刍动物营养调控理论及其应用.内蒙古畜牧科学, 1993, (增刊): 1~6
    [33]迟景波.围产期酮病、脂肪肝奶牛生化指标的研究. [硕士学位论文].中国农业科学院, 2007
    [34]孙海洲,卢德勋,于朝晖,等.反刍动物葡萄糖营养研究进展.畜牧与兽医, 2002, 34: 67~75
    [35] Reynolds C K , P C Aikman, B Lupoli, et al. Splanchnic metabolism of dairy cows during the transition fromlate gestation through early lactation. J Dairy Sci, 2003, 86: 1201~1217
    [36]钟乐伦,姚军虎,徐明.反刍动物葡萄糖营养研究进展.饲料博览, 2006, 5: 13~15
    [37] Strobel H J, Russell J B. Effect of pH and Energy Spilling on Bacterial Protein Synthesis by Carbohydrate-Limited Cultures of Mixed Rumen Bacteria. J Dairy Sci, 1986, 69(11): 2941~2947
    [38] Huntington G B. Starch utilization by ruminants: from basics to the bunk. J Anim Sci, 1997, 75(3): 852~867
    [39] Kreikemeier K K, D L Harmon, R T Brandt Jr, et al. Small intestinal starch digestion in steers: effect of various levels of abomasal glucose, corn starch and corn dextrin infusion on small intestinaldisappearance and net glucose absorption. J Anim Sci, 1991, 69(1): 328~338
    [40] Krehbiel C R, R A Britton, D L Harmon, et al. Effects of varying levels of duodenal or midjejunal glucose and 2-deoxyglucose infusion on small intestinal disappearance and net portal glucose flux in steers. J Anim Sci, 1996, 74(3): 693~700
    [41] Harmon D L. Dietary influences on carbohydrases and intestinal capacity for starch hydrolysis in ruminants. J Nutr, 1992, 122: 203~210
    [42] Gulay M S, Hayen M J, Teixeira L C, et al. Responses of Holstein Cows to a Low Dose of Somatotropin (bST) Prepartum and Postpartum. J Dairy Sci, 2003, 86: 3195~3205
    [43] Velez J C and Donkin S S. Feed Restriction Induces Pyruvate Carboxylase but not Phosphoenolpyruvate Carboxykinase in Dairy Cows. J Dairy Sci, 2005, 88: 2938~2948
    [44] Lechner P S, Croniger C M, Hakimi P, et al. The Use of Transgenic Mice to Analyze the Role of Accessory Factor Two in the Regulation of Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription during Diabetes. J Biol Chem, 2001, 276(25): 22675~22679
    [45]沈坤堂,秦新裕,张新,等.胰岛素、胰高血糖素和地塞米松调节PEPCK启动子活性的体外研究.复旦学报(医学版), 2003, 30(4): 338~341
    [46] Williams E L, Rodriguez S M, Beitz D C, et al. Effects of Short-Term Glucagon Administration on Gluconeogenic Enzymes in the Liver of Midlactation Dairy Cows. J Dairy Sci, 2006, 89: 693~703
    [47]刘栩晗,李国生,朱华,等.小檗碱对2型糖尿病中国地鼠肝脏葡萄糖激酶、葡萄糖-6-磷酸酶和磷酸烯醇式丙酮酸羧激酶mRNA表达的影响.中国比较医学杂志, 2008, 18(4): 9~13
    [48]龚明,李超林,肖谦,等.脂联素对大鼠肝细胞葡萄糖激酶与磷酸烯醇式丙酮酸羧激酶活性影响的研究.重庆医科大学学报, 2005, 30(4): 567~569
    [49] Feng B, Li J, Kliegman R M. Differential Effects of Insulin-like Growth Factor-1 on Neonatal Canine Gene Expression. Biochemical and Molecular Medicine, 1999, 59(2): 154~160
    [50] Velez J C and Donkin S S. Bovine Somatotropin Increases Hepatic Phosphoenolpyruvate Carboxykinase mRNA in Lactating Dairy Cows. J Dairy Sci, 2004, 87: 1325~1335
    [51]夏成,王哲,徐闯,等.生糖底物和神经内分泌因子对新生犊牛肝细胞PEPCK-C mRNA表达水平的影响.中国兽医科学, 2006, 36 (04): 320~326
    [52]陈承祯.能量代谢相关因子对奶牛肝糖异生的调控作用: [博士学位论文].长春:吉林大学, 2007
    [53]冯仰廉.反刍动物营养学.北京:科学出版社, 2004, 368~377
    [54]任莹.反刍动物常用饲料过瘤胃淀粉量及小肠消化率测定及相关技术的研究: [硕士学位论文].南宁:广西大学, 2001
    [55] Hurtaud C, Lemosquet S, Rulquin H. Effects of Graded Duodenal Infusions of Glucose on Yield and Composition of Milk from Dairy Cows. 2. Diets Based on Grass Silage. Journal of Dairy Science, 2000, 83: 2952~ 2962
    [56] Bennink M R, R W Mellenberger, R A Frobish, et al. Glucose oxidation and entry rate as affected by the initiation of lactation. J Dairy Sci, 1972, 55: 712
    [57]何生虎,晁向阳,王明成.奶牛酮病的发病机理研究现状及进展.草食家畜(季刊), 2004, 3: 15~17
    [58]穆天龙,刘孝文.奶牛酮病的研究概况.动物医学进展, 2008, 29(6): 98~100
    [59]丰田洋治.酮病的治疗方法.家畜诊疗, 2002, (12): 789
    [60] Goff J P, Horst R L, Jardon P W, et al. Field trials of an oral calcium propionate paste as an aid to prevent milk fever in periparturient dairy cows. J Dairy Sci, 1996, 79(3): 378~383
    [61]许万祥.对奶牛酮病的防治几种饲料添加剂研究概况.饲料广角, 1993(5): 17~18
    [62]郭刚,刘强,霍文婕,等.丙酸钙在反刍动物中的研究进展.江西饲料, 2008, 6: 21~23
    [63] Vallimont J E, GA Varga, A Arieli, et al. Effects of prepartum somatotropin and monensin on metabolism and production of periparturient Holstein dairy cows. Journal of Dairy Science, 2001, 84: 2607~2621
    [64] Sauer F D, Kramer J K G, W J Cantwell. Antiketogenic effects of monensin in early lactation. Journal of Dairy Science, 1989, 72(2): 436~442
    [65]张富林,权会芳,孙义平.中医结合治疗乳牛酮病.中国兽医科技, 2004, 34(9): 76~77
    [66]郭善军.复方中药制剂对奶牛血液生化指标的影响.重庆工商大学学报, 2004, 21(5): 502~506
    [67]向湘春,张新长.广州地区奶牛酮体阳性规律的探索.上海奶牛, 1999, (4): 34~36
    [68]赵占宇,吴跃明.奶牛酮病的检测与防治.中国奶牛, 2005, 4: 45~47
    [69]张建岳主编.新编实用兽医临床指南.中国林业出版社, 2003, 227~228
    [70]张磊,时菊爱.奶牛酮病的综合防制.郑州牧业工程高等专科学校学报, 2005, 25(2): 194~195
    [71]巩鑫鹏,李富春,单晖.奶牛隐形酮病综合监控技术研究.现代化农业, 2006(10): 28~29
    [72] Bernard J K, Quigley J D, Dowlen H H, et al. Supplemental Niacin and Heat-Treated Whole Soybeans for Jersey Cows During Early Lactation. Journal of Dairy Science, 1995, 78(9): 2016~2023
    [73] Drackley J K, Lacount D W, Elliott J P, et al. Supplemental fat and nicotinic acid for Holstein cows during an entire lactation. Journal of Dairy Science, 1998, 81: 201~214
    [74] Nielsen N, Ingvartsen K L. Effect of propyleneglycol and niacin on metabolism, milk production and the risk of ketosis. Denmark, 2000, 21: 33~49
    [75] Nocek J E, W P Kautz, J A Z Leedle, et al. Direct-Fed Microbial Supplementation on the Performance of Dairy Cattle During the Transition Period. Journal of Dairy Science, 2003, 86: 331~335
    [76]霍小凯,王加启,卜登攀,等.淀粉和脂肪对奶牛能量负平衡的改善作用.中国畜牧兽医, 2008, 35(10): 75~78
    [77]刘艳琴,李建国,江富华.泌乳早期奶牛日粮中添加脂肪酸钙对脂肪代谢影响的研究.中国奶牛, 2001, 3: 18~19
    [78] Amaral D M, J J Veenhuizen, J K Drackley. Metabolism of Propionate, Glucose, and Carbon Dioxide as Affected by Exogenous Glucose in Dairy Cows at Energy Equilibrium. Journal of Dairy Science , 1990, 73(5): 1244~1254
    [79] Knowlton K F, T E Dawson, B P Glenn. Glucose Metabolism and Milk Yield of CowsInfused Abomasally or Ruminally with Starch. Journal of Dairy Science, 1998, 81(12): 3248~3258
    [80]周贵.饲料添加瘤胃素和采食量变化对肉牛瘤胃PH影响的研究.吉林农业大学学报(论文榜), 1999, 21(4): 1~5
    [81]陈胜昌.添加不同油脂对奶牛产奶量及奶品质的影响: [硕士学位论文].贵州大学, 2006
    [82] Hurtaud C, Rulquin H, Verite R. Effects of Graded Duodenal Infusions of Glucose on Yield and Composition of Milk from Dairy Cows. Diets Based on Corn Silage. J Dairy Sci, 1998, 81: 3239~3247
    [83]庄苏,陈银基,李建中,等.料中添加脂肪粉对高产奶牛生产性能的影响.粮食与饲料工业, 2004, 2: 42~43
    [84] Bernal-Santos G, J W Perfield, D M Barbano, et al. Production Responses of Dairy Cows to Dietary Supplementation with Conjugated Linoleic Acid (CLA) During the Transition Period and Early Lactation. J Dairy Sci, 2003, 86: 3218~3228
    [85]董宏伟.大豆油脂对奶牛繁殖性能和泌乳性能的影响: [硕士学位论文].长春:吉林农业大学, 2007
    [86] Frobish R A, Davis C L. Effects of Abomasal Infusions of Glucose and Proprionate on Milk Yield and Composition[J]. Journal of Dairy Science, 1977, 60: 204~ 209
    [87] Rigout S, Lemosquet S, Van Eys J E, et al. Duodenal glucose increases glucose fluxes and lactose synthesis in grass silage-fed dairy cows. J. Dairy Sci, 2002, 85: 595~ 606
    [88] Lemosquet S, Rigout S, Bach A, et al. Glucose Metabolism in Lactating Cows in Response to Isoenergetic Infusions of Propionic Acid or Duodenal Glucose. J Dairy Sci, 2004, 87: 1767~1777
    [89]刘洪生.影响乳成分的日粮调控技术.中国奶牛, 2008, 3: 22~ 24
    [90]周顺伍.动物生物化学.北京:中国农业出版社, 1999
    [91]张娜.真胃灌注葡萄糖或共轭亚油酸对奶山羊乳脂合成的影响: [硕士学位论文].济南:山东农业大学, 2006
    [92] Rigout S, Lemosquet S, Bach A, et al. Duodenal Infusion of Glucose Decreases Milk Fat Production in Grass Silage-Fed Dairy Cows. J Dairy Sci, 2002, 10: 2541~ 2550
    [93] Lemosquet S, Rideau N, Rulquin H, et al. Effects of a Duodenal Glucose Infusion on the Relationship Between Plasma Concentrations of Glucose and Insulin in Dairy Cows. J Dairy Sci, 1997, 11: 2854~2865
    [94]吴奎杰,田旭光,霍英宝.影响牛乳中蛋白质和脂肪含量的因素.辽宁畜牧兽医, 2004, 5: 12
    [95] Schaufp D J and Clark J H. Effect of feeding diets containing calcium salts of long-chain fatty acids to lactaing dairy cows. J Dairy Sci, 1992, 75: 2990~3002
    [96]瞿胜,彭夏雨,孙国军.脂肪酸钙在泌乳早期奶牛日粮中添加效果的研究.塔里木大学学报, 2005, 9: 8~10
    [97] Kent B A, Arambel M J. Effects of calcium salts of long-chain fatty acids on dairy cows in early lactation. J Dairy Sci, 1988, 71:2412~2415
    [98]孙海洲,卢德勋.十二指肠灌注不同水平的玉米淀粉对生长肥育绵羊小肠内葡萄糖消化及吸收的影响.动物营养学, 1999, 11: 173~185
    [99]郑伟.奶牛饲养管理技术.北京:中国农业出版社, 1999
    [100]苏文伟.乳酸等指标在奶牛分娩前后的动态变化及相关性研究: [硕士学位论文].南宁:广西大学, 2008
    [101]李艳飞,李红梅,牛淑玲,等.干奶期不同能量摄入对围产期乳牛血液葡萄糖胰高血糖素和胰岛素浓度的影响.中国兽医科学, 2006, 36(5): 389~392
    [102]刘艳琴,高洁,高玉红,等.炎热夏季奶牛日粮中添加脂肪酸钙对热应激影响的研究.草食家畜, 1999, 12 (4): 37~39
    [103]程建波.长链脂肪酸钙盐加工工艺及其饲喂奶牛效果的研究: [硕士学位论文].呼和浩特:内蒙古农业大学, 2005
    [104] Cant J P, Luimes P H, Wright T C, et al. Modeling intermittent digesta flow to calculate glucose uptake capacity of the bovine small intestine. Am J Physiol, 1999, 276: G1442~ G1451
    [105] Croom W J, McBride B W, Fan Y K, et al. Regulation of intestinal glucose absorption: A new issue in animal production. Can J Anim Sci, 1998, 78: 1~13
    [106] Kronfeld D S, Donoghue S, Naylor J M, et al. Metabolic Effects of Feeding Protected Tallow to Dairy Cows. Journal of Dairy Science, 1980, 63 (4): 545~552
    [107] Whitaker D A, Kelly J M, Smith E J. Subclinical ketosis and serum beta-hydroxybutyrate levels in dairy cattle. British Veterinary Journal, 1983, 139, 462~463
    [108] Oldick B S, Staples C R, Thatcher W W, et al. Abomasal Infusion of Glucose and Fat-Effect on Digestion, Production, and Ovarian and Uterine Functions of Cows. J Dairy Sci, 1997, 80: 1315~1328
    [109] Boudon A, Faverdin P, Delagarde R, et al. Effects of Rumen or Duodenal Glucose Infusions on Intake in Dairy Cows Fed Fresh Perennial Ryegrass Indoors. J Dairy Sci, 2007, 90: 4397 ~ 4410
    [110] Selberg K T, Lowe A C, Staples C R, et al. Production and Metabolic Responses of Periparturient Holstein Cows to Dietary Conjugated Linoleic Acid and trans-Octadecenoic Acids. J Dairy Sci, 2004, 87:158~168
    [111] Kristensen P. Indication for linkage of the human OB gene region with extremeobesity. Nature, 1998, 393: 72~76
    [112]薛瑞益.围产期奶牛血中某些生化指标与脂类代谢病关系的研究: [硕士学位论文].呼和浩特:内蒙古农业大学, 2006
    [113] Avila C D, E J DePeters, H Perez-Monti, et al. Influences of aturation Ratio of upplemental Dietary Fat on Digestion and Milk Yield in Dairy Cows. J Dairy Sci, 2000, 83:1505~ 1519
    [114] Sevinc M, A Basoglu, H Guzelbektas, et al. Lipid and Lipoprotein Levels in Dairy Cows with Fatty Live. J Vet Anim Sci, 2003, 27: 295~299
    [115] Douglas G N, T R Overton, H G Bateman, et al. Peripartal Metabolism and Production of Holstein Cows Fed Diets Supplemented with Fat During the Dry Period. J Dairy Sci, 2004, 87: 4210~ 4220
    [116] Weiss W P, D J Wyatt. Effect of Dietary Fat and Vitamin E on -Tocopherol in Milk fromDairy Cows. J Dairy Sci, 2003, 86:3582~3591
    [117] Chikhou F H, Moloney A P, Allen P, et a1. Long-term effects of cimaterol in friesian steers: Crowth feed efficiency and selected carcass traits. J Anim Sci, 1993, 71: 906~913
    [118]周玉财.日粮中添加不同种类的棕榈油产品对奶牛生产性能及血液指标的影响: [硕士学位论文].呼和浩特:内蒙古农业大学, 2008
    [119] Johnson K A, R L Kincaid, H H Westberg, et al. The effect of oilseeds in diets of lactating cows on milk production and methane emissions. J Dairy Sci, 2002, 85:1509~1515
    [120] Boken S L, C R Staples, L E Sollenberger, et al. Effect of Grazing and Fat Supplementation on Production and Reproduction of Holstein Cows. J Dairy Sci, 2005, 88: 4258~ 4272
    [121]左之才.不同能量水平对围产期奶牛生产性能、血液生化及内分泌因子影响的研究. [硕士学位论文].四川农业大学,2004
    [122] Chandler, P. Insulin is factor for transition cows, more information is needed. Feedstuffs. 1997, 1997, 69 (23) : 12~35
    [123] Chand P,刘德义.胰岛素对过渡期奶牛代谢的影响.国外畜牧科技,1998,25(1):10~11
    [124]杨沛林.不同能量摄入水平对奶牛生产性能及血液相关指标的影响. [硕士学位论文].中国农业科学院,2007
    [125] Carro E. Evidence of free and bound leptin in human circulation studies in lean and obese subjects and during short-term fasting. Endocrinology, 1997, 138: 2203~2206
    [126]刘国文,王哲.围产期奶牛能量代谢障碍性疾病的研究进展.黑龙江畜牧兽医, 2004, 8: 78~79
    [127]牛淑玲,李艳飞,王哲.围产期健康奶牛干物质摄入水平与血浆瘦素浓度及乳产量的关系.中国畜牧杂志, 2005, 41(3): 17~20
    [128]裴妍,李秀菊,张才.不同能量摄入水平对奶牛产乳性能及血液中Leptin和NPY浓度的影响研究.饲料工业, 2006, 27(21): 31~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700