水分胁迫下番茄幼苗多胺代谢变化及其与抗旱性的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以抗旱性不同的番茄(Solanum Lycopersicum L.)品种毛粉802和皇冠666幼苗为材料,采用营养液水培法,用不同浓度(0(CK),50,75,100 g·L~-(1))的聚乙二醇(PEG6000)模拟水分胁迫,研究不同胁迫条件下番茄幼苗多胺的代谢变化。然后在中度胁迫水平(75 g·L~-(1) PEG6000)下,喷施外源精胺(Spm),浓度设0、0.05、0.1、0.5 mmol·L~-(1)四个梯度,研究外源Spm对水分胁迫下番茄幼苗生理特性的影响。研究结果如下:
     1.水分胁迫影响番茄幼苗叶片和根系中的多胺代谢,随胁迫时间的延长,毛粉802和皇冠666叶片和根系中游离Put、Spd、Spm含量及ADC、ODC、PAO活性均呈先上升后下降的趋势,且除PAO外上升幅度随胁迫程度加重而增大。
     2.水分胁迫下番茄幼苗叶片和根中ADC、ODC活性与Put含量极显著正相关,表明ADC、ODC共同调控胁迫条件下番茄幼苗Put的合成代谢。
     3.水分胁迫下番茄幼苗多胺代谢活跃,且不同胁迫水平下多胺代谢间差异显著,胁迫处理下毛粉802叶片中3种多胺(Put、Spd、Spm)含量以及ADC、ODC活性的上升幅度都较皇冠666要高,多胺代谢与番茄抗旱间关系密切。
     4.水分胁迫下番茄幼苗体内各种代谢受到干扰,叶片内抗氧化的保护酶活性先增强后下降,可溶性蛋白质和游离脯氨酸含量增加,膜脂过氧化产物MDA的含量也增加,PAO活性得到提高。外源Spm处理后缓解了水分胁迫对番茄的伤害,相比胁迫对照,其保护酶活性增强,可溶性蛋白质含量增加,而游离Pro和MDA含量有所下降,PAO活性也受到抑制,有利于消除体内的活性氧自由基,减轻膜损伤,增强番茄抗旱能力。
     5.外源Spm可以提高番茄幼苗对水分胁迫的适应能力,且对抗旱性弱的皇冠666作用效果更好,但对正常水培条件下的番茄幼苗影响不大,其作用机理有待进一步研究。0.1 mmol·L~(-1)的外源Spm对番茄幼苗水分胁迫的缓解效果最好,为最适喷施浓度。
In a hydroponic culture with nutrient-solution, different concentrations of PEG6000(0(CK),50,75,100 g·L~-(1)) were added to stimulate different degrees of drought stress, aimed to study the changes of polyamines metabolism in two species of tomato seedlings, named as Maofen 802 and Huangguan 666, with different drought-resistance. In moderate stress(75 g·L~-(1) PEG6000), spraying exogenous spermine(Spm)with four gradients of 0、0.05、0.1、0.5 mmol·L~-(1), the effect of physiological characteristics on tomato seedlings was studied under water stress. The results showed as follows:
     1. The water stress affected polyamines metabolism in leaf and root of tomato seedlings. As stress time continued, the contents of free-Put, free-Spd, and free-Spm increased firstly and then decreased, the activity of ADC, ODC and PAO showed the same trend, moreover, rising amplitude increased as water stress aggravated except for PAO activity.
     2. There were a significantly positive correlation between ADC, ODC activity and Put content in the leaf and root of tomato seedlings under water stress. It showed that both ADC and ODC regulated anabolism of Put in tomato seedlings under water stress.
     3. Polyamines metabolism became active for tomato seedlings under water stress, and there existed significant differences among different water stress. The contents of three kinds of polyamines(Put、Spd、Spm)and ADC, ODC activity in the leaf of Maofen 802 seedlings showed higher rising amplitude than those of Huangguan 666. It demonstrated that there were close relation between polyamines metabolism and drought resistance for tomato.
     4. Normal metabolism was interfered in tomato seedlings under water stress. Antioxidant enzymes activity in leaf rose first and then decreased, soluble protein and free proline content increased, membrane lipid peroxidation produce MDA content increased, and PAO activity increased. Compared to the control, damage from water stress was relieved after spraying exogenous Spm to the tomato seedlings, which showed that protective enzyme activity reinforced, soluble protein content increased, while free proline and MDA content decreased, PAO activity was inhibited. All those were beneficial to remove reactive oxygen species, relieve membrane damage and enhance drought-resistance ability of tomato seedlings.
     5. Spraying exogenous Spm could enhance adaptive ability to defend water stress for tomato seedlings, and it had better effect on Huangguan 666. However, it had little influence on the tomato seedlings under normal hydroponic culture. The interactive mechanism deserved to make further research. It showed that the optimum concentration of exogenous Spm sprayed to tomato seedlings was 0.1 mmol·L~-(1), which could relieve the effect of water stress effectively.
引文
[1]翟学昌,彭丽.植物水分胁迫研究进展[J].科技信息, 2008, (36): 351, 378.
    [2] Iannucci A, Rascio A, Russo M, et al. Physiological responses to water stress following a conditioning period in berseem clover [J].Plant and Soil, 2002, 223: 217-227.
    [3]杨帆,苗灵凤,胥晓,等.植物对干旱胁迫的响应研究进展[J].应用与环境生物学报, 2007, 13(4): 586-591.
    [4]申亚梅,童再康,蔡建国,等.植物抗旱机制的研究进展[J].安徽农业科学, 2006, 34(20): 5214-5215, 5238.
    [5]武维华主编.植物生理学[M].北京:科学出版社. 2003.
    [6]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明含水量和光合特性的影响[J].厦门大学学报, 2005, 44(增刊): 28-31.
    [7]陈之欢.水分胁迫对两种旱生花卉生理生化的影响[J].中国农业简报, 2002, 18(2):20-23.
    [8]黄建昌,肖艳,周厚.高渗透胁迫对番木瓜若干生理性状的影响[J].广西植物, 2004, 24(1):73-76.
    [9]邓艳,蒋忠诚,罗为群,等.不同岩溶干旱胁迫下青冈栎水分生理对比研究[J].农业现代化研究, 2006, 27(3): 238-240.
    [10]姚觉,于晓英,邱收,等.植物抗旱机理研究进展[J].华北农学报, 2007, 22(增刊): 51-56.
    [11]韦莉莉,张小全,侯振宏,等.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报, 2005, 29(3): 394-402.
    [12]王海珍,韩蕊莲,梁宗锁,等.土壤干旱对辽东栎,大叶细裂槭幼苗生长及水分利用的影响[J].西北植物学报, 2003, 23(8):1377-1382.
    [13] Hsiao T C, Xu I K. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport [J].Exp Bot, 2000, 51(350): 1595-1616.
    [14]杨凤云.土壤水分胁迫对梨树生理特性的影响[J].安徽农业, 2004, (6):11-12.
    [15]侯艳伟,王迎春,杨持.绵刺(Potaninia mongolica)对干旱生境的适应特征[J].内蒙古大学学报(自然科学版), 2005, 36(3): 355-360.
    [16]孙宪芝,郑成淑,王秀峰.木本植物抗旱机理研究进展[J].西北植物学报, 2007, 27(3): 629-634.
    [17]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社. 2004.
    [18]户连荣,郎南军,郑科.植物抗旱性研究进展及发展趋势[J].安徽农业科学, 2008, 36(7): 2652-2654.
    [19]张永强,毛学森,孙宏勇,等.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学报, 2002, 10(4): 13-15.
    [20]景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏光合特性的影响[J].南京林业大学学报, 2005, 29(4): 83-86.
    [21]孙骏威,杨勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学, 2004, 18(6): 539-543.
    [22]赵九洲,刘绍洪.渗透调节机制与植物的抗旱性研究[J].江西林业科技, 2005, (4): 27-30.
    [23]宋爱琴,陈圣宾,李振基,等.水分胁迫对生态恢复重要树种木荷与白楸幼苗的影响[J].厦门大学学报(自然科学版), 2006, 45(增刊): 109-113.
    [24] Slik J W F. El Nino droughts and their effects on tree species composition and diversity in tropical rain forests [J].Oecologia, 2004, 141: 114-120.
    [25] McCue K F, Hanson A D. Drought and salt tolerance: towards understanding and application [J].Trends Biotechnol, 1990, 8: 358-362.
    [26] Kishor K P B, Sangam S, Amrutha R N, et al. Regulation of praline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance [J]. Current Science, 2005, 88(3): 424-438.
    [27]苏梦云.杉木幼苗在渗透胁迫下脯氨酸积累及Ca的调节作用研究[J].林业科学研究, 2003, 16(3): 335-337.
    [28]徐迎春,张佳宝,蒋其鳌,等.水分胁迫对忍冬生长及金银花质量的影响[J].中药材, 2006, 29(5): 420-422.
    [29]吴晓红,唐中华,祖元刚.水分胁迫对迷迭香中游离氨基酸的影响[J].东北林业大学学报, 2006, 34(3): 57-58.
    [30]揭雨成,黄丕生,李宗道.干旱胁迫下苎麻的生理生化变化与抗旱性的关系[J].中国农业科学, 2000, 33(6): 33-39.
    [31] Street T O, Bolen D W, Rose G D, A molecular mechanism for osmolyte-induced protein stability [J]. Proc. Natl. Acad. Sci, USA, 2006, 103(38): 13997-14002.
    [32]杜栋,王有年,于继洲,等.水分胁迫下外源甜菜碱对桃叶片光合作用的影响[J].北京农学院学报, 2004, 19(2): 1-4.
    [33]李莹,张利民.植物甜菜碱及甜菜碱合成酶研究进展[J].杂粮作物, 2006, 26(3): 191-193.
    [34] Sakamoto A, Murata N. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants [J].Plant, Cell and Environment, 2002, 25: 163-171.
    [35]郑国琦,许兴,邓西平,等.盐分和水分胁迫对枸杞幼苗渗透调节效应的研究[J].干旱地区农业研究, 2002, 20(2): 56-59.
    [36]杜金友,陈晓阳,李伟,等.林木抗旱的渗透调节及其基因工程研究进展[J].西北植物学报, 2004, 24(6): 1154-1159.
    [37] Alpert P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare [J].Exp Biol, 2006, 209: 1575-1584.
    [38] Thompson D S S. Multiple signals and mechanisms that regulate leaf growth and stomatal behanviour during water deficit [J].Physiologia Plantarum, 1997, 100: 303-308.
    [39] Evans R D, Black R A, Loescher W H, et al. Osmotic relations of the drought-toledentate in response to water stress [J]. Plant, Cell and Environment, 1992, 15: 49-59.
    [40] Munns R, Sharp R E. Involvement of abscisic acid in controlling plant growth in soils of low water potential [J]. Plant Physiol, 1993, 20: 425-437.
    [41]刘瑞香,杨吉力,高丽.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报, 2005, 19(3): 148-151.
    [42]王忠.植物生理学[M].北京:中国农业出版社, 1999.
    [43] Robert A, Creelman R A, Mullet J E. Jamonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress [J].Proceeding of the National Academy of Sciences of the U.S.A, 1995, 89: 4939-4941.
    [44] Creelman R A, Mullet J E. Jamonic acid distribution and action in plants: Regulation duringdevelopment and response to biotic and abiotic stress [J].Proceeding of the National Academy of Sciences of the U.S.A, 1995, 92: 4114-4119.
    [45] Xin Z Y, Zhou X, Pilet P E. Level changes of jasmonic, abscisic, and indole-lyl-acetic acids in maize under desiccation stress [J].Journal of Plant Physiology, 1997, 1: 120-124.
    [46]崔凤芝,张运涛.多胺与园艺植物生长发育的关系[J].河北农业大学学报, 1996, 19(3): 94-98.
    [47]关军锋,刘海龙,李光敏.干旱胁迫下小麦幼苗根、叶多胺含量和多胺氧化酶活性的变化[J].植物生态学报, 2003, 27(5): 655-660.
    [48]朱学艺,张承烈.植物响应水分胁迫的主要功能蛋白[J].西北植物学报, 2003, 23(3): 503-508.
    [49]李善菊,任小林.植物水分胁迫下功能蛋白的研究进展[J].水土保持研究, 2005, 12(3): 64-69.
    [50]曾庆平,郭勇.植物的逆境应答与系统抗性诱导[J].生命的化学, 1997, 17(3): 31-33.
    [51]余淑文,汤章成.植物生理与分子生物学[M].北京:科学出版社, 1998.
    [52]刘国琴,樊卫国.果树对水分胁迫的生理响应[J].西南农业学报, 2000, 13(1): 101-106.
    [53]陈由强,朱锦懋,叶冰莹.水分胁迫对芒果(Mangiferaindica L.)幼苗细胞活性氧伤害的影响[J].生命科学研究, 2000, 4(1): 60-64.
    [54]王群,尹飞,李潮海.水分胁迫下植物体内活性氧自由基代谢研究进展[J].河南农业科学, 2004, (10): 25-28.
    [55]沈秀瑛,徐世昌,戴俊英.干旱对玉米叶SOD、CAT及酸性磷酸酯酶活性的影响(简报)[J].植物生理学通讯, 1995, 31(3): 183-186.
    [56] Graham N. Ascorbate and glutathione: keeping active oxygen under control [J]. Annu Rev Plant Physiol Plant Mol Biol., 1998, 49: 249-79.
    [57] Inze D, et al. Oxidative stress in plants [J].Curr Opin Biotechnol, 1995, 6: 153-158.
    [58]姚允聪,张大鹏,王有年,等.水分胁迫条件下苹果幼苗叶绿体抗氧化代谢研究[J].果树科学, 2000, 17(1): 1-6.
    [59]李文卿,潘廷国,柯玉琴,等.土壤水分胁迫对甘薯苗期活性氧代谢的影响[J].福建农业学报, 2000, 15(4): 45-50.
    [60]潘秋红,赖杭桂,陈晓敏,等. Ca2+对水分胁迫条件下芒果叶片膜脂过氧化及膜保护系统的影响[J].热带作物学报, 2000, 21(2): 30-36.
    [61]时连辉,牟志美,姚健.不同桑树品种在土壤水分胁迫下膜伤害和保护酶活性变化[J].蚕业科学, 2005, 31(1): 13-17.
    [62]闫成仕.水分胁迫下植物叶片抗氧化系统的响应研究进展[J].烟台师范学院学报, 2002, 18(3): 220-225.
    [63]何冰,许鸿源,何若天.氯化胆碱对干旱胁迫下玉米幼苗叶片膜结构保护机制的研究[J].广西农业生物科学, 1999, 18(4): 253-257.
    [64]陈龙,王贤.植物水分诱导蛋白的特性和功能[J].植物学教学, 2003, 28(11): 2-3.
    [65]谢深喜,张秋明,熊兴耀,等.水分胁迫对植物基因表达的影响[J].湖南农业大学学报(自然科学版), 2005, 31(5): 574-579.
    [66] Santoni V, Gerbeau P, Javot H, et al.The high diversity of aquaporins reveals novel facets of plant membrane functions[J].Curr Opin Plant Biol, 2000, 3(6): 476-481.
    [67] Johnson K D, Herman E M, Chrispeels M J. An Aboundant Highly Conserd Tonoplast Protein Seeds [J].Plant Physiol, 1989, 91: 1006-1013.
    [68]张林生,赵文明. LEA蛋白与植物的抗旱性[J].植物生理学通讯, 2003, 39(1): 61-66.
    [69]孙歆,雷韬,袁澍,等.脱水素研究进展[J].武汉植物学研究, 2005, 23(3): 299-304.
    [70] YEO A. Molecular biology of salt tolerance in the whole plant physiology [J].Journal of Experiment Botnny, 1999, 49: 915-920.
    [71] Marie Boudsocq, Chritiane Lauriere. Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families [J].Plant Physiology, 2005, 138: 1185-1194.
    [72] Taishi Umezawa, Riichiro Yoshida, Kyonoshin Maruyama, et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in A rabidopsis thaliana [J]. PNAS, 2004, 101(49): 17300-17311.
    [73] Urao T, Katagiri T, Mizoguchi T, et al. Two genes that encode Ca2+-dependent protein kinase are induced by drought and high salt stress in a rabidopsis thaliana [J].Mol Gen Genet, 1994, 244: 331-340.
    [74] Hsiao T C. Plant response to water stress [J].Ann Rev Plant Physiol, 1973, 24: 519-570.
    [75]汪沛洪.植物多胺代谢的酶类与胁迫反应[J].植物生理学通讯, 1990, 36(1): 1-7
    [76]郭世荣,橘昌司,李谦盛.营养液温度和溶解氧浓度对黄瓜植株氮化合物含量的影响[J].植物生理与分子生物学学报, 2003, 29(6): 593-596.
    [77]周阮宝,谷丽萍.几种新型植物内源生长调节物质[J].生物学通报, 1998, 33(5): 2-4.
    [78]李思义.植物多胺与作物营养诊断相关性[J].北京农业, 2007, (2): 11-12.
    [79]潘瑞炽.多胺是植物生长发育的调节物质[J].植物生理学通讯, 1985, 31(6): 63-681.
    [80]段辉国,袁澎,刘文娟,等.多胺与植物逆境胁迫的关系[J].植物生理学通讯, 2005, 41(4): 531-536.
    [81]牛明功,陈龙,王贤,等.水分胁迫对小麦幼苗叶片多胺含量的影响[J].热带亚热带植物学报, 2004, 12(6): 501-505.
    [82]邢更生,周功克,李志孝.水分胁迫下山黧豆多胺代谢与β-N-草酰-L-α,β-二氨基丙酸积累相关性的研究[J].植物学报, 2000, 42(10): 1039-1044.
    [83]陈坤明,张承烈.干旱期间春小麦叶片多胺含量与作物抗旱性的关系[J].植物生理学报, 2000, 26(5): 381-386.
    [84] Scaramagli S, S Biondi, A Leone, et al. Acclimation to low potential in potato cell suspension cultures leads to changes in potential metabolism [J]. Plant Physiology and Biochemistry, 2000, 38: 345-351.
    [85]谢玉英,李绪友.多胺与植物抗逆性的关系[J].湖北生态工程职业技术学院学报, 2007, 5(1): 15-19.
    [86] Sara Bover-Cid, Maria Iquierdo-Pulido, Abel Marine-Font, et al. Biogenic mono-, di- and polyamine contents in Spanish wines and in?uence of a limited irrigation [J].Food Chemistry, 2006, 96: 43-47.
    [87]汪天,王素平,郭世荣,等.外源亚精胺对根际低氧胁迫下黄瓜幼苗光合作用的影响[J].应用生态学报, 2006, 17(9): 1609-1612.
    [88]李璟,胡晓辉,郭世荣,等.外源亚精胺对根际低氧胁迫下黄瓜幼苗根系多胺含量和抗氧化酶活性的影响[J].植物生态学报, 2006, 30(1): 115-123.
    [89] Zapata P J, Serrano M, Pretel T, Amoros A, Botella M A. Changes in ethylene evo1ution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination[J].Plant Sci, 2003, 164: 557-563.
    [90]段九菊,郭世荣,康云艳.外源亚精胺对盐胁迫下黄瓜幼苗活性氧水平和抗氧化酶活性的影响[J].园艺学报, 2006, 33(3): 634-639.
    [91]张润花,郭世荣,樊怀福.外源亚精胺对盐胁迫下黄瓜植株氮化合物含量和硝酸还原酶活性的影响[J].武汉植物学研究, 2006, 24(4): 381-384.
    [92]王素平,贾永霞,郭世荣,等.多胺对盐胁迫下黄瓜幼苗体内K+、Na+和Cl-含量及器官间分布的影响[J].生态学报, 2007, 27(3): 1-8.
    [93] Gabor G, Gabor K, Kaur-Sawhney R, et al. Chromosomal localization of osmotic and salt stress-induced differential alterations in polyamine content in wheat [J].Plant Science, 2003, 92(2): 203-211.
    [94] Lefevre I, Gratia E, Lutts S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa)[J]. Plant Science, 2001, 61(5): 943-952.
    [95]康云艳,郭世荣,段九菊.新型植物激素与蔬菜作物抗逆性关系研究进展[J].中国蔬菜, 2007, (5): 39-42.
    [96]关军锋,李广敏.干旱胁迫下根系功能的表达与调节[J].中国基础科学, 2001, (3): 25-28.
    [97]李宗植.干旱地区摆脱缺水困境须综合治理[N].光明日报, 1999-02-01.
    [98]李智念,王光明,曾之文.植物干旱胁迫中的ABA研究[J].干旱地区农业研究, 2003, 21(2): 99-104.
    [99]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社, 2004.
    [100]张木清,陈如凯,余松烈.水分胁迫下蔗叶多胺代谢变化及其同抗旱性的关系[J].植物生理学报, 1994, 22(3): 327-332.
    [101] Liu H P, Dong B H, Liu Y L, et al. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings [J].Plant Sci, 2004, 166(5): 1261-1267.
    [102] HE L, NADA K, ACHIBANAS. Effect of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plant [J]. J Japan Soc Hort Sci, 2002, 71: 490-498.
    [103]张胜,刘怀攀,陈龙,等.亚精胺提高大豆幼苗的抗旱性[J].华北农学报, 2005, 20(4): 25-27.
    [104] Baselga Yrisarry J J. Response of procession tomato to three different levels of water and nitrogen applications [J].Acta hort, 1993, 335: 149-153.
    [105]赵可夫.作物抗性生理[M].北京:农业出版社, 1994.
    [106]刘友良,汪良驹.植物生理与分子生物学[M].北京:科学出版社, 1998.
    [107]沈惠娟,谢寅峰.多胺(PAs)与植物的几种胁迫反应[J].南京林业大学学报, 1997, 21(4): 26 -29.
    [108]郭紫娟,孙风国,张慎好.多胺对果树生长发育的影响研究进展[J].河北农业科学, 2005, 9(3): 99-102.
    [109]刘俊,吉晓佳,刘友良.检测植物组织中多胺含量的高效液相色谱法[J].植物生理学通讯, 2002, 38(6): 596-598.
    [110]赵福庚,刘友良.精氨酸脱羧酶和谷酰胺转移酶活性的测定方法[J].植物生理学通讯, 2000, 36(5): 442-445.
    [111]汪天,郭世荣,刘俊,等.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用[J].植物生理学通讯, 2004, 40(3): 358-360.
    [112] Santa-Cruz A, Perez-Alfocea F, Caro M, et al. Polyamines as short-term salt tolerance traits in tomato [J].Plant Science, 1998, 138: 9-16.
    [113]汪耀富,张瑞霞.渗透胁迫下烤烟内源多胺含量及其代谢酶活性变化[J].干旱地区农业研究, 2005, 23(6): 88-92.
    [114]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社, 2002.
    [115]郝在彬,苍晶,等.植物生理试验[M].哈尔滨:哈尔滨工业大学出版社, 2004.
    [116]高俊凤.植物生理学实验技术[M].西安:世界图书出版公司, 2000.
    [117]张满效,王邦锡,黄久常.水分胁迫对小麦叶片内源多胺的累积和乙烯产生的影响[J].甘肃科学学报, 1995, 7(4): 33-36.
    [118]高洪波,刘艳红,郭世荣,等.低氧胁迫下钙对网纹甜瓜幼苗多胺含量及多胺氧化酶活性的影响[J].植物生态学报, 2005, 29(4): 652-658.
    [119]葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学, 2005, 38(5): 922-928.
    [120] Evans P T, Malmberg R L. Do polyamines have roles in plant development? [J].Annu. Rev. Plant Physiol. Plant Mol. Biol, 1989, 40: 235-269.
    [121] Roberts D R, Walker M A, Thompson J E. The effects of inhitors of polyamines and ethylene biosynthesis on senescence ethylene production and polyamine levels in cut carnation floners (Dianthus caryophyllus) [J].Plant Cell Physiol., 1984, 25: 315-322.
    [122] Khan A U, Mei Y H, Wilson T. A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen [J].Proc Natl Acad Sci USA, 1992, 89: 11426-11427.
    [123] Besford R T, Richardson C M, Campos J L, et al. Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves [J].Planta, 1993, 189: 201-206.
    [124] Roberts D R, Dumbroff E D, Thompson J E. Exogenous polyamines alter membrane fluidity in bean leaves-basis for potential misinterpretation of their true physiological role [J].Planta, 1986, 167: 395-401.
    [125]徐仰仓,王静,刘华.外源精胺对小麦幼苗抗氧化酶活性的促进作用[J].植物生理学报, 2001, 27(4): 349-352.
    [126] Mehta A M, Saftner R A, Schaeffer G W, et al. Translational modification of an 18 kilodalton polypeptide by spermidine in rice cell suspension cultures [J].Plant Physiol, 1991, 95: 1294-1297.
    [127]覃凤云,吕金印,陆璃,等.外源精胺对水分胁迫下小麦幼苗保护酶活性的影响[J].西北植物学报, 2006, 26(1): 86-91.
    [128]刘惠芬,高玉葆,张强,等.不同种群羊草幼苗对土壤干旱胁迫的生理生态响应[J].南开大学学报(自然科学版), 2004, 37(4): 105-110.
    [129]罗群,唐自慧,李路娥,等.干旱胁迫对9种菊科杂草可溶性蛋白质的影响[J].四川师范大学学报(自然科学版), 2006, 29(3): 356-359.
    [130]覃凤云,吕金印,梁宗锁,等.外源精胺对水分胁迫下小麦幼苗蛋白酶和核糖核酸酶活性的影响[J].干旱地区农业研究, 2004, 22(2): 95-99.
    [131] Slocum R D, Kaur-Sawhney R, Galston A W. The physiology and biochemistry of polyamines in plants [J].Arch Biochem Biophys, 1984, 235: 283-303.
    [132]吴志华,曾富华,马生健,等. ABA对PEG胁迫下狗牙根可溶性蛋白质的影响[J].草业学报, 2004, 13(5): 75-78.
    [133]姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响[J].作物学报, 2004, 30(2): 169-174.
    [134]杜长霞,李娟,郭世荣,等.外源亚精胺对盐胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响[J].西北植物学报, 2007, 27( 6 ): 1179-1184.
    [135]刘国花.干旱胁迫对辣椒生理机制的影响[J].湖北农业科学, 2007, 46 (1): 88-90.
    [136]李霞,阎秀峰,于涛.水分胁迫对黄檗幼苗保护酶活性及脂质过氧化作用的影响[J].应用生态学报, 2005, 16(12): 2353-2356.
    [137]曹慧,王孝威,曹琴.水分胁迫下新红星苹果超氧物自由基累积和膜脂过氧化作用[J].果树学报, 2001, 18(4): 196-199.
    [138]刘卫琴,康琅,汪良驹. ALA对草莓光合作用的影响及其与抗氧化酶的关系[J].西北植物学报, 2006, 26(1): 57-62.
    [139]徐锴.外源GA_3和SA对NaCl胁迫下草莓生理生化特性的影响[D].兰州:甘肃农业大学, 2006.
    [140]於丙军,章文华. NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响[J].西北植物学报, 1997, 17(4): 439-442.
    [141]赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报, 1999, 16(5): 540-546.
    [142] Santa G A, Acosta PAM, Bolarin C. Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species [J].Physiol. Plant, 1997, 101: 341-346.
    [143]於丙军,吉小佳,刘俊,等.氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化[J].应用生态学报, 2004, 15(7): 1223-1226.
    [144]焦彦生,郭世荣,李娟,等.钙对低氧胁迫下黄瓜幼苗体内多胺及多胺氧化酶的影响[J].西北植物学报, 2007, 27(3): 543-548.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700